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Bayesian Transfer Learning
Piotr M. Suder, Jason Xu, and David B. Dunson

Abstract. Transfer learning is a burgeoning concept in statistical machine
learning that seeks to improve inference and/or predictive accuracy on a do-
main of interest by leveraging data from related domains. While the term
"transfer learning" has garnered much recent interest, its foundational prin-
ciples have existed for years under various guises. Prior literature reviews
in computer science and electrical engineering have sought to bring these
ideas into focus, primarily by surveying general methodologies and works
from these disciplines. This article highlights Bayesian approaches to transfer
learning, which have received relatively limited attention despite their innate
compatibility with the notion of drawing upon prior knowledge to guide new
learning tasks. Our survey encompasses a wide range of Bayesian transfer
learning frameworks applicable to a variety of practical settings. We discuss
how these methods address the problem of finding the optimal information
to transfer between domains, which is a central question in transfer learning.
We illustrate the utility of Bayesian transfer learning methods via a simula-
tion study where we compare performance against frequentist competitors.

Key words and phrases: Bayesian machine learning, domain adaptation, hi-
erarchical model, meta analysis.

1. INTRODUCTION

Transfer learning—applying knowledge gained from
training on previous tasks and domains to new tasks—
is a burgeoning concept in statistics and machine learn-
ing. This natural idea mimics some of the mechanisms
of human intelligence where past experience, skills and
knowledge are often utilized in learning new topics. It is
appealing to apply the same paradigm in developing ma-
chine intelligence to extract knowledge from the rapidly
growing body of datasets available to scientists which are
often related to each other in various ways. If the do-
mains between which the transfer of information occurs
are sufficiently related, transfer learning can substantially
improve the performance of the target model. This is par-
ticularly useful when we have a small target dataset we
want to study which does not contain enough datapoints
to extract precise inferences or predictions, but have ac-
cess to a large, related dataset.
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For instance, suppose that we want to study brain con-
nectomes of Alzheimer’s patients or genomes of people
suffering from a rare type of cancer. We may utilize large
datasets of brain connectomes or genomes collected from
healthy individuals such as the ones provided by the UK
Biobank to improve the models fitted to the target data.
These related sources may aid in the extraction of, say, a
low-dimensional latent representation of the complex data
we seek to study, which can be useful toward dimension-
ality reduction in the target domain.

Although the term transfer learning has seen increasing
popularity in recent years, some of the ideas undergirding
it have been around for much longer, and have appeared
under various names. Several recent literature reviews aim
to help researchers organize and classify these ideas sys-
tematically. To name a few, [80], and more recently [79]
and [119], provide general overviews of transfer learn-
ing methodology, largely from the computer science and
electrical engineering literature. [93] focuses on transfer
learning in deep neural networks, an appealing use-case
due to the data-hungry nature of deep learning models
together with the availability of large datasets for train-
ing source models. Areas where deep learning is com-
monly applied such as computer vision often leverage
public datasets such as ImageNet [29] or Open Images
V4 [59], with millions of datapoints available for training.
Meanwhile, [114] focuses on the phenomenon of nega-
tive transfer, where the source domains are too different
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from the target domain, so that applying transfer learning
worsens the performance of the target learner. The exis-
tence of the negative transfer phenomenon illustrates the
importance of choosing an appropriate amount of infor-
mation to be transferred (the "strength" of transfer) be-
tween domains, which remains one of the key challenges
in transfer learning and will be one of the focal topics in
this survey.

With the exception of [108], none of these reviews of
the literature focuses substantially on Bayesian views. Al-
though the work of Xuan et al. [108] explicitly overviews
Bayesian transfer learning, its scope is limited to proba-
bilistic graphical models. One can argue that the Bayesian
paradigm provides a natural framework for how to in-
corporate prior information from previous datasets within
current inferences, and hence provides a canonical um-
brella of approaches for transfer learning. In this pa-
per, we provide an overview of some highlights of the
Bayesian transfer learning literature. Our focus is on
describing how different classical Bayesian approaches
can be either directly applied or easily adapted to trans-
fer learning problems. In doing so, we contribute vari-
ous ideas toward answering a central question of trans-
fer learning: how do we determine and enforce optimal
information transfer between domains utilizing various
Bayesian modeling approaches? Our aim is to contribute
a broad view of Bayesian transfer learning, while present-
ing approaches that help surmount the problem of nega-
tive transfer.

The rest of the paper is organized as follows. In the
following section, we give formal definitions of transfer
learning and related areas, and discuss alternative names
for related ideas in the literature. In Section 3 we provide
an overview of general Bayesian approaches to transfer
learning with specific examples and some applications. In
Sections 4 and 5 we provide a brief taxonomy of transfer
learning and point out several areas where some specific
Bayesian approaches introduced here can be particularly
useful. Finally, in Section 6 we present a simulation study
comparing one of the Bayesian methods introduced here
with frequentist transfer learning competitors. We con-
clude with a discussion in Section 7.

2. DEFINITION AND RELATED AREAS

While approaches for transferring information across
statistical tasks have a rich history, use of the “transfer
learning” terminology is relatively recent. Perhaps, as a
result, there is not yet a standard technical definition of
what qualifies as transfer learning. Although some au-
thors adopt a narrow definition of the transfer of parame-
ters between models [47], others welcome broader, more
general definitions [80], [119], [93]. In this section, we
provide one definition of transfer learning to fix ideas for

the rest of the article. We then discuss closely related ar-
eas. Here by domain we denote the two-element set of the
form D = {X , P}, where X is the feature space and P is
the marginal probability distribution of the observations
X ∈ X collected in a dataset associated with D. Given a
domain D and its associated label space Y , [80] define a
task on D as the set T = {Y, f(·)}, where f is a function
given by f = {(x, y) | x ∈ X , y ∈ Y}. In this framework,
f is the ground truth, the optimal solution to the task that
is not observed directly, but whose approximation can be
learned from the observed data.

DEFINITION 2.1 (Transfer Learning). Consider the
source domains D1,D2, . . . ,DK with respective associ-
ated source tasks T1,T2, . . . ,TK , as well as the target do-
main D0 with the associated target task T0 = {Y0, f0},
where an approximation to f0 can be learned based on
available data (X0, Y0) with X0 ∈ X0, Y0 ∈ Y0. Suppose
that Dk ̸=D0 or Tk ̸= T0 for any k = 1, . . . ,K . Transfer
learning refers to algorithms that aim to improve the ap-
proximation of f0 by incorporating the knowledge from
D1,D2, . . . ,DK and T1,T2, . . . ,TK .

In this setting, by knowledge we mean either: (i) the raw
data sampled from the source domains, possibly equipped
with labels from the source tasks, (ii) learners pre-trained
on the data from source domains and tasks, or (iii) oracle
models which have complete and true information on the
source domains and the source tasks. Among these, cases
(i) and (ii) are the most commonly encountered ones in
practice.

Our definition follows and generalizes the conventions
used by [80]. Note that in the above definition, the source
and target domains are not necessarily different, encom-
passing cases with a common domain but different tasks.
Furthermore, when two domains are different, their fea-
ture spaces need not differ. In the deep learning literature,
the target task is sometimes referred to as the downstream
task [87].

By allowing the label space to be (a) discrete, (b) one-
dimensional, (c) multidimensional, (d) defining only a
partition of a dataset associated with D without giving a
specific meaning to how the labels are used for that pur-
pose, this definition comprises, respectively, (a) classifica-
tion, (b) univariate regression, (c) multivariate regression
and dimensionality reduction, and (d) clustering tasks. Fi-
nally, allowing the values of f to be probability distribu-
tions naturally lends itself to Bayesian posterior learning.

2.1 Related fields

Another closely related problem that follows this paradigm
is multitask learning. Like transfer learning, its goal is to
improve learning in a particular domain based on infor-
mation from related domains and tasks, but it differs in
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the attempt to simultaneously learn each task jointly on
all the domains considered. This may improve the per-
formance across tasks by borrowing information between
related tasks and domains, in contrast to using a set of
tasks and domains only as means to the end of improving
performance on a single target task [80]. Although some
authors regard multitask learning and transfer learning
as separate disciplines [80], [109], [98], others consider
them as the same field [108], or draw a distinction be-
tween the two according to different criteria, as in [40].
Often a multitask learning method can be easily adapted
to transfer learning [80], [109]. As we shall see in the fol-
lowing sections, the Bayesian framework elegantly rec-
onciles these notions in many cases.

Continual or lifelong learning [52], [115], [58], [34] is
a popular concept in machine learning, which combines
aspects of transfer and multitask learning. In this setting,
an agent faces a sequence of domain-task pairs over time,
with the goal being to utilize previously encountered tasks
to learn each new task in a more effective way while
maintaining the ability to solve the previous tasks [106].
Continual learning attempts to remedy the phenomenon
of catastrophic forgetting [75] in transfer learning where
the model performs worse on the source tasks after being
adjusted to the target task; this commonly occurs in deep
learning models [9], [2]. This forgetting can be especially
problematic when the number of encountered tasks and
model parameters becomes large and it becomes difficult
to store the previously encountered datasets and models
trained on them.

There is additionally a Bayesian literature on met-
alearning, or learning to learn [110], [81], [82], [113].
Vanschoren [97] defines metalearning as methods aiming
to improve the “configuration” (e.g. model hyperparame-
ters, network architecture in case of deep learning meth-
ods, etc.) of the model for the target task by training on
metadata. Here metadata refers to information obtained
from models trained individually with different configu-
rations; for example, one may vary different aspects of the
model and measure its performance via cross validation.
While some researchers consider metalearning as distinct
from transfer learning [47], following Definition 2.1 we
consider it to be a special case of transfer learning. In this
case the information from the source domains is utilized
by training models with various configurations on these
domains and then using the metadata generated from them
in improving the model for the target task.

Domain adaptation [104], [116], [8], [37], [102] is an-
other popular term, sometimes used interchangeably with
transfer learning as in [56]. However, since knowledge
can also be transferred between different tasks in the same
domain, we view it as a particular case of transfer learn-
ing. Additional terminology for concepts closely related
to transfer learning includes cooperative learning [117],

[31], knowledge consolidation, context-sensitive learn-
ing, knowledge-based inductive bias, incremental, and cu-
mulative learning [80].

3. BAYESIAN APPROACHES TO TRANSFER
LEARNING

Two fundamental questions that need to be addressed
are: (i) how information should be transferred, and (ii)
which information should be transferred. There are vari-
ous approaches to answering these questions and they are
often related to the models used for solving the source and
target tasks. Determining appropriate information trans-
fer between domains is critical, since transferring inap-
propriate information can result in large bias and subopti-
mal performance. In extreme cases, one obtains negative
transfer [114], which corresponds to the case in which
transferring information decreases performance.

Some of the existing approaches rely on expert knowl-
edge about the domains considered and their relation-
ships, some introduce statistical measures of similarity
between domains, while others rely on more flexible
model-based or validation-based approaches to the opti-
mal choice of parameters controlling information trans-
fer. In this section, we discuss different ideas based on
Bayesian methodology which can be used to tackle ques-
tions (i) and (ii).

3.1 Shared parameters

One of the most prevalent approaches is to use com-
mon parameters in the source and target domains. For ex-
position, throughout this subsection we assume only one
source dataset XS and one target dataset XT . For conve-
nience of notation, by Xd we denote both the datapoints
and their associated labels (when applicable) for domain
d ∈ {S,T}. We parameterize the likelihood of the data
for the source and target domains as p(XS | θC , θS) and
p(XT | θC , θT ), respectively, where θC is the common
vector of parameters, shared by the source and target data,
while θS and θT are vectors of parameters unique to the
datasets. Let π(θC), π(θS), π(θT ) be the prior distribu-
tions for, respectively, θC , θS , θT .

A simple Bayesian transfer learning approach would
compute the posterior for θC based on the prior π(θC)
and the source data XS via

p(θC |XS)∝ p(XS | θC)π(θC)

=

(∫
p(XS | θC , θS)π(θS)dθS

)
π(θC),(1)

and then use π∗(θC , θT ) ∝ p(θC |XS)π(θT ) as the prior
for (θC , θT ) in the analysis of XT to obtain the posterior

p∗(θC , θT |XT )∝ p(XT | θC , θT )π∗(θC , θT ).

It is straightforward to see that if XT ⊥⊥ XS | (θC , θT )
and θS ⊥⊥ θT a priori, then this is equivalent to obtaining
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a posterior for (θC , θT ) based on the data (XT ,XS) with
the prior π(θC)π(θT ) on (θC , θT ), i.e.

(2) p∗(θC , θT |XT ) = p(θC , θT |XT ,XS),

where

p(θC , θT |XT ,XS)∝ p(XT ,XS | θC , θT )π(θC)π(θT ).

Hence, this approach is equivalent to giving equal weights
to the source and target data in computing the posterior
of the shared parameters. This is an appropriate approach
when the model is specified correctly and the true param-
eters θC are indeed exactly the same in the source and
target populations.

However, in practice, it is likely that the assumption
of exactly equivalent values of θC is an oversimplifica-
tion. As the true values of θC vary more widely between
the source and target domains, the above approach can
have suboptimal performance, particularly when the sam-
ple size of the source data is larger than that of the tar-
get, which is often the case. A simple and commonly used
heuristic solution is to specify the prior for θC in the tar-
get posterior as a variance-inflated version of the posterior
p(θC |XS) from the source data analysis.

Shwartz-Ziv et al. [87] apply a related approach to
Bayesian deep neural networks (DNNs). First, a Gaus-
sian approximation to the posterior for the DNN fitted
to the source data is obtained. The authors assume that
the “feature extractor” layers of the DNN are common to
the source and target DNN. The variance of the Gaussian
approximation to the source posterior for the weights in
these layers is scaled up by a constant factor and then used
as a prior for the feature extractor component in the tar-
get data DNN. The remaining weights characterizing the
“head” of the DNN are given an isotropic Gaussian prior.
To learn an appropriate amount of information sharing be-
tween the source and target domains, the scaling factor is
chosen on held-out validation data from the target training
dataset.

An alternative approach to controlling the influence of
the source data on the target domain posterior distribution
is the power prior [22], [23], [50], [49], [32]. The power
prior for the target parameters is proportional to an initial
prior multiplied by the source data likelihood raised to a
fractional power. The fractional power serves to diminish
the information provided by the likelihood of the source
data. In our transfer learning setting, the joint prior for
(θC , θT ) in the target model is given by

(3) πa0
(θC , θT |XS)∝ p(XS | θC)a0π(θC)π(θT ),

where the strength of information transfer ranges between
no transfer at a0 = 0 to "full" transfer at a0 = 1. In the lat-
ter case, the source data are given equal weight to those in
the target domain. This setup generalizes the partial bor-
rowing power prior of [23], where the source model pa-
rameters are a subset of those used in the target domain.

Several appealing theoretical properties of the power
prior were established in [50] for the case when all the
parameters are shared. In that case the posterior for θ re-
duces to

(4) πa0
(θ |XT ,XS)∝ p(XT | θ)p(XS | θ)a0π(θ),

where θ determines the distribution of both source and tar-
get data. Ibrahim et al. [50] show that for a fixed a0, (4)
minimizes the weighted sum of Kullback–Leibler (KL)
divergences between the posterior with no information
transfer and one with full information transfer, i.e.

πa0
(θ |XT ,XS) =

= arg min
g

{(1− a0)KL(g || f0) + a0KL(g || f1)},

where f0 and f1 are probability densities given by

f0(θ) = π0(θ |XS ,XT )∝ p(XT | θ)π(θ)

and

f1(θ) = π1(θ |XS ,XT )∝ p(XT | θ)p(XS | θ)π(θ).

Like in the other transfer learning approaches, choos-
ing the right amount of information to be transferred, in
this case governed by the value of a0—is a key challenge.
An approach is to treat a0 as fixed and perform a sensitiv-
ity analysis on a set of values that ideally should include
a0 = 0 and a0 = 1, as recommended by [49]. In general-
ized linear models (GLMs) the choice of a0 can be better
informed with the help of model selection criteria such as
those proposed in [50], [49], [48], and [92]. Ibrahim et al.
[50] propose a penalized likelihood-type criterion (PLC)
that chooses a0 ∈ (0,1] to be the minimizer of

−2 log

∫
p(XT | θ)p(XS | θ)a0π(θ)dθ+

log(nS)

a0
,

where nS is the sample size of the source dataset.
Alternatively, we can treat a0 as random and, in turn,

assign it a prior distribution. We can directly define the
joint prior for (θ, a0) as in [49], i.e.

(5) π(θ, a0 |XS)∝ p(XS | θ)a0π(θ)π(a0),

or the normalized power prior as in [32]

π(θ, a0 |XS) = π(θ |XS , a0)π(a0)(6)

=
p(XS | θ)a0π(θ)∫
p(XS | θ′)a0π(θ′)dθ′

π(a0).

The normalized power prior first specifies a marginal
prior for a0 and then a conditional prior for θ given a0.

Taking π(a0) to be a beta or Dirichlet distribution de-
pending on the number of source domains is a natural
choice, with theoretical support proved in [50] under fixed
a0 that extends to the random a0 case under (5). Other pri-
ors with appropriate support, such as gamma or Gaussian
truncated to [0,1], can also be utilized [22]. However, it is
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not clear how the data inform about an appropriate value
for a0, since a0 is not a traditional parameter. It may be
that this approach can be used to represent the prior un-
certainty in a0 but will not adapt to the information in the
data to focus on the optimal amount of borrowing from
the source data.

The model introduced by Hickey et al. [45] leads
to another interesting example of the shared variables
approach. Specifically, given source and target datasets
{(yS,i,xS,i)}nS

i=1 and {(yT,j ,xT,j)}nT

j=1, each consisting
of labeled i.i.d. samples, they specify the following model

yS,i = h [f(θS ,xS,i),US,i]

yT,j = h [g(θT ,xT,j),UT,j ] ,

where US,1, . . .US,nS
and UT,1, . . . ,UT,nT

are indepen-
dent random variables and f, g and h are functions. Under
the assumption that f(θS ,xT ) ̸= 0 almost surely, they let

βj = g(θT ,xT,j)/f(θS ,xT,j)

and then reformulate the target data model as

yT,j = h [βjf(θS ,xT,j),UT,j ] .

They assume that βj
iid∼ Cauchy(δ, γ) and specify a prior

for the parameters δ and γ. Thus, while in the original
formulation the true parameters for both domains are not
necessarily equal, by explicitly modeling a relevant mea-
sure of discrepancy between them represented by βj’s,
Hickey et al. [45] are able to easily reformulate the model
in a way that allows them to take advantage of the shared
parameter approach.

Similar effect is achieved in the work of Li et al. [67],
who model the parameter vector that governs the categor-
ical distribution of the target domain data as a mixture of
the corresponding parameter vectors from the source do-
mains. In both these works transfer via common parame-
ters is achieved by introducing an additional layer to the
model, which brings us to the next approach commonly
employed in transfer learning problems, namely that of
hierarchical modeling.

3.2 Hierarchical models and random effects

The methods mentioned in the previous section rely
on sharing parameters in the likelihood specification for
source and target data. Alternatively, we can allow the pa-
rameters of the source and target data models to differ,
instead imposing the assumption that they come from a
jointly specified or identical prior distribution acting as a
bridge for information flow between the domains.

As a simple example, consider the Gaussian linear
model. Let the datasets (X1,y1), . . . , (XK ,yK) denote
the source data and (X0,y0) be the target data, where
Xd ∈ Rnd×p and yd ∈ Rnd for d ∈ {0,1, . . . ,K}. Under
this model we assume that

(7) yd =Xdβd + ϵd, ϵd∼N (0, σ2
dInd

),

with the prior on the coefficients given by βd ∼N (µ,Σ)
for d ∈ {0,1, . . . ,K}. Here, domain-specific parameters
βd are drawn from a common prior distribution N (µ,Σ),
which is often referred to as a random effects distribution.
Model (7) is a common type of hierarchical regression
model for data nested within groups (domains in our ter-
minology). Data from all domains are used to inform the
mean of random effects µ and covariance Σ, causing the
borrowing of information.

We can either treat σ0, σ1, . . . , σK , µ, and Σ as fixed,
taking a frequentist approach to inference, or specify
hyperpriors for them to obtain a Bayesian hierarchical
model. In either case, the random effects covariance Σ
controls how much information transfer there is, analo-
gously to a0 in the power prior approach. Large covari-
ance implies less shrinkage of the βd values towards the
random effects mean µ. In practice, the prior for the ran-
dom effects mean and covariance will be updated based
on information in the data about the variability in the re-
gression coefficients across domains.

For fixed σ0, σ1, . . . , σK , µ, and Σ, [21] showed a di-
rect analytic relationship between Σ and the tuning pa-
rameter a0 in the power prior approach, establishing dual-
ity between these methods for the Gaussian linear model.

3.3 Shared latent space

Rather than imposing shared parameters on data gen-
erating processes for source and target domains, whether
explicitly in the likelihoods or at higher levels in a hi-
erarchical model, we can also specify or seek to learn
a shared latent space. This approach can be particularly
useful in more complex datasets with a large number of
dimensions.

3.3.1 Factor analysis In the Bayesian context, many
such examples can be found in the factor analysis liter-
ature. Under the classical factor model specification out-
lined in [70] the i-th observation yi ∈Rp is given by

yi =Ληi + ϵi,

where ηi
iid∼ N (0,Iq) are the vectors of latent factors,

Λ ∈Rp×q is the factor loading matrix, ϵi
iid∼ N (0,∆) are

random noise terms with ∆= diag(δ21 , . . . , δ
2
p), and ηi, ϵj

are independent for any i, j. It is commonly assumed that
q≪ p, that is, the high-dimensional data can be explained
using a latent structure of much lower-dimensional fac-
tors. This model can be equivalently written as a Gaussian
distribution with a constrained covariance structure, i.e.

yi
iid∼ N (0,Σ), Σ=ΛΛT +∆.

The mean zero assumption on yi comes from the stan-
dard practice of centering the data and does not limit the
generality of the model.
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In [27] and [28] this setup is generalized to the situation
with data coming from multiple domains by letting

yk,i
iid∼ N (0,Σk), Σk =ΛΛT +ΦkΦ

T
k +∆k,

where ∆k = diag(δ2k,1, . . . , δ
2
k,p) is the error variance ma-

trix, Λ ∈ Rp×q , Φk ∈ Rp×qk for domain k = 1, . . . ,K .
Here, ΦkΦ

T
k accounts for the domain-specific dependen-

cies between the datapoints, and ΛΛT is the underlying
shared covariance structure which allows for information
transfer between domains.

Analogously to the single domain case above, this
model has the equivalent representation

yk,i =Ληk,i +Φkζk,i + ϵk,i,(8)

with

ηk,i
iid∼ N (0,Iq), ζk,i

iid∼ N (0,Iqk), ϵk,i
iid∼ N (0,∆k),

where ηk,i is a latent factor in the q dimensional shared
subspace, ζk,i are qk dimensional domain-specific latent
factors and ϵk,i are error terms. Thus, Λ is the shared fac-
tor loading matrix and Φk are p× qk domain-specific fac-
tor loading matrices. In this model the transfer of knowl-
edge between domains occurs through information bor-
rowing in the estimation of Λ.

The above model allows for a lot of flexibility be-
tween the domains, but suffers from an identifiability is-
sue known as information switching: the data can be fit-
ted equally well with the shared columns in factor load-
ing matrices transferred from Λ to Φk’s. De Vito et al.
[27] solve this problem by restricting the augmented ma-
trix [ΛΦ1 . . . ΦK ] to be lower triangular. One limitation
of this approach is that it imposes an ordering on the
domains. Often when we have multiple source domains
there is no natural ordering between them and hence this
approach would not be preferred in such a scenario.

A recent paper proposes a different solution to the prob-
lem of information switching by restricting factor loading
matrices to linear transforms of the shared factor loading
matrix and imposing a shared covariance of error terms
between domains [18]. That is, they assume Φk =ΛAk,
where Ak ∈ Rq×qk and ∆k = ∆ = diag(δ21 , . . . , δ

2
p) for

every k = 1, . . . ,K in (8). The authors show that under
any non-degenerate continuous prior on Ak the informa-
tion switching does not occur almost surely provided that
0<

∑K
k=1 qk ≤ q.

This result provides some guidance for choosing the
dimensions of shared and domain-specific latent spaces,
since these are not known in most practical applica-
tions. These dimensions influence the amount of infor-
mation transferred between domains, as higher values of
q1, . . . , qK give more flexibility to domain-specific latent
features, thus reducing the influence of shared latent fac-
tors. An approach to choosing these dimensions would be
to place priors in q1, . . . , qK and q and use the reversible

jump algorithms outlined in [41]. However, such algo-
rithms can be computationally prohibitive.

Chandra et al. [18] provide an alternative solution
by fixing q, q1, . . . , qK at an upper limit, and then uti-
lizing appropriate priors to shrink the excess columns
in Λ,A1, . . . ,AK . Specifically, they obtain approximate
singular values and eigenvectors of the pooled dataset
via the augmented implicitly restarted Lanczos bidiago-
nalization [3]. Then they choose q̂ to be the lesser of:
the smallest number of factors explaining 95% of the
variability in the data; the largest integer smaller than
(2p −

√
8p+ 1)/2, in order to ensure identifiability of

ΛΛT from ∆, following [6]. Then they fix q̂k = q̂/K
for k = 1, . . . ,K to ensure that information switching
does not occur. The strength of information transfer be-
tween domains is thus directly influenced by the amount
of shrinkage induced by the priors on the factor loading
matrices. In [18], the fixed priors vec(Λ)∼ DL(1/2) and

ak,i,j
iid∼ N (0,1) are used, where ak,i,j is the (i, j)-th entry

of Ak and DL denotes the Dirichlet-Laplace distribution
[7]. Thus, a possible extension in this line of work would
be to propose some methods for choosing these hyperpa-
rameters in an adaptive way depending on how related the
domains are.

3.3.2 Mixture models Latent space models are com-
monly used as a dimensionality reduction tool, including
when dealing with non-standard data structures such as
networks [46], [10]. As a vignette showing how mixture
models can be used in combination with latent space mod-
els for flexible transfer learning, we focus on the approach
proposed in [33]. They were motivated by data on brain
networks for individuals in different groups.

Specifically, given n observed networks each belong-
ing to one of K groups and consisting of V labeled ver-
tices, denote the i-th network together with its group label
as {yi,L(Ai)}, where Ai ∈ {0,1}V×V is the adjacency
matrix and L(Ai) ∈ {0,1}V (V−1)/2 denotes the lower tri-
angular entries

(Ai[2,1], . . . ,Ai[V,1],Ai[3,2], . . . ,Ai[V,2], . . . ,Ai[V,V−1])
T

of Ai. We ignore the main diagonal and the upper trian-
gular part of Ai since the network is an undirected graph
and the self-relationships of the nodes are not of interest.
In [33] subjects fall into a low- and high-creativity group,
so we have K = 2 domains. The network representation
L(A) conditional on the group membership y is modeled
as

P(L(Ai) = a | y = k) =

=

H∑
h=1

ν
(k)
h

V (V−1)/2∏
l=1

(
π
(h)
l

)al
(
1− π

(h)
l

)1−al
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for any a ∈ {0,1}V (V−1)/2 with the probability vector

π(h) =
(
π
(h)
1 , . . . , π

(h)
V (V−1)/2

)T
∈ (0,1)V (V−1)/2

in the h-th mixture component given by

π
(h)
l =

[
1 + exp

(
−Zl −D

(h)
l

)]−1
,

with

D(h) =L(X(h)Λ(h)X(h)T ), h= 1, . . . ,H,

where X(h) ∈ RV×R, Λ(h) = diag(λ(h)
1 , . . . , λ

(h)
R ) with

λ
(h)
1 , . . . , λ

(h)
R ≥ 0, and Z ∈RV (V−1)/2.

The model supposes that there are H different types of
brain structures. The probability of an edge between the
l-th pair of brain regions follows a logistic model having
an intercept Zl characterizing the baseline log odds of a
connection and a low-rank deviation that differs accord-
ing to the individual’s brain type. To enable information
transfer across the creativity groups (domains), the model
assumes the brain structure types do not differ across the
groups (referred to as “common atoms” in the mixture
modeling literature). However, the proportion of individ-
uals having brain type h, ν(k)h , does differ across domains
k = 1, . . . ,K .

Although the goal in [33] was inference on group dif-
ferences, this model can be used directly to transfer learn-
ing from the source domain to a target domain, the source
data allowing a more accurate estimation of the shared
network types. In addition, the baseline log-odds of an
edge between each pair of nodes is also shared across
the groups, leading to information sharing about com-
mon topological properties of the graphs, including block
structures, homophily behaviors, and transitive edge pat-
terns [46]. An important application would be to transfer-
ring information from large brain imaging repositories,
such as the Human Connectome Project (HCP) and UK
Biobank, to small neuroimaging studies in targeted popu-
lations.

In [68], shared kernels are used to model complex dis-
tributions of multiple variables in different domains. Mo-
tivating applications are studies investigating how DNA
methylation profiles vary according to the cancer sub-
type. For samples i = 1, . . . , n, data consist of xi =
(xi1, . . . , xip)

T with xij denoting the methylation level
at site j, for j = 1, . . . , p with p very large (e.g., p =
450,000) and yi ∈ {1, . . . ,K} denoting the group mem-
bership. The density of the data in group k for the jth vari-
able is f

(k)
j (·) =

∑H
h=1 ν

(k)
jh K(·;θh), with K(θ) a fam-

ily of densities parameterized by θ and ν
(k)
jh a probability

weight on kernel h specific to site j and group k.
Although the motivation in [68] is testing for differ-

ences in methylation between different groups, the pro-
posed approach can be directly applied to transfer learn-
ing focused on inferring the marginal densities of very

high-dimensional data within a particular domain. Data
from all domains are used to infer the shared kernel
parameters θ1, . . . ,θH and further information borrow-
ing occurs through a hierarchical model for the weights
{ν(k)jh }. Even in using shared kernels, this approach al-
lows for highly flexible differences in distribution across
groups.

There is a rich literature on alternative Bayesian mix-
ture models for borrowing information across grouped
data while also allowing distinct characteristics of each
group. Suppose we let xi denote feature data for sub-
ject i with yi ∈ {1, . . . ,K} denoting the subject’s group
membership. Then, a common approach is to incor-
porate subject-specific parameters θi within the likeli-
hood function for xi and then let θi ∼ Pyi

, with the
collection of group-specific random effects distributions
(P1, . . . , PK) ∼ Π given an appropriate prior. Popular
choices of Π include the hierarchical Dirichlet process
(HDP) [95] and the nested Dirichlet process (NDP) [83],
both of which fall into the broad class of hierarchical pro-
cesses [12]. These approaches characterize each Pk as
almost surely discrete while incorporating statistical de-
pendence between Pk and Pl for all k ̸= l, leading to de-
pendence in clustering.

Alternatively, analogously to the multi-group factor
models of [27], [28], and [18], Müller et al. [78] mod-
eled the group-specific random effects distributions Pk as
a mixture of a common cross-group distribution P0 and
group-specific distributions Qk, with a hyperprior cho-
sen for the mixture weight on P0 to allow data adaptivity.
This approach and the above approaches assume a priori
exchangeability between groups. In the future, it will be
interesting to adapt these approaches and develop appro-
priate extensions explicitly targeting the transfer learning
case in which one domain is the particular focus. A rel-
evant recent advance is the graphical Dirichlet process
of Chakrabarti et al. [16], which incorporates a known
directed acyclic graph (DAG) characterizing the depen-
dence structure across groups.

3.4 Network transfer

As an alternative to viewing each source domain as pro-
viding exchangeable information about the target domain
a priori, there is often expert knowledge about directed
relationships between the different domains. Incorporat-
ing a network of relationships among domains in transfer
learning is termed network transfer, as opposed to direct
transfer.

In Bayesian network meta-analysis [71] the goal is of-
ten to compare the efficacy of a pair of treatments based
on multiple studies, some of which may involve arms with
other treatments. Let W,X,Y,Z be four available treat-
ments among which we want to compare the efficacy of
X and Y. Suppose that we have the dataset DXY formed
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LS1
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LS3

LS4
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LT

LS3

LS2

LS4

FIG 1. Direct transfer (left) and network transfer learning (right). In
direct transfer all the source learners are used directly in supporting
the training of the target learner, whereas in network transfer we can
have a more complex structure with some of the source learners sup-
porting other source learners rather than the target learner directly.

X Y

Z W

LXW

LXY

LY Z

LYW

LZW

FIG 2. Evidence network for the treatment comparison (left) and the
network transfer of information between the associated learners in the
meta analysis (right).

based on studies comparing X and Y and that we also
have access to datasets DXW , DYW , DY Z , and DWZ

comparing, respectively X to W , Y to W , Y to Z , and
W to Z . We may have several different trials for certain
of these comparisons. The knowledge extracted from the
trials comparing other treatments can be used to indirectly
improve the analysis of the X vs Y trials. Figure 2 shows
a graph representing the observed comparisons between
treatments, sometimes referred to as the evidence network
[72], and the associated network transfer graph.

The general framework for Bayesian network meta-
analysis is outlined in [72]. Denote the mean difference
observed in the efficacy of treatments k and l in study i
by δi,k,l and the baseline difference in efficacy between
treatments k and l by dk,l. We refer to dk,l as effect pa-
rameters. In [72] they are divided into basic parameters db

and functional parameters df . Any set of effect parame-
ters can be treated as basic parameters if the edges asso-
ciated with them create a spanning tree of the evidence
network. The functional parameters are the remaining ef-
fect parameters.

Network meta-analysis assumes that functional param-
eters can be represented as linear functions of basic pa-
rameters, that is, df = Fdb for some matrix F . This
assumption is referred to as evidence consistency. Usu-
ally, these relations take the form dj,k = dj,l − dk,l for

any treatments j, k, l. In our example, we can choose
dX,W , dY,W , dZ,W as the basic parameters and then re-
late the functional parameters to them through dX,Y =
dX,W − dY,W and dY,Z = dY,W − dZ,W . Leveraging this
assumption is analogous to utilizing the shared parameter
strategy outlined in Section 3.1. We can use these iden-
tities to increase the precision of the estimation of dY,W ,
which, in turn, together with the estimates of dX,W , can
increase the precision of the estimation of dX,Y . This is
represented by the network transfer in Figure 2.

The linear relationship df = Fdb can be used to
model the vector of observed differences in treatments
δ conditionally on db and the covariance of δb, de-
noted by Cov(δb) = V b. Using the Gaussian distribution
δ ∼ N

((
dT
b ,d

T
b F

T
)T

,V
)

is standard [71], [30], [64],
where

V =

(
V b V bF

T

FV T
b FV bF

T

)
.

This prior can be incorporated within a hierarchical model
for the individual observations in each study. Further bor-
rowing of information can be facilitated by placing a com-
mon random-effects distribution on the basic treatment ef-
fect parameters as in [64].

Additional flexibility in information transfer can come
from allowing for violations in evidence consistency. Lu
et al. [72] provide such a framework through df = Fdb+
w, where w represents inconsistencies between studies.
In our example

dX,Y = dX,W − dY,W +wX,Y,W

and

dY,Z = dY,W − dZ,W +wY,Z,W .

The inferred size of w directly measures how related
the domains are and determines how much information
transfer should occur between them. There can be various
sources of inconsistencies between the pairwise compar-
isons. They can stem from limitations in the design of in-
dividual studies and from changes in the baseline efficacy
of treatments over time, for example, due to increasing
antibiotic resistance. This problem has recently been ad-
dressed in [64] where the basic parameters are assumed
to vary over time according to a Gaussian process. Thus,
information transfer between domains is corrected for the
times at which the associated datasets were collected.

Often, the appropriate transfer network joining the do-
mains is not known and needs to be inferred. One can
take a brute-force approach to select the best transfer
network under some quality measure by checking ev-
ery possible graph. However, this approach quickly be-
comes intractable as the number of domains grows with
millions of possible transfer networks on just eight do-
mains. Zhou et al. [117] provide a greedy algorithm
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which starts from the target learner and at each step
includes a source learner yielding the highest condi-
tional marginal likelihood for the target task. Specifically,
suppose that we have learners L1, . . . ,LK operating on
datasets D(1) = (y(1),X(1)), . . . ,D(K) = (y(K),X(K)),
respectively, where L1 is the target learner. Let G =
(V,E) be the (connected) network transfer graph with
V = {1, . . . ,K}. Let θ1, . . . ,θK be the parameters in
L1, . . . ,LK , where for every (i, j) ∈ E there exist sub-
vectors θi,Ci

and θj,Cj
of, respectively, θi and θj which

are restricted to be equal (shared parameter approach).
Then at each step, given the chosen set of learners Q⊂ V ,
which is known as the linkage set, let NG(Q) be the set
of neighbors of Q, consisting of all learners adjacent to at
least one learner in Q. The new learner j∗ to be added to
Q is then selected via

(9) j∗ = arg max
j∈NG(Q)

p(∪k∈Qy
(k) | ∪k∈QX

(k),D(j)).

The algorithm ends once adding a new learner no longer
increases the conditional likelihood in (9). The complex-
ity of this algorithm is O(K2) under the assumption that
the conditional likelihood in (9) can be obtained in con-
stant time. This can be further reduced to O(K logK)
if the likelihood computation is parallelized between the
learners in Q. Zhou et al. [117] provide theoretical guar-
antees for the recovery of the optimal transfer subnetwork
of G.

Having explored a variety of Bayesian approaches to
transferring information between domains in a flexible
manner, we now discuss which among these are appli-
cable to particular types of transfer learning problem de-
pending on (i) feature spaces of source and target do-
mains; (ii) the availability of labels and samples in both
source and target datasets. We note that there is an im-
mense Bayesian literature that provides relevant models
for transfer learning that we did not mention above. In-
stead, we have chosen to highlight some approaches that
we find particularly interesting and useful.

4. HOMOGENEOUS VS HETEROGENEOUS
TRANSFER

Following criterion (i), transfer learning problems can
be dichotomized on the basis of whether or not the obser-
vations in the source and target domains live in the same
feature spaces. In the literature, the former case is typi-
cally referred to as homogeneous transfer [103], [53] and
the latter as heterogeneous transfer [118], [26]. This clas-
sification often determines which of the approaches pre-
sented in Section 3 is appropriate or even feasible to use.

4.1 Homogeneous transfer

Homogeneous transfer occurs when the source and tar-
get data and labels have the same meaning in the different

domains but may follow different distributions. For exam-
ple, the same variables are collected for each of the study
subjects, but subjects in different groups may have con-
siderably different attributes; hence, the distribution of the
variables being collected may vary across groups. In such
cases, it typically makes sense to define the same form
of likelihood for the data in each domain, though there
may be systematic differences in the parameters. All of
the methods described in Section 3 can be applied directly
to problems with identical feature spaces across domains.

Examples of homogeneous transfer include clinical
studies with patients divided according to their health sta-
tus or subtype of disease. Researchers are often interested
in improving the accuracy of inference and predictions for
a particular group of patients by utilizing information col-
lected from the other groups or from healthy individuals.
This can be especially useful when dealing with rare dis-
eases, where it is often difficult to collect measurements
on a large sample of affected patients. In [8] and [43], the
authors use RNA sequencing datasets for different types
of lung, kidney, head, and neck cancer as source domains
to improve the precision of subtype identification for par-
ticular types of lung cancer. Bayesian models that borrow
strength between classes and types of cancer have been
applied in other contexts, including survival analysis [74],
[85], and protein network inference [94], [4].

4.2 Heterogeneous transfer

This case is more challenging as the source and target
datasets do not consist of measurements on exactly the
same variables for different study subjects. In order for
transfer learning to apply, there has to be something in
common across the domains. A typical setting is when
the domains have overlapping but not completely identi-
cal sets of variables. For example, there may be a com-
mon focus across the domains in studying the impact of
key predictors of interest on a response, measured under
different covariates.

For regression or classification models, the coefficients
for the key predictors are not directly comparable across
models adjusting for different covariates. Hence, shared
parameter models are not appropriate. However, it may
make sense to assume that the domain-specific coeffi-
cients for the key predictors are drawn from a common
random-effects distribution, thereby enabling borrowing
of information. Shared latent space models are even more
natural in this case. By jointly modeling the response,
key predictors, and covariates as conditionally indepen-
dent given latent factors, we induce a parsimonious latent
factor regression/classification model [14], [36]. Multi-
study variants of such models can seamlessly handle cases
in which the covariates differ across domains. The multi-
group variants of Bayesian mixture models discussed in
Section 3 similarly apply for the joint distributions of key
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predictors, covariates, and response(s) to induce flexible
transfer learning.

Bayesian methods enjoy a key advantage in this con-
text in their ability to rely on joint latent feature mod-
els to transfer information across domains with partially
overlapping variables. The majority of non-Bayesian ap-
proaches such as deep transfer learning ([111], [93], [86],
[96], [73], [69]) rely on both domains having observations
in the same feature space for pre-training and fine-tuning
the learners. We detail some examples of Bayesian trans-
fer with overlapping variables in the following.

4.2.1 Multi-study latent factor regression Recall the
multi-study latent factor model in equation (8). Previ-
ously, we considered the observed data on subject i in
study (domain) k, yk,i, to be p dimensional, with p fixed
between subjects and domains. To generalize this, we in-
stead consider the p-dimensional data yk,i to be the com-
plete data for the subject i in the study k that could po-
tentially have been measured. Then, we define mk,i =
(mk,i,j , j = 1, . . . , p)T as the missingness pattern for the
subject (k, i), with mk,i,j = 1 if the jth variable is not ob-
served for that subject and mk,i,j = 0 otherwise. A vari-
able is missing for a subject if the study they participated
in does not collect that variable, or if the study planned to
collect that variable, but it was not available.

Let y(obs)
k,i = {yk,i,j , j :mk,i,j = 0, j = 1, . . . , p} denote

the pk,i =
∑p

j=1(1 −mk,i,j) dimensional observed data
vector for subject (k, i). The Gaussian multi-study latent
factor model characterizes the complete data vector as
yk,i ∼N (0,Σk). This in turn induces a pk,i-dimensional
multivariate Gaussian distribution for the observed data
vector y(obs)

k,i having covariance corresponding to the ap-
propriate submatrix of Σk. In fitting Bayesian multi-study
factor models, it is not necessary to impute the missing
data. Instead, one can simply take into account the dif-
fering observed data contributions for each subject in im-
plementing a Gibbs sampler or alternative Markov chain
Monte Carlo (MCMC) algorithm for posterior sampling.

This approach can be used for transfer learning about
the covariance structure in multivariate data specific to the
target domain. Alternatively, when the focus is on regres-
sion, one can concatenate outcomes, predictors of interest,
and covariates together in the yk,i data vector for subject
(k, i). A Gaussian linear regression model for the out-
come given the predictors of interest and covariates can
then be obtained directly from the covariance Σk using
standard multivariate Gaussian theory. This type of ap-
proach is straightforward to extend to mixed categorical
and continuous data by following the popular approach of
linking categorical variables to underlying Gaussian vari-
ables.

4.2.2 Nonlinear and nonparametric extensions A lim-
itation of the above multi-study factor analysis model is
the assumption of multivariate Gaussianity. It is therefore
useful to consider extensions that incorporate shared and
study-specific latent factors while relaxing these restric-
tive distribution assumptions, which also imply linear re-
lationships among the variables.

In the single modality case, there is a rich literature on
nonlinear factor models. For example, we could let

yi = f(ηi) + ϵi, ϵi
iid∼ N (0, σ2Ip),(10)

where ηi
iid∼ N (0,Iq) are the vectors of latent factors

and f(·) is an unknown and potentially non-linear func-
tion. Gaussian process latent variable models (GP-LVMs)
place a GP prior on the function f mapping from the
latent to ambient space [63], [35], [89], [107]. Alter-
natively, the popular class of variational autoencoders
(VAEs) characterize f using deep neural networks and
takes a variational approach to inference [77], [51], [15].

While these highly flexible nonlinear latent variable
models have exhibited appealing practical performance as
black-box models for generating new data that resemble
the training data, they are prone to a number of vexing is-
sues in reproducing statistical inferences. One major chal-
lenge is the curse of dimensionality resulting from the
fact that the function f is an unknown mapping from q
to p dimensional space; the space of such functions is im-
mense, necessitating an enormous amount of training data
for adequate performance. Furthermore, these models are
not identifiable without substantial additional constraints.
Another common problem is termed posterior collapse
[24], [99], [100], in which there is a lack of learning about
the latent variables based on the data. Although there have
been some attempts at addressing these problems, there
remains a lack of a practically useful methodology for
performing reproducible dimensionality reduction.

The above challenges are exacerbated in considering
extensions to the multi-study (transfer learning) case.
Hence, we recommend starting with more parsimonious
nonlinear latent factor models in future work developing
such extensions. One promising point of departure is the
recently proposed NIFTY framework of Xu et al. [107],
which lets

yi =Ληi + ϵi, ϵi
iid∼ N (0,Σ),

ηih = gh(uikh
), h= 1, . . . , q,

where Λ is a factor loading matrix, Σ= diag(σ2
1, . . . , σ

2
p),

and uik
iid∼ U(0,1) for k = 1, . . . ,K ≤ q. Each latent fac-

tor ηih is a transformation of a latent uikh
through an un-

known non-decreasing function gh. The subscript kh al-
lows the same latent uniforms to be used for multiple fac-
tors, inducing dependence.
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This model induces a flexible multivariate density for
yi, while massively reducing the dimensionality relative
to the model (10). In their paper, they provided theory
on identifiability, leveraging on pre-training with state-
of-the-art nonlinear dimensionality reduction algorithms.
They also showed excellent performance for a wide va-
riety of complex examples. They were even able to train
a realistic generative model for bird songs based on few
training examples; audio recordings of bird songs pro-
vide an example of massive dimensional data with low
intrinsic dimension. NIFTY can exploit the complex low-
dimensional structure in the data for highly efficient per-
formance.

In conducting inference for latent variable models, the
NIFTY authors noticed a common problem of distribu-
tional shift. In particular, many of the current models as-
sume that the latent variables are i.i.d. N (0,1) or U(0,1).
Inferences on the parameters, such as the induced covari-
ance in the Gaussian linear factor model case, critically
depend on this assumption holding not just a priori but
also a posteriori. Xu et al. [107] propose a general ap-
proach to solving the distributional shift of latent vari-
ables by forcing the posterior distribution of latent vari-
ables to be very close to i.i.d. U(0,1).

4.2.3 Mixture models An alternative direction towards
building more flexible models for transfer learning, in-
cluding in the partially overlapping variables case, is to
rely on mixture models, building on the developments in
Section 3.3. Such models also have the advantage of clus-
tering subjects within the different domains. In the par-
tially overlapping variable transfer learning case, it is ap-
pealing to define a joint model, as motivated above. How-
ever, Chandra et al. [17] recently noted a pitfall of mixture
models in high-dimensional cases in which the posterior
tends to concentrate on trivial clusterings of the observa-
tions that place all subjects into one cluster or in singleton
clusters.

As a solution in the single domain case, they proposed
a latent mixture model formulation that lets

yi =Ληi + ϵi, ϵi
iid∼ N (0,Σ),

ηi ∼
H∑

h=1

νhN (µh,∆h),(11)

so that a mixture of Gaussians model is used for the la-
tent variables in a linear factor model. They prove that
this model solves the above-mentioned pitfall in Bayesian
clustering in high dimensions. The trick is to model the
variation across clusters in a lower-dimensional latent
space to address the curse of dimensionality.

With this single domain specification as the starting
point, there are multiple promising directions forward in

terms of extensions to the multiple domain transfer learn-
ing case. One possibility is to define a multi-study fac-
tor model as in Chandra et al. [18] but instead of assum-
ing Gaussian shared and study-specific latent factors, use
Gaussian mixture models to induce a flexible distribution
on the latent factors while also producing separate clus-
ters of subjects in each domain with respect to the shared
and study-specific components. An alternative is to rely
on the model in equation (11) but with domain-specific
distributions for the latent factors defined as

fk(ηi) =

∫
N (ηi;θi)dPk(θi),

where θi = {µi,∆i} are the Gaussian parameters and Pk

is a mixing distribution on these parameters that is spe-
cific to domain k.

In the special case in which Pk = P =
∑H

h=1 νhδθh

with δθ a degenerate distribution concentrated at θ we
obtain the original model in (11). However, by using the
different priors (P1, . . . , PK) ∼ Π considered in Section
3.3 we can allow differences across the domains while
borrowing information; further borrowing is achieved
through the implicit assumption of a latent space that is
shared across domains - this is induced through the use of
a common factor loading matrix Λ.

4.2.4 Multiresolution transfer learning Closely re-
lated to the overlapping variables case is the setting in
which data are collected for each domain on related ran-
dom functions or stochastic processes. For example, let
fk : T →R denote a latent smooth continuously differen-
tiable function for domain k, and suppose that we have

yk,i = fk(tk,i) + ϵk,i, ϵk,i
iid∼ N (0, σ2),(12)

with yk = {yk,i, i = 1, . . . , nk} the observed data and
tk = {tk,i, i= 1, . . . , nk} the observation locations for do-
main k. Often, observation locations do not line up across
domains and certain domains may have lower resolution
data than others, with the resolution referring to the den-
sity of the observation points tk over the support T .

Model (12) represents a type of functional data analysis
(FDA). In many FDA settings, we observe noisy realiza-
tions of a subject-specific function at a finite set of points,
but here we are considering the case in which we have one
function for each domain and are particularly interested in
inference on the function for the target domain. There are
many applications in which this type of problem arises.
We may have domain-specific regression functions fk and
want to borrow information across domains in a nonpara-
metric regression context without assuming any common
parameters. Alternatively, yk may correspond to a domain
k-specific time series and we want to borrow information
across related time series to enhance prediction for a tar-
get series.
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A natural Bayesian approach to inference under model
(12) is to consider a functional data extension of the hi-
erarchical and random effects modeling approaches high-
lighted in Section 3. For example, one could use a hier-
archical GP that lets fk ∼ GP(f0, c) with f0 in turn given
a GP prior [5], [57]. For articles on using GPs in trans-
fer learning settings closely related to that of (12), re-
fer to [101], [112], [44]. These approaches can automati-
cally accommodate the case in which the observations are
denser in some domains than in others.

Wilson et al. [101] introduce GP regression networks
(GPRNs) which use latent GPs to transfer information be-
tween different continuous-time processes. Specifically,
given K time series y1, . . . , yK , [101] let

yk(t) =

Q∑
q=1

Wk,q(t) [fq(t) + ηq] + ϵk,

where fq ∼ GP(0,Kf
q ) are latent basis GPs evaluated at

the observation times, Wk,q ∼ GP(0,Kw) are domain-
specific weights of the latent GPs, while ηq = ηq(t) and
ϵk = ϵk(t) are respectively N (0, σ2

f ) and N (0, σ2
y) white

noise processes. The matrix of weights W (t) determines
the strength and structure of the information transfer be-
tween domains, analogously to the learning network in-
troduced in [117]. However, unlike most of the work in
Section 3.4, GPRN allows the strength of the transfer
within the network of learners to vary over time.

Although [101] simplify inference by assuming iden-
tical measurement times across domains, [44] extend the
approach to allow different measurement times and in-
crease flexibility by using deep GPs. By using a shared
latent space approach with GPs serving as the basis for
the latent space, these models are able to achieve transfer
both across resolutions and different classes of observa-
tions, corresponding to different air pollutants in the ap-
plication presented in [44].

5. AVAILABILITY OF LABELED DATA

As we have seen, the Bayesian paradigm provides a
fertile ground for developing a rich variety of techniques
relevant to transfer learning in both supervised [1], [87],
[22], [49], [53], [54], [55], [74] and unsupervised settings
[27], [28], [18], [91], [90]. When the focus is on pre-
diction, there are often challenges presented by the lim-
ited availability of labeled data. The term semi-supervised
learning refers to the case in which labels are only avail-
able for a subset of the samples. The joint modeling ap-
proaches for heterogeneous transfer learning described in
the previous section can trivially handle semi-supervised
settings, as missing labels are just one type of missing
data.

Particularly challenging are cases of one-shot and few-
shot learning, which refers to having only a single or a few

labeled samples in the target domain, respectively. For
articles proposing Bayesian approaches to handle semi-
supervised learning and these cases of a tiny number of
labeled target data, refer to [110], [81], [84], [60], [61],
[62]. In such cases, performance is critically dependent on
borrowing of information from labeled data in the source
domains. Common examples include classification based
on images or audio [60], [61], [62]. For example, we
may have many labeled examples of different individu-
als handwriting but only a tiny number for the individual
of interest.

In the transfer learning literature, inductive transfer
learning refers to the case where target domain labels
are available, while transductive transfer learning has la-
bels available only in the source domains [80]. Of course,
if there are certain systematic differences between the
source and target domains, accurate transductive transfer
may be impossible [25]. However, there is a rich PAC-
Bayesian literature on this topic ([37], [38], [39], [88])
which specifies conditions that allow for successful train-
ing of the target learner in the absence of target labels
in classification settings. They provide theoretical upper
bounds on the expected error on the target domains of a
Gibbs classifier depending on various measures of diver-
gence between the distributions of predictors and labels of
both domains as well as the properties of the set of voter
algorithms from which the Gibbs classifier is constructed.

6. SIMULATION ILLUSTRATION

In order to illustrate Bayesian transfer learning in prac-
tice, we run a simulation experiment focused on the prob-
lem of transfer learning targeting the covariance and/or
precision matrix of a high-dimensional multivariate Gaus-
sian distribution. In particular, there are data collected on
the same set of variables for subjects in different groups,
and we would like to allow the covariance/precision to
vary across groups while borrowing information. This is a
natural setting for both Bayesian multi-study factor analy-
sis models and frequentist competitors focused on transfer
learning in precision matrix estimation.

Specifically, we compare Bayesian Subspace Factor
Analysis (SUFA) [18] presented in Section 3.3 with the
frequentist Trans-CLIME method proposed by Li et al.
[66]. Trans-CLIME is a transfer learning extension of
constrained L1 minimization for inverse matrix estima-
tion (CLIME) [11]. We also include the frequentist esti-
mator proposed by Guo et al. [42], which Li et al. [66]
refer to as multitask graphical lasso (MT-Glasso). While
[18] focused on inferring covariance, SUFA can be used
just as easily to infer any functional of the covariance,
such as precision.

We focus our comparisons on precision estimation, as
this was the emphasis in [66] and [42]. Here, we gener-
ate synthetic p-dimensional data in the S (source) and T
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(target) domains, with sample sizes nS and nT respec-
tively. We consider four experiments where we alterna-
tively vary the sample sizes and dimensionality under two
different data generating models. For both data generating
mechanisms, we first fix nS = 140, nT = 70 and examine
performance as dimension varies p ∈ {40,60, . . . ,280}.
Then we fix p = 100, and vary nS ∈ {40,60, . . . ,280},
while keeping nT = nS/2 for each case. In order to ob-
tain the average performance of each method we generate
100 replicated datasets with fixed true precision matrices
for both domains in each setting across all the replicates.
We then report the average Frobenius and L1 norm of the
error in the estimated target precision matrix.

In the first setting, the data in the source and target
domains come from factor models which share some la-
tent factors, but for which SUFA is misspecified. These
results are displayed in Figure 3. Next, we consider the
data generation mechanism used in the paper introduc-
ing Trans-CLIME [66], where source and target data are
generated from Gaussian distributions with precision ma-
trices ΩS ,ΩT , respectively. Here ΩT is a sparse banded
matrix with

(ΩT )i,j = 2 · 0.6|i−j| · 1(|i− j| ≤ 7)

and

ΩS = (Ip +∆)−1ΩT ;

each entry of ∆ is set to zero with probability 0.9 and
it is sampled from U(−10/p,10/p) with probability 0.1.
Following [66], if the resulting ΩS matrix is not posi-
tive semidefinite, it is symmetrized and projected onto the
positive semidefinite cone. We present the results in Fig-
ure 4.

Performance tends to improve with growing dimen-
sion for SUFA and in most cases for Trans-CLIME and
MT-Glasso as well. This somewhat counterintuitive phe-
nomenon, known as the blessing of dimensionality [65], is
commonly encountered in the literature on covariance and
precision estimation [76], [105], [13], [20]. SUFA clearly
outperformed its frequentist competitors in all settings for
data sampled from the factor model. There is significant
instability in the solutions provided by Trans-CLIME and
MT-Glasso. In particular, under the data generation mech-
anism from [66], SUFA remains competitive at least in
certain settings and provides stable solutions across the
board. It is important to note that SUFA was created for
estimating covariance, rather than precision. In addition,
the L1 error norm could be a more favorable metric for
Trans-CLIME and MT-Glasso, as they are built on mini-
mization of L1.

Hence, we find that this particular Bayesian approach
to transfer learning based on a shared latent space model
can outperform its frequentist counterparts even on tasks
it was not built for (estimating the precision instead of the

covariance), and unlike its counterparts, it does not be-
come highly unstable on data generating mechanisms it
was not explicitly designed for. Indeed, as we have par-
tially illustrated, since we have a posterior for the covari-
ance that has support on the space of positive semidefinite
covariances, we can give Bayes estimates and posterior
credible intervals providing uncertainty quantification for
any functional of the covariance of interest. Hence, from
a single Bayesian analysis, we can obtain multiple results
of interest that are all internally coherent.

7. DISCUSSION

Transfer learning is a timely problem given the abun-
dance of data sets from related domains. In many applica-
tions, there are simply not enough data from the domain
of interest to support reliable inference and accurate pre-
dictions as we seek to fit increasingly complex models.
Hence, it becomes critical to cleverly borrow information
from available “source” datasets.

Choosing the appropriate strength and structure of in-
formation transfer between domains remains one of the
key challenges. The Bayesian paradigm offers a wide
variety of approaches to transfer learning, including
shared parameters, hierarchical and random-effects mod-
els, shared latent space, and network transfer methods.
There is a rich literature developing and applying these
approaches in transfer learning settings, although most
often “transfer learning” is not mentioned in the associ-
ated papers.

This article has focused on providing a flavor for some
of the interesting directions that are possible in terms of
Bayesian transfer learning, but has not attempted a com-
prehensive overview of the massive relevant literature.
Most of the transfer learning literature has focused on
the simplest homogeneous transfer case, where data from
different domains consist of the same variables measured
in different subjects. Bayesian ideas applied to transfer
learning can be particularly useful in the more challeng-
ing settings presented in Section 4, where these existing
methods largely do not apply.

We have purposely focused much of our attention
on shared latent space-type models for Bayesian trans-
fer learning, ranging from multi-study factor analysis to
multi-group Bayesian nonparametric models. We focused
on these areas because the associated models are not as
well known to the broad community but are very prac-
tically useful, including in challenging high-dimensional
and complex structured data cases. In addition, there have
been interesting recent developments that we have high-
lighted, while sketching out some promising directions
for ongoing research. This includes extending Bayesian
continuous latent factor modeling approaches to transfer
learning settings. Our view is that more careful statisti-
cal models will tend to dominate over-parametrized black
boxes, such as VAEs, in many settings.
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FIG 3. Frobenius and L1 norm errors of target precision matrix estimates for SUFA, Trans-CLIME and MT-Glasso over varying dimension p, and
sample sizes of source and target domains. Samples for both domains come from factor models which share some of the latent factors.

An additional interesting area for future research is
Bayesian transfer learning involving deep neural net-
works. While in recent years there have been papers tak-
ing some early steps in this area [1], [19], [87], there
is plenty of potential for further impactful developments
in this field, especially given the importance of transfer
learning to deep neural networks training due to their
data-hungry nature.
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