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What you see is not what is there:
Mechanisms, models, and methods for point
pattern deviations
Peter Guttorp, Janine Illian, Joel Kostensalo, Mikko Kuronen, Mari Myllymäki,
Aila Särkkä, and Thordis L. Thorarinsdottir

Abstract. Many natural systems are observed as point patterns in time, space,
or space and time. Examples include plant and cellular systems, animal
colonies, earthquakes, and wildfires. In practice the locations of the points
are not always observed correctly. However, in the point process literature,
there has been relatively scant attention paid to the issue of errors in the loca-
tion of points. In this paper, we discuss how the observed point pattern may
deviate from the actual point pattern and review methods and models that
exist to handle such deviations. The discussion is supplemented with several
scientific illustrations.
Key words and phrases: ghost point, measurement error, missing data, point
process, thinning.

1. INTRODUCTION

Point process models are a modeling framework for
stochastic processes that consist of point occurrences in
some space, typically a Euclidean space. Historically,
point processes emerged from scientific problems re-
lated to, for example, astronomy, telecommunication, or
life tables (Guttorp and Thorarinsdottir, 2012; Daley and
Vere-Jones, 2003). More recently, point process mod-
els have been commonly used for spatial data analy-
sis (Møller and Waagepetersen, 2007; Illian et al., 2008;
Baddeley et al., 2015) with applications in such diverse
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fields as forestry (Stoyan and Penttinen, 2000), hydrol-
ogy (Rodriguez-Iturbe et al., 1987), ecology (Law et al.,
2009; Zhang et al., 2023), criminology, epidemiology, on-
cology (Jones-Todd et al., 2019) or seismology (Kagan
and Knopoff, 1980).

At a basic level, the data are given as point patterns—a
set of point coordinates describing the locations of ob-
jects or events. The data analysis generally aims to in-
fer aspects of the joint distribution of the point locations;
this paper focuses on the statistical analysis of such point
patterns. Additionally, each point may be associated with
a mark describing further characteristics such as size or
type of object. While point pattern analysis has some
commonalities with more classical statistical analysis, it
is in many ways distinct.

As for most other data, observed point patterns are sub-
ject to both systematic and random observational error.
The observed point pattern may thus deviate from the
true, underlying point pattern of interest. However, mod-
eling frameworks discussed in textbooks on the statistical
analysis of point patterns lack explicit treatment of obser-
vational error. Rather, we have found that such discussion
is sparsely scattered across diverse strands of literature,
and often aimed at a specific application. The goal of this
review paper is to provide a unified overview of the lit-
erature on the topic of modeling discrepant point patterns
with a specific focus on identifying connections between
methodological developments aimed at diverse applica-
tions. We will restrict ourselves to unmarked point pat-
terns.
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There are two main approaches to dealing with dis-
crepant observations of a point process. As one approach,
one can model the full process, i.e., the process generat-
ing both the original points and the difference between the
original points and the observed ones. However, for many
point process models it is difficult to write down the like-
lihood of the point process of interest even without taking
discrepancies into account. Adding a modeling compo-
nent for the discrepancies will be even more challenging,
although it is sometimes feasible. As a simple example,
adding i.i.d. measurement errors to the locations of a ho-
mogeneous Poisson process yields another homogeneous
Poisson process of the same intensity. Another possibility
is to study, analytically or by simulation, the effect of dis-
crepancies on parameters and/or parameter estimates in
a point process model. This paper provides examples of
both approaches.

Since data discrepancies are closely linked to obser-
vational mechanisms, substantial space is given here to
a review of relevant observational mechanisms for point
processes and potential causes of discrepancies related to
these. Similarly, we aim to bring together diverse applica-
tions in which discrepant observations are common.

This review is certainly not all-encompassing and the
included material inadvertently somewhat reflects the au-
thors’ interests and expertise. In our literature review, we
initiated searches in Google Scholar and Web of Science
using the terms “point process error”, “location error”,
“measurement error in point processes” and several vari-
ants of these. Furthermore, we searched forward through
the citations of the papers we found as well as in particu-
lar scientific applications.

The remainder of this paper is organized as follows.
Section 2 provides a brief introduction to point processes.
Modeling frameworks that adjust for observation errors
are reviewed in Section 3. The subsequent Sections 4–8
provide a review of several applications where the obser-
vation mechanisms for the point patterns cause discrepan-
cies between actual and observed patterns. Some of these
applications include unpublished material for which we
show illustrative plots. We end the paper with a discussion
and suggestions for future work on this topic in Section 9.

2. POINT PROCESS PRELIMINARIES

A spatial point process X is defined as a random set of
locations in some spatial domain of interest, here assumed
to be Rd for d ∈ {2,3} or a subset thereof. A point pat-
tern x = {x1, . . . , xn} is a realization of a point process
observed in a bounded window W . We assume that the
number n(A) of points of the process in any bounded set
A is finite, and also write n(x) to denote the number of
points in the observed point pattern x. A spatial point pro-
cess is called stationary if the distribution of the process
is invariant under translation, while it is called isotropic if

the distribution is invariant under rotation. See, e.g., Gut-
torp (1995) for a more detailed definition of a point pro-
cess.

2.1 Summary statistics

In the analysis of point pattern data, summary statis-
tics are widely used for exploratory analysis, for model
fitting and to assess the goodness-of-fit of estimated mod-
els. There are some standard summary statistics of point
patterns. The intensity λ(x) of a point process is the ex-
pected number of points per unit area (volume). That is,
letting Sx,ϵ be a ball of radius ϵ centered at x,

λ(x) = lim
ϵ→0

En(Sx,ϵ)

|Sx,ϵ|
,

where |A| denotes the area or volume of the set A. For
a stationary process the intensity is constant. A constant
intensity can be estimated by

λ̂=
n(W )

|W |
,

while for a non-stationary point process, the intensity and
other parameters are location dependent.

The second-order intensity measures the joint intensity
at two locations and is given by

λ2(x, y) = lim
ϵ1,ϵ2→0

E (n(Sx,ϵ1)n(Sy,ϵ2))

|Sx,ϵ1 ||Sy,ϵ2 |
,

assuming it exists, see, e.g., Illian et al. (2008) for
more details. For a stationary isotropic point process
the second-order intensity depends only on the distance
∥x− y∥ between x and y, and we write it as λ2(∥x− y∥).

For stationary isotropic processes one often considers
the K-function,

K(r) =
2π

λ2

∫ r

0
uλ2(u)du.

This can be thought of as the expected number of addi-
tional points within distance r of an arbitrarily chosen
point, normalized by the intensity. In order to estimate
K(r) from data, given by occurrences in a window W ,
we count the number of occurrence pairs of distance at
most r apart. The expected value of this quantity is ap-
proximately λ2|W |K(r), where the approximation arises
from the possibility that an event in W can be within dis-
tance r of the boundary of W , and hence have a neighbor
falling outside of W . While one can correct for this edge
effect, one can also simplify matters by ignoring all points
that fall within distance r of the boundary. Often vari-
ants of the K-function are used, including the variance
stabilizing L-function L(r) =

√
K(r)/π and the non-

cumulative pair-correlation function g(r) = K′(r)
2πr , which

is essentially the derivative of the K-function and may be
interpreted as the number of additional points at distance
r.
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Another common summary statistic is the nearest
neighbor distance function G. For each point xi in the
pattern x we find the distance ri to the nearest other point
in x. The empirical distribution function of the distances
is a natural estimate of the theoretical nearest neighbor
distribution, which of course depends on the point pro-
cess model used. If instead, the distance from an arbitrary
point in space to the nearest point of the process is of in-
terest, the empirical distribution of empty space distances
(or empty space statistic) can be used.

While the intensity in general does not determine the
distribution of the process, the Papangelou conditional in-
tensity provides a full characterization of the process. It is
defined as

λ(u|x) =

{
f(x∪{u})

f(x) , u /∈ x
f(x)

f(x\{u}) , u ∈ x
,

where f(x) is the density of the pattern x, and is essen-
tially the conditional probability of observing a point of
the process X at u given the observed point pattern x not
including u.

2.2 Point process models

The simplest stochastic model for a point process is
a Poisson process, in which the counts in disjoint sets
are independent Poisson random variables. If the mean
of each Poisson-variable is proportional to the area of
the set, the Poisson process is called homogeneous, oth-
erwise non-homogeneous. In the homogeneous case, the
conditional distribution of points, given the total number
of points in the set, is that of independent uniform ran-
dom variables. Therefore, a homogeneous Poisson point
process is called completely spatially random. Compared
to a Poisson process, a point pattern is often considered
clustered or regular (although it may be neither, or it may
be both at different scales). A common generalization of
the non-stationary Poisson process is the doubly stochas-
tic Poisson process (or Cox process), where the intensity
function of a non-stationary Poisson process is a realiza-
tion of a stochastic process. The log Gaussian Cox pro-
cess, a Cox process where the logarithm of the intensity
is a Gaussian process, is popular in applications since it is
completely characterized by the intensity and pair corre-
lation function of the Cox process.

The most common clustered model is the Neyman–
Scott process, which consists of a primary point pro-
cess of cluster centers, and for each cluster center a sec-
ondary point process of cluster points, often indepen-
dently placed around the primary point. The primary pro-
cess may or may not be observed.

As to regular patterns, perhaps the simplest is a Pois-
son process from which all pairs of points closer than a
distance d are removed. Such a process is called a hard

core rejection model. Other common point process mod-
els for regular patterns are Gibbs processes given by a
density f with respect to a unit rate Poisson process, that
is, the homogeneous Poisson process with intensity 1. For
a neighborhood relation ∼ (describing which points are
considered neighbors), the density can be written

f(x)∝
∏
y⊂x

ϕ(y),

where the non-negative interaction function ϕ(y) = 1 if
there is any pair of points (yi, yj) in the pattern y with
yi ≁ yj . A simple nearest neighbor interaction function is
of the form γ1(∥yi−yj∥≤R), where 1 denotes the indicator
function and 0 ≤ γ ≤ 1 measures the strength of inhibi-
tion of points within distance R. This process is called a
Strauss process. In general, it is common to consider only
pairwise interactions.

The historical development of these and related point
process models is discussed in Guttorp and Thorarinsdot-
tir (2012) and technical details can be found in, e.g., Daley
and Vere-Jones (2003), van Lieshout (2000), and Møller
and Waagepetersen (2007).

2.3 Statistical inference

To carry out inference for a point process we need
to define a likelihood (technically, the Radon–Nikodym
derivative of the point process measure with respect
to a unit rate homogeneous Poisson process). The log-
likelihood for a non-homogeneous Poisson process with
intensity λ(x) is

lnL(x1, . . . , xk;θ) =

k∑
i=1

lnλ(xi;θ)−
∫
W

(λ(x);θ)− 1)dx.

The joint density or likelihood function for Gibbs pro-
cesses includes a normalizing constant that usually cannot
be computed analytically, making the likelihood inference
computationally expensive. An alternative for the maxi-
mum likelihood method is the pseudo-likelihood method,
where the likelihood function is replaced by a product of
Papangelou conditional intensities which do not include
the normalizing constant.

For a more comprehensive review of inference tools
for spatial point patterns, see Møller and Waagepetersen
(2007), Illian et al. (2008) and Baddeley et al. (2015).

3. MODELS FOR DEVIANT POINT PATTERNS

Observed point patterns may deviate from the actual
point pattern in a multitude of ways. There may be record-
ing errors in location recordings. For example, the coordi-
nates of points may have been accidentally switched in the
field records. A variant is rounding of data due to changes
in precision of measurement devices. As an illustration,
early Icelandic volcanic eruptions are known only to the
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nearest year, or locations of trees are recorded only up
to a certain accuracy dependent on the measurement de-
vice used. More generally, points can be displaced due to
measurement error. For example, the location of an earth-
quake is determined using inversion of arrival times of
primary waves (P-waves) and secondary waves (S-waves)
at several seismometers. The location process itself in-
cludes uncertainty, as does each arrival time used in the
inversion.

Points may be lost by censoring, for example due to lo-
cation measurement error pushing the point outside the
observation area, but also by points being located too
close together to be observed as separate points. Con-
versely, a ghost pattern in the form of points that do not
belong to the point pattern of interest may appear. An ex-
ample might be a pattern formed by landmines, where
many mine-like objects are located, and the real land
mines must be identified. A second example with similar
issues is automatic detection of animals in remote sensing
images or through drone surveys, e.g., detection of seal
pups on ice floes or orangutan nests in a rainforest (Milne
et al., 2021).

Thinning occurs when a process different from that gen-
erating the true pattern operates on the pattern by re-
moving points. This can, e.g., occur in transect sampling,
where the probability of observing a point can be related
to the distance from the transect. Alternatively, a smooth
deformation of the point pattern may happen. This can,
for example, result from optical or instrumental distortion
of observations from space.

Below, we review modeling frameworks that have been
proposed to account for these various deviations in the
observations.

3.1 A contamination model for point process data

A fairly general model for contamination of point
processes is a combination of thinning, ghost pattern,
and measurement error. Following Assunção and Guttorp
(1999) we denote the actual point process (or more pre-
cisely, its counting measure) by X , an independent super-
posed point process by Y ′, and a deletion process by X ′

taking on values 0 or 1, corresponding to deletion or re-
tention, respectively. Writing the contaminated process Y
we have

Y (B) =

∫
B
X ′(x)X∗(dx) + Y ′(B).

Here X∗ corresponds to the point locations of X per-
turbed by measurement error.

Alternative models have been proposed for more spe-
cific contaminations. For a hard-core process X , Reden-
bach et al. (2009) suggest a mechanism for creating out-
liers violating the hard-core condition by picking a point
in the true pattern at random and adding another point
(outlier) in the vicinity of this point.

In presence-only and citizen science data, false ab-
sences are accounted for by detection probabilities as dis-
cussed in Section 3.4 below. To account for false posi-
tives, on the other hand, Royle and Link (2006) introduce
a mixture model that estimates the probability of detect-
ing an absent species. Here, the estimated probability can
be inflated by detection heterogeneity, and a reliable es-
timation of false positives requires a subset of the obser-
vations to be unambiguously true detections, see Altwegg
and Nichols (2019) and references therein.

3.2 Likelihood inference for deviant observations
conditional on unobserved truth

Lund and Rudemo (2000) develop a likelihood in-
ference approach for the Assunção–Guttorp modeling
framework specialized to the case where Y ′ is a Pois-
son process and the deletion process consists of indepen-
dent deletions. Specifically, they consider a pair of finite
point processes, the true process X = {Xi : i ∈ I} and the
process of imperfect observation Y = {Yi : i ∈ J} of X ,
where I = {1, . . . , n} and J = {1, . . . ,m}. Let ggh(·) be
the density for ghost points, p(·) the retention probabil-
ity, and g(·|xi) the displacement density. Then, the con-
ditional likelihood of Y given X with respect to the unit
rate Poisson process becomes

L(y|x) =
∑
I1⊆I
J1⊆J

|I1|=|J1|

∑
π

L1L2L3,

where the inner sum is over all bijections π : I1 → J1 for
two finite sets I1 and J1 with the same cardinality (de-
noted by | · |). Furthermore,

L1 =
∏
i∈I1

p(xi)g(yπ(i)|xi)

handles displacement of points that are retained with
probability p(·),

L2 =
∏

i∈I\I1

(
p(xi)

∫
Rd\W

g(y|xi)dy+ 1− p(xi)

)
handles cencoring of points that are retained with proba-
bility p(·), and

L3 = exp

(
|W | −

∫
W

ggh(y)dy

) ∏
j∈J\J1

ggh(yj)

handles placing of ghost points.
Lund and Rudemo (2000) use this framework to esti-

mate tree-top locations of Norway spruce (Picea abies)
from an aerial photograph having the candidate tree loca-
tions determined either by kernel smoothing (Dralle and
Rudemo, 1996, 1997) or template matching (Larsen and
Rudemo, 1998) as the starting point. Lund et al. (1999)
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suggest a Bayesian analysis in a similar set-up (without
censoring). Three Gibbs point process models, namely
Poisson process, Strauss process, and a process with a
logistic pairwise interaction function, are considered as
prior distributions for the unobserved true point pattern.
Given the prior distribution for X and the model pa-
rameters, a Metropolis–Hastings sampler is constructed
to sample from the posterior distribution of X given
Y . In a follow-up paper (Lund and Thönnes, 2004),
the Metropolis–Hastings algorithm is replaced by perfect
simulation.

In an application to geocoded spatial data, Fanshawe
and Diggle (2011) propose a general model-based solu-
tion to correct for positional errors in various types of spa-
tial data. Specifically, they derive the likelihood function
for a linear Gaussian geostatistical model incorporating
positional errors. However, the inference method is not
computationally feasible for even moderately large data
sets. In a follow-up work, Fronterrè et al. (2018) propose
a more computationally efficient composite likelihood ap-
proach for the case where the positional errors are due to
geomasking.

3.3 Perturbed summary statistics

If the locations are measured with error, the observed
locations can be regarded as random perturbations of the
underlying correct locations. Summary statistics, such as
Ripley’s K-function, are not the same for the perturbed
and the correct processes since typically, perturbation
makes the process more Poisson-like. Diggle (1993) de-
rives the relationship between the perturbed K-function
and the original K-function when the (radially symmet-
ric) disturbance model is known. Let g denote the con-
volution of two independent perturbations. Then the K-
function of the perturbed pattern becomes

K(r) =
2π

λ

∫ ∞

0
R(r,u)uλ2(u)du,

where

R(r,x) =

∫
∥u∥≤r

g(x− u)du

is the probability that a point at x gets perturbed to some
point in the region ∥u∥ ≤ r. We see that the result of the
perturbation is to smear out the original K-function.

The impact of measurement error on the nearest neigh-
bor distribution function G and the empty space statistic
F is studied and applied to tropical forest data in Bar-
Hen et al. (2013). The unobserved true point process is
assumed to be stationary and the perturbation model as in
Chakraborty and Gelfand (2010). The summary statistics
for the true process X and the distribution of the noise ϵ
are estimated from the observed process Y by using the
influence of simulated perturbations on the observed point
process.

Using a Bayesian framework, Lund et al. (1999) sug-
gest posterior estimates for the summary functions K , G,
and F of a true, unknown point pattern when the observed
pattern is exposed to thinning, displacement, or a ghost
pattern. They further provide sampling variation in each
case. Kuronen et al. (2021) estimate parameters of an ac-
tual process based on summary statistics of functions ro-
bust with respect to errors.

3.4 Adjusted intensity estimates

Contamination in various forms may also be included in
the modeling and estimation of the intensity. One widely
used approach to estimating the intensity of a point pro-
cess model is based on kernel tools. If these are used in
the context of a contaminated point process, deconvolu-
tion methods need to be applied. Diggle (1985) suggests
a kernel estimator of the point process intensity for tem-
poral non-stationary point processes observed with loca-
tion errors, subsequently extended to the spatial setting
by Cucala (2008). In the simplest case of no edge correc-
tion, the intensity estimate (with F denoting the Fourier
transform and b the bandwidth) is

λ∗
b(x) =F−1

(
F(λ̂b)/F(g)

)
(x).

Here, g is the density of the location errors and

λ̂b(u) =

∫
1

b2
k
(u− x

b

)
dX(x)

is a kernel estimate of the intensity of point process X
using kernel k.

Chakraborty and Gelfand (2010) consider the case
where the observed point pattern is a result of random
perturbation of the true point locations. They assume that
the true unobserved point pattern is a realization of a
Cox process, where the intensity is modeled by a scaled
Gaussian mixture distribution. The perturbation model is
yi = xi + ϵi, where the noise variables ϵi are i.i.d. ran-
dom variables. Two cases are considered: the perturbation
may cause a true point moving outside the observation
window and being missed or a point outside the window
moving inside the window and being falsely counted as a
point within the window. Given the observed noisy data,
the true intensity function is estimated in a hierarchical
Bayesian framework, where the unknown point pattern is
modeled by a Cox process and the true number of points
is one of the model parameters. The modeling framework
is applied to estimate the intensity of ecological field data
in the Cape Floristic region in South Africa.

Another scenario concerns point processes where some
of the points that are present have not been detected dur-
ing data collection. This is common in what is referred to
as distance sampling. Distance sampling is used, in par-
ticularly, in animal ecology for gathering data on, e.g.,
wildlife populations where the area of interest is typi-
cally too big to be sampled exhaustively in its entirety
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(Buckland et al., 2001, 2015). The most common exam-
ples for this are line transect sampling and point transect
sampling. In line transect sampling, an observer moves
along a linear transect observing the locations of visible
objects along the way as well as their distance from the
observer, while in point transect sampling, the observer
stands in a location and observes animals within a cer-
tain radius, e.g., by listening for birds (Buckland, 2006).
Similarly, one of the approaches for deriving stand level
characteristics from terrestrial laser scanning (TLS) data
in forest inventory applications is based on distance sam-
pling methodology (Ducey and Astrup, 2013).

The effect that objects closer to the observer are more
likely to be observed than those further away is included
in the modeling framework using a detection probability,
decreasing in distance from the observer, as a component
of the density. That is, under the assumption that the dis-
tribution of all points is uniform with respect to distance
from the transect the model is given by a thinned point
process and hence an adjusted intensity with unknown
thinning probability that may evolve in time and space
(Hedley and Buckland, 2004; Renner et al., 2015; Yuan
et al., 2017). The uniformity assumption is typically jus-
tified due to the small size of the transects relative to the
survey area of interest.

Traditional distance sampling methodology has discre-
tised space and modeled the data as Poisson counts, but
more recently, point process approaches that model in
continuous space have been developed (Stoyan, 1982;
Waagepetersen and Schweder, 2006). Chandler et al.
(2011) suggest a hierarchical model for inferring the den-
sity of so-called unmarked populations–that is, data where
the identity of an individual is not known–subject to tem-
porary emigration and imperfect detection. They assume
the true process is a homogeneous Poisson point process.
Then, the observed count n(xit) within a plot i at time
t depends on a detection probability p and Nit, the true
number of individuals present in plot i at time t. Nit again
is a random number that depends on the total number of
individuals that could possibly be detected in plot i over
the duration of sampling and the level of temporal emigra-
tion at time t. The model is developed for general sam-
pling designs and applied to repeated removal sampling
data collected on Chestnut-sided Warbles in the White
Mountain National Forest in the United States.

More generally, Schmidt et al. (2022) provide a recent
overview and a decision support for practitioners to select
an appropriate inference approach based on the type of
thinning probabilities present in the data collection design
when estimating population sizes based on imperfect de-
tection. For a probability-based design it is possible to cal-
culate the inclusion probability ps that a given individual
is included in the sample. The detection process of indi-
viduals within the sample unit can be divided into pp, the

probability that the individual is present within the sam-
ple unit, pa, the probability that the individual is available
(above ground, above water, vocalizing, etc.) for observa-
tion given that it is present, and pd, the probability that an
individual is detected given that it is present and available.
Commonly, objects close to the observer are more likely
to be observed than those further away.

Intensity estimates may also be adjusted for errors by
including relevant covariate information in the model for
the intensity. For example, to account for study site se-
lection bias, Renner et al. (2015) include distance from
main roads and distance from urban areas as predictors
for modeling the density of Eucalyptus sparsifolia trees
based on presence records from incidental sightings of the
species. Furthermore, intensity is sometimes estimated
based on coarsened data or on several data sources having
different spatial resolutions. For example, (Huang et al.,
2014) and (Chang et al., 2015) investigate risk factors
for endometrial cancer based on a case-control study,
where complete addresses are available, and a surveil-
lance system, where addresses and covariate information
are known only at zip code level.

3.5 Adjusting the intensity with a detection
probability

Here, we describe further details of the modeling set-
ting where the intensity estimate is adjusted with a de-
tection probability. Specifically, for a distance sampling
procedure at a fixed point in time, denote the true spatial
process by X , and the process of imperfect observation
of X by Y , as in Section 3.2 above. Assume the observer
is moving at a constant speed v along a line transect and
denote the perpendicular distance from the line transect
by z(x). Then,

P(object at x detected|x ∈X) = 1− exp
(
− h(z(x))

v

)
= g(z(x), v),

where h is an aggregated detection hazard along a path
and g is the aggregated detection function. The intensity
of the observed process Y is then given by

λ∗(x) =P(object at x detected|x ∈X)λ(x),

where λ is the intensity of the true process X .
Hayes and Buckland (1983) derive the commonly-used

hazard-rate model h(z(x)) = −(z(x)/σ)−b for b, σ > 0,
while the detection function is widely given by the half-
normal density g(z(x)) = exp(−z(x)2/(2σ2)) with σ >
0, or a generalization thereof. Only the latter results in
a log-linear probability model and is thus more compu-
tationally convenient for inference under a point process
modeling framework. Yuan et al. (2017) consider such an
approach where the unknown detection function is mod-
eled and its parameters estimated jointly with the under-
lying point process, i.e. as a thinning of a point process
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FIG 3. Interaction between group size and detectability. Panel (a) depicts detection functions conditional on the presence of a single
animal (blue) and a group of 150 animals (green). When integrating out the posterior estimate of latent group size distribution
(Panel (b)) we obtain the overall detection probability in red. The dotted lines in Panel (a) show the respective estimates obtained
via the ds method of the Distance package. When integrating over distance as well we obtain posterior estimates of the mean
detection probabilities shown in Panel (c).

FIG 1. Estimated detection functions for different group sizes for a
thinned marked point process resulting from distance sampling.

accordingly, in particular a log Gaussian Cox process.
The intensity is obtained by multiplying the intensity of
the log Gaussian Cox process by the detection probability
given above.

In a more general scenario, detection can also depend
on properties of the objects represented by the points, e.g.
the size of an animal or animal group, in other words on
the mark in a marked point process. For a mark m ob-
served in location x with distribution p(m|x), the inten-
sity becomes

λ∗(x,m) =P(object at x detected|x ∈X,m)p(m|x)λ(x).
For illustration, we consider an example of the pat-

tern formed by the locations of groups of pantropical dol-
phins (Stenella attenuata), with varying sizes of groups to
which a model was fitted. Here detection depends on the
mark groupsize. Figure 1 shows the estimated half-normal
detection functions. Larger groups of animals are easier
to detect at larger distances than those at close distances.
The model was fitted using the software package inlabru,
which allows the fitting of models using integrated nested
Laplace approximations (INLA) without the requirement
of a linear relationship between the parameters and the
response (Bachl et al., 2019).

4. RECORDING AND MEASUREMENT ERRORS

We now move from a general discussion of modeling
frameworks to specific applications, starting with a dis-
cussion of various causes of recording and measurement
errors.

4.1 Microscopy data

In our context, microscopy data refers to point patterns
that are derived from analyzing objects in microscopy im-
ages. Here, we give three examples of microscopy data
that can be analyzed by using point processes: confo-
cal microscopy images of epidermal nerve fibers, scan-
ning transmission electron micrograph (STEM) images

of silica gel, and photoactivated localization microscopy
(PALM) images of proteins in biological cells. Depend-
ing on the microscopy technique used, different types of
complications may occur.

In the nerve fiber example, the points where the nerve
trees enter the epidermis (outermost layer of the skin), and
the points where the nerve fibers terminate, have been an-
alyzed as point patterns in several studies in 2D and 3D,
see, e.g., Olsbo et al. (2013), Andersson et al. (2016) and
Konstantinou and Särkkä (2021). The nerve fibers can be
followed from one xy-image to another but the accuracy
of the point locations depends on the chosen resolution,
which is typically lower in the z-direction than in the xy-
plane. In the data mentioned here, the resolution in xy is
0.83× 0.83 µm2 compared to 2 µm in z. So far, this dif-
ference has not been taken into account in the analysis of
such nerve fiber images.

In 2D STEM images of silica, the intensity response
is increasing with increasing mass thickness of silica.
Therefore, 3D silica nanoparticle structures can be re-
constructed from the 2D images if the mass thickness-
intensity function is known or can be estimated. Assum-
ing that the intensity response is monotonically increas-
ing with increasing mass thickness, Nordin et al. (2014)
estimate the functional form by using a maximum like-
lihood approach. Which functional form, e.g., linear or
power law, is chosen and how the estimated number of
silica nanoparticles are located in the z-direction will af-
fect the resulting 3D point pattern.

Photoactivated localization microscopy (PALM) is a
powerful imaging technique for characterization of pro-
tein organization in biological cells. Due to the stochas-
tic blinking of the fluorescent probes and some camera
discretization effects, a cluster of observations is detected
instead of a single protein. Jensen et al. (2022) suggest a
model, the independent blinking cluster point process, for
such data and a method to recover the ground truth based
on images observed with the blinking artifact.

4.2 Particle counters

Particle contagion is important to identify in machine
oil, in clean rooms such as operating theaters in hospi-
tals, and in air quality, among many such applications.
The most common type of errors are counting and identi-
fication errors.

Rutherford et al. (1910) had developed a method for
counting alpha particles in radioactive emissions using an
electrometer and photographic film. However, it was te-
dious to use, and instead they use a scintillation method
invented by Regener (1909), where a zinc oxide surface
gives off a flash when hit by a particle. The scintillations
on a small area of the zinc oxide surface were viewed in
a microscope, with time reserved for resting the eyes, and
recorded on a paper string by hitting an electric switch.
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Clearly, there is a possibility of missing a scintillation,
and of observing a spurious one. In addition, the time of
the record is likely offset by a random period of time
between seeing the scintillation and hitting the switch.
For a homogeneous Poisson process this is of no con-
sequence, but when the process is non-homogeneous or
non-Poisson, there are different consequences. Modern
radiation counters are based on the Geiger-Müller tube,
which has a brief dead time after registering a particle.

Martens (1968) discusses measurement errors in de-
vices that count (and size) air pollution particles using
light scattering. He lists, in addition to sizing errors, three
kinds of counting errors, namely instrumental , statistical,
and imaginary errors. The term imaginary errors refers to
non-repeatability of measurements. The statistical errors
are largely due to incorrect particle sizing, while the in-
strumental errors also can occur, e.g., when two particles
are interpreted as one, or there is inhomogeneity of the
viewing volume illumination.

Modern tools for particle counting use laser beams, ei-
ther measuring particle shadows or laser light scattering.
The errors are similar: coincidences where two particles
are lined up with the laser beam which only sees one
shadow, particles that are too small to cast an interpretable
shadow, and the same types of light scattering problems as
when using incoherent light. There are a variety of other
methods, many mentioned in Zhang et al. (2009).

4.3 Earthquake locations

The location of the epicenter of an earthquake is de-
termined from translating the temporal distance between
P- and S-waves into a distance, and then triangulating the
distance from all the seismometers recording the earth-
quake. Errors in timing, which can be due to lack of or
imprecise coordination with a timing source (Hable et al.,
2018), then translate to location errors through the trian-
gulation process. More generally, the arrival times can be
written as path integrals through the unknown (or at best
partially known) structure of earth. The most common ap-
proach is iterated linearization (e.g., Menke, 1989). It can,
however, be unreliable or unstable in the presence of out-
liers (Husen et al., 2003).

The ETAS (Epidemic Type Aftershock Sequence)
model, proposed by Ogata (1998) and extended by Ogata
and Zhuang (2006), is a spatio-temporal point process
model for earthquakes. To investigate the effect of mea-
surement error, Schneider (2021) estimates the parame-
ters of an ETAS model to a catalog in the Pacific North-
west, for both the catalog locations as well as jittered loca-
tions of the seismic events according to the uncertainties
given in the catalog. Figure 2 shows boxplots of origi-
nal estimates (obtained by MCMC) and nine jittered es-
timates. We see that the parameters µ (background rate),
c (temporal offset of aftershocks) and p (temporal decay

rate of aftershocks) are similar to the estimates from unjit-
tered data, while the estimates of K (aftershock produc-
tivity) are biased downwards for the jittered data, while
estimates for d (spatial offset of aftershocks) and q (spa-
tial decay rate) are biased upwards, while those for q also
are substantially more uncertain.

4.4 Geocoded data

Spatial epidemiology is a subfield of epidemiology fo-
cused on the study of the spatial distribution of health out-
comes. The data analysis is commonly performed by us-
ing a spatial point process model to analyze geocoded lo-
cation data, that is, text-based description of a location—
such as an address or the name of a place—transformed to
geographic coordinates. Data of this type similarly arises
in, e.g., microeconomics and demographic analyses.

Geocoded data have two different kinds of potential er-
ror mechanisms (Fronterrè et al., 2018). Imprecision may
be introduced in the geocoding due to incorrect place-
ment of an address along a street segment or the same
geocoded location may be assigned to multiple addresses
based on a post-code system. Automatic geocoding may
also fail for a substantial proportion of the available data
and these failures can be spatially clustered (Zimmerman
et al., 2010). Alternatively, it may not be possible to re-
port precise measurement locations due to issues of con-
fidentiality. Random or deterministic perturbation of the
locations is then applied in a process known as geomask-
ing (Armstrong et al., 1999). See Jacquez (2012) for an
overview of the impacts of geocoding positional error in
health analysis.

4.5 Target tracking/Telemetry data

An alternative to distance sampling in animal ecology
discussed in Section 3.4 is to place a global positioning
system (GPS) tracker on the moving object(s) of inter-
est. GPS locations, for example in wildlife tracking (John-
son and Kuhn, 2013), have measurement error, and often
these errors are ignored. However, there has been some
work on looking at the error structure of GPS observa-
tions, for example by placing location trackers in different
ecological areas. Williams et al. (2012) find that measure-
ment error is higher, by about a factor of two, in areas
of dense canopies. Among the error sources are the num-
ber of satellites finding the GPS, the temporal resolution
of GPS (particularly when following a moving particle,
such as an animal), and errors in the positioning or clock
of the receiving satellites (Langley, 1997). Ranacher et al.
(2016) shows that the autocorrelation in GPS locations
lead to systematic overestimation of the distance traveled
by the object. While many applications to telemetry data
don’t apply point process approaches, Arce Guillen et al.
(2023) use a log-Gaussian Cox process model to account
for the autocorrelation of subsequent observations in ani-
mal tracking data.
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Figure 3.32: Bayesian credible intervals for ETAS parameters for the reported (baseline)

catalog, as well as nine jittered versions of this catalog.
FIG 2. Box plots summarizing posterior densities of ETAS parameters for the reported baseline catalog (blue), as well as nine jittered versions of
this catalog (grey), and for the grand posterior encompassing the reported and 99 jittered catalogs (black). From Schneider (2021).

Glennie et al. (2021) combine animal movement data
with distance sampling data in order to account for ani-
mal movement independent of the observer, using a spa-
tial hidden Markov model to approximate the underlying
spatial process.

5. GHOST PATTERNS

In the applications discussed below, errors in the obser-
vation mechanism cause the introduction of an additional
ghost pattern in the data, rather than errors in the actual
pattern of interest.

5.1 Mine fields

Land mines kill some 20,000 people worldwide each
year. The problem of identifying the location of land
mines from satellite, airplane or drone pictures has been
considered in the point process literature at least since
Dasgupta and Raftery (1998) and Byers and Raftery
(1998). Typically, land mines are located among a clut-
ter of rocks, metal junk, and other features that can be
misidentified as mines. Holmes et al. (1995) describes a
multi-spectral satellite imaging approach to finding land
mines, while other methods include infrared thermogra-
phy (Thành et al. (2009)), 3D voxel radar (Brockner et al.
(2018)), and polarimetric camera (Connor et al. (2008)).

A point process approach to identification of land mines
is based on viewing the observations as a superposition
of two point processes: mines and mine-like non-mines.
Cressie and Lawson (2000) assume that the two processes
are cluster processes with the cluster centers being inde-
pendent Strauss processes with different parameters, and
the cluster points distributed around the cluster centers
using a Matérn radial distance function. A hierarchical
approach using Markov chain Monte Carlo (MCMC) is
taken to estimate the model parameters.

5.2 Spatial pattern of air bubbles in polar ice

Polar ice has information on the climate of the past.
However, to be able to interpret the ice core records, one
has to know how old the ice is. One way to determine the
age of ice at different depths is by estimating the defor-
mation of ice based on the air bubbles in the ice samples.

Redenbach et al. (2015) analyze ice samples drilled in
Antarctica. The data consist of locations of air bubbles
extracted from computer tomographic (CT) images of ice
samples imaged inside a cold room at −15◦C . In addition
to the “real” air bubbles, the ice samples contain some
relaxation (extra) bubbles that appear when the ice core is
pulled out from the drilling hole. Such bubbles do not give
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any information on the motion (deformation) of the ice
but disturb the directional analysis necessary to gain some
information on the deformation. Therefore, each bubble is
classified either as real bubble or noise so that the noise
bubbles can be removed prior the deformation analysis.

The set-up is very similar to the mine detection prob-
lem. However, in this case, it is not necessary that ev-
ery bubble is classified correctly. It is more important that
the spatial distribution of the true bubbles can be recon-
structed. For example, in a close pair of bubbles most
likely one of them is real and the other one noise and it
does not matter which one is classified as real and which
one as noise.

Redenbach et al. (2015) suggest the following model
for the bubble configuration: The real air bubble pattern is
regular and modeled by a Strauss process Y1 with the in-
tensity related parameter β > 0, interaction range R, and
interaction strength γ. The noise bubbles are modeled as
a Poisson process Y0 with intensity λ0. Then, the com-
plete observed point process Y is a superposition of Y1
and Y0. The parameters (λ0, β, γ,R) as well as the classi-
fication of each point (real or noise) were estimated in
a Bayesian framework. In Redenbach et al. (2015), an
MCMC approach is constructed, and a computationally
less demanding method based on variational Bayes ap-
proximation is suggested in Rajala et al. (2016).

Ideally, the points would be divided into two groups,
points with high posterior probability (real bubbles) and
points with low posterior probability (noise). However, in
addition to these two groups, a group of points having in-
termediate posterior probabilities is found. Typically, the
points in this group are R-close pairs of points. Some sug-
gestion how to classify the points in this group are sug-
gested in Redenbach et al. (2015) and Rajala et al. (2016).
When the model parameters are known the spatial pattern
of the true bubbles is estimated quite well. If the parame-
ters need to be estimated simultaneously with the classi-
fication, isolated noise bubbles are typically classified as
real bubbles, and as a result, the intensity λ0 of the noise
bubbles is underestimated and the intensity related param-
eter β of the true bubble process overestimated (too many
real bubbles and too few noise bubbles).

6. THINNING PROCESSES

In many applications, locations of individuals in space
and time are recorded, but for practical reasons a specific
observation process has been chosen, which can be seen
as a thinning operation on the point pattern. The thinning
can appear systematic or at random, as discussed below.

6.1 Area sub-sampling in animal ecology

In some cases, the point pattern has only been partially
observed as there are some areas where sampling cannot
take place, e.g., for accessibility issues. In other cases the

area of interest especially in animal ecology and conser-
vation is simply too big—e.g., an entire ocean—to ob-
serve the pattern everywhere. As a result, the point pat-
tern has only been observed in one or several sub-plots
or transects, which have been extensively sampled. This
may have been done through what is referred to as plot
sampling or transect sampling using areal-video-surveys
or drones. It is however of interest to predict into the entire
area surrounding the sampled subareas by assuming that
some covariates of interest are known within the whole
area, with information on the structure of the point pattern
and the relationship between the point pattern and the co-
variates taken from smaller subareas. In these scenarios,
the detection probabilities are 1 in the surveyed areas and
0 in the areas that have not been surveyed. In the model-
ing approach, areas with no points in the surveyed areas
and areas with points in the unsurveyed areas have to be
distinguished (Williamson et al., 2022).

6.2 Distance sampling in ecology

As mentioned in Section 3.4, distance sampling is a
common method for gathering data in animal ecology,
where detection probabilities depend on the distance from
the observer. In one of the earlier works based on marked
point processes, each object (animal) is described by a
disc, where the center of the disc is the location of the
object and the radius of the disc is the associated sight-
ing distance (Högmander, 1991). An animal is observed
if and only if the transect hits the disc connected to it.

In some terrains, a subset of the objects might not
be visible, e.g., when observing ocean mammals from a
water vessel, or due to temporary emigration. This ef-
fect is called availability bias and its estimation com-
monly requires additional information from independent
data (Laake and Borchers, 2004). Animal movement can
cause substantial bias in density estimation from line tran-
sect or point surveys. Movement in response to the ob-
server’s presence is usually accounted for in the data col-
lection procedure rather than the data modeling procedure
(Borchers et al., 1998; Palka and Hammond, 2001).

In some cases, detection probabilities vary due to the
individuals’ behavior or their properties. For example,
smaller individuals (or groups of individuals) are more
easily missed than larger individuals. In the context of the
remote sensing of forests (see Section 7), smaller trees are
more likely to be missed than larger trees.

Distance sampling techniques have also been used to
estimate the number of trees per hectare and basal area
from a terrestrial laser scan (Ducey and Astrup, 2013; As-
trup et al., 2014). In order to correct for the non-detection
of trees, which also here is a serious issue, Astrup et al.
(2014) assume that the detectability decreases with in-
creasing distance from the location of the scanner.
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6.3 Citizen science

For presence-only and citizen science data, spatial pat-
terning in presence locations may result from the behavior
of observers rather than the behavior of the study species,
e.g., due to selection bias in study sites based on accessi-
bility, false absences and false detections (Warton et al.,
2013; Altwegg and Nichols, 2019; Sicacha-Parada et al.,
2021a). More generally, biases related to specific data col-
lection mechanisms are mitigated by merging data of dif-
ferent types (Dorazio, 2014; Altwegg and Nichols, 2019;
Bowler et al., 2019; Renner et al., 2019; Miller et al.,
2021; Watson et al., 2021; Martino et al., 2021).

7. MULTITYPE DEVIANCE

Several of the types of discrepancies mentioned above
can occur when point patterns of trees are detected us-
ing remote sensing such as airborne laser scanning (ALS),
aerial photographs (see Section 3.2) or hyperspectral data.
Depending on how the data are collected and processed,
some portion of trees may be missed, e.g., due to large
trees blocking the visibility of smaller trees or due to a
cluster of trees being erroneously observed as a single
large tree. In addition, there may be displacement error
related to measurement error or as a consequence of im-
age geometry and lighting conditions. Furthermore, some
number of ghost trees can be generated, e.g., by double
counting or mistaking branches for tree tops.

7.1 Airborne laser scanning

In ALS, laser pulses are emitted from an instrument in-
stalled in an airplane and directed to a field plot (Vos-
selman and Maas, 2010). As a result, a 3D point cloud
representing the return locations of the laser pulses is
obtained. Individual tree detection (ITD) methods, often
based on finding local maxima, are then used to locate tree
tops (e.g., Roussel et al., 2020; Roussel and Auty, 2022).
Bayesian methods utilizing certain tree canopy shapes
have also been developed (e.g., Lahivaara et al., 2014).
However, no matter how sophisticated the ITD method,
errors do occur. Therefore, available ITD methods are
not able to reconstruct the spatial structure of the forest
(Packalen et al., 2013). A few approaches have been de-
veloped to correct for undetected trees in ITD methods
(Kansanen et al., 2016; Mehtätalo et al., 2022; Kostensalo
et al., 2023). Alternatively, it has been proposed to predict
the spatial structure of the forest at stand level (Pippuri
et al., 2012; Häbel et al., 2021).

Mehtätalo (2006) proposes a Horvitz–Thompson-like
estimator to correct for trees missed in airborne laser
scanning analyses. The methodology was further devel-
oped in Kansanen et al. (2016, 2021); Mehtätalo et al.
(2022). In this approach, detected trees are weighted re-
flecting their detectability utilizing stochastic geometry

and canopy size. The core idea is that large trees are al-
ways detected and thus are given weight 1. Smaller trees
on the other hand are less likely to be detected and thus
they have a weight larger than one, since the detected
small trees are only some fraction of the actual number
of small trees in the forest. Then one can estimate, e.g.,
the stand density with the equation

n̂=
∑

i∈detected

1

pi
,

where pi is the detection probability for each detected
tree.

Kostensalo et al. (2023) reconstruct tree patterns from
ALS data. Optimized ITD approaches detect only the
largest, dominant trees (and trees in sparse plots) and
miss approximately 40% of the trees. In addition, there
are about 10% false discoveries. Clustering is also prob-
lematic for ITD, as clustered trees are often detected as a
single tree.

Once the optimized ITD is applied for plots with no
ground measurements, a model is used to predict the num-
ber of missing trees as well as the number of false dis-
coveries. The placement of the missing trees is based on
a resampling-type approach, where a detected tree is se-
lected at random, and a simulated compensating tree is
based at a random angle from the detected tree at a dis-
tance sampled from the nearest neighbor distribution of
the ground measurements. Finally, a proportion of the
smallest detected trees are removed as false discoveries.
The models for the number of missing trees and false dis-
coveries is based on the plots with ground measurements
available.

Application to one plot in the Mikkeli area in South-
ern Finland is presented in Fig. 3. The model has been
trained with 163 forest plots and the plot is one of the
cross-validation test plots. The L-functions with isotropic
edge correction of the three point patterns of Fig. 3 are
presented in Fig. 4, for the proposed (new) method with
a 95% global envelope (Myllymäki et al., 2017; Myl-
lymäki and Mrkvička, 2023) constructed from 1000 re-
peated simulations of the undetected trees. While the L-
function of the ITD pattern is systematically too regu-
lar, the L-function of the proposed method is in excel-
lent agreement with the L-function based on ground mea-
surements. Thus, while the simulated trees might not be
placed exactly where the missing trees are located, the
created point pattern captures well the clustering and reg-
ularity of the forest plot in addition to the intensity.

7.2 Single terrestrial laser scanning

Terrestrial laser scanning (TLS) is based on a similar
principle as ALS, but the laser pulses are emitted from
a device that has a fixed location in the field (Vosselman
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and Maas, 2010). If the forest is scanned from a single lo-
cation, some of the trees are covered by the ones closer to
the scanner and are not detected or are only partially de-
tected. Multiple scans can be used to remove or almost re-
move the problem of occlusion of trees in a fixed area, but
still the extraction of the locations of trees and tree charac-
teristics remains challenging (Pitkänen et al., 2019). Typi-
cally, TLS data have been used to estimate only first-order
characteristics of tree data such as density and total basal
area (Kuronen et al., 2019; Kansanen et al., 2021; Ducey
and Astrup, 2013) as well as to derive characteristics of
trees (Pitkänen et al., 2021).

Kuronen et al. (2019) construct estimators for forest
characteristics such as tree density or basal area based on
the visible area of the scanner. They assume that the tree
trunks and the cross-sections of tree trunks are perfect cir-
cles (no understory vegetation or tree branches affecting
the visibility). To estimate the total basal area, the area of
each tree is multiplied by a detection function which is
positive only for the detected trees. In addition to the lo-
cation and size of the tree, the detection function depends
on the entire point pattern of the trees since the other trees
affect whether a tree is detected. When the tree pattern
is a realization of a Poisson process, the estimator works
quite well but the choice of detection function affects the
results. The best results were obtained with the detector,
where a tree is detected if any part of it is detected. If the
tree pattern is regular, the basal area is estimated larger
than it is and this positive bias increases with the degree
of regularity. If the tree pattern is clustered, the bias tends
to be negative and its absolute value increases with the de-
gree of clustering. Kansanen et al. (2021) propose an al-
ternative estimator using sampling theory instead of point
processes. Their estimator is slightly more accurate and
has an analytic formula for variance.

8. OUTLIERS

An outlier in a spatial point pattern is a point (or points)
that is different from the other points in some way. For ex-
ample, it can be an isolated point or a pair of points that
are much closer together than any other pair of points. We
include a discussion of outliers, as these are commonly
caused by contamination rather than the true data gener-
ating mechanism.
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8.1 Outlier detection

Different methods for goodness-of-fit checking of a
particular point process model and finding outliers have
been presented in the literature. Stoyan and Grabarnik
(1991) introduce exponential energy marks that can be
used to detect outliers. The points xi, i = 1, . . . , n of a
point process X are marked by mi = 1/λ(xi|x\{xi}),
where λ(·|·) is the Papangelou conditional intensity. Ex-
treme values of the estimated mark may indicate outliers
(with respect to the underlying model). A deviance resid-
ual for heterogeneous Poisson processes is defined by
Lawson (1993). The resulting local intensity estimate can
be used to find outlying points. Using the Papangelou con-
ditional intensity, Baddeley et al. (2005) introduce residu-
als for spatial point processes that correspond to the usual
residuals for Poisson log-linear regression. The residuals
can be used to find outliers, for example isolated points
or points with close neighbors. Baddeley et al. (2013) de-
fine diagnostics for detecting points with unusual predic-
tion values or points having extraordinarily large influ-
ence on the model parameters. We note that the model-
based residuals are also used for local model diagnostics
(e.g. D’Angelo et al., 2022; Myllymäki et al., 2021). In
addition to these model-based approaches, nonparametric
functions such as distance to the nearest neighbor can be
used to find outliers whether they are isolated points or
close pairs of points. Other local statistics such as ’in-
dividual’ L and pair-correlation functions (Stoyan and
Stoyan, 1994, p. 290) or product density LISA functions
(Anselin, 1995; Cressie and Collins, 2001) computed at
the point locations can also be used to detect outliers.

8.2 Outliers due to imperfect image segmentation

Kuronen et al. (2021) regard sweat gland patterns ex-
tracted from a video as realizations of spatial point pro-
cesses. In the patterns observed in the end of the videos,
there are some unexpected close pairs of points (sweat
glands). A closer inspection reveals that some of the sweat
spots are detected as two nearby spots due to the several
image analysis steps that are needed to extract the point
patterns from the videos. By following some of the videos
frame by frame, they conclude that some nearby pairs of
spots are probably produced by a single gland.

An example of such an erroneous pair of sweat glands
is given in Figure 5. To avoid the time consuming manual
segmentation of the videos, (Kuronen et al., 2021) regard
the falsely detected extra points as noise and introduce
two ways to handle the noise. In the first approach, the ob-
served pattern is modeled as a realization of a sequential
point process, namely a mixture of a soft-core model for
the true sweat gland locations and a uniform distribution
for the noise points. In the second approach, the underly-
ing unobserved true sweat gland pattern is generated first
by using a disturbed simple sequential inhibition process

FIG 5. Six frames of one sweat gland of a video (top row) and the
result of the image segmentation (bottom row). The colored blobs indi-
cate sweat produced by different identified sweat glands with locations
indicated by pluses.

which is then randomly thinned to obtain the observed
pattern. The parameters are estimated using an approxi-
mate Bayesian computation algorithm (Beaumont, 2010)
applied to summary statistics that are robust to the noise
points.

To complement the analysis in (Kuronen et al., 2021),
we further consider one of the sweat gland patterns (see
Figure 6, left) as an example of a pattern with outlying
points, or outlying point pairs. For each point, we com-
pute the distance to its nearest neighbor and as a result
identify eight extraordinarily close pairs of points (the
first three bars of the histogram in Figure 7). It turns
out that these outlier pairs are incorrectly identified sweat
gland locations as shown in Figure 5. To see how these
outlier pairs affect the analysis of the point pattern, we
randomly remove one point in each close pair (red discs
of Figure 6, left) and estimate the pair correlation func-
tion for the original and modified patterns. The behavior
at small distances is clearly different in the patterns with
and without the outliers (Figure 6, right).

Then, we investigate how the outlier pairs affect the pa-
rameter estimates of a model. Motivated by Kuronen et al.
(2021), we use a softcore Gibbs point process model with
the density function

f(x)∝ βn(x) exp

−
∑
i<j

(
σ

∥xi − xj∥

)2/κ
 ,

where β > 0 is an intensity related parameter, and σ >
0 and κ ∈ (0,1) interaction parameters. Large values of
σ and small values of κ indicate strong interaction. The
model is fitted to the original and modified patterns using
spatstat (Baddeley et al., 2015). Especially, the interaction
parameter σ is affected by the erroneous points (see Table
1).

8.3 Outlying clusters and patterns

In addition to outlying points or pairs of points, there
can be an outlying cluster in a point pattern. Kuronen et al.
(2022) study patterns of Norway spruce seedlings. Figure
8 shows one of the seedling patterns. There is tendency of
seedlings to form small clusters. However, there is one ex-
traordinarily large cluster in the middle of the plot. Such
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FIG 6. Left: The detected sweat gland locations in a window of size 17.5 × 13 mm2. The close pairs of gland locations identified by using the
nearest neighbor distances are shown as red discs. Right: The pair-correlation function of the original pattern (black) and the pattern, where one
of the points in each outlier pair has been removed (red).
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FIG 7. Histogram of the nearest neighbor distances of the original
pattern in Figure 6.

TABLE 1
Pseudo-likelihood estimates of the parameters (95% confidence

intervals) for softcore Gibbs process with all points and with outliers
removed. κ= 0.2 was fixed.

β σ κ

All points 0.95 (0.83, 1.09) 0.10 (0, 0.13) 0.2
Outliers removed 1.11 (0.95, 1.29) 0.30 (0.23, 0.32) 0.2

clusters are probably not errors (like in PALM data in Sec-
tion 4.1) but real, although rare, observations. Therefore,
the possibility of having such outlying clusters should be
included in the model. One possibility would be to model
the seedling data by a cluster model where the expected
cluster size varies. In the simplest case, the expected num-
ber of points in a cluster can take two values, small and
large, the large one having a small probability to occur.
In general, some information on the underlying, e.g., soil

FIG 8. Norway spruce seedlings in a forest stand in Finland.

properties would be essential for determining where such
clusters are likely to appear. Construction of such models
is left for future work.

Slightly related to outlying clusters, Coeurjolly (2017)
introduce a median based estimation approach to estimate
the intensity of stationary point processes which is robust
to outlying areas in the data. An outlying area can be an
area without any or with very few points or an area with
many points (an outlying cluster) compared to the remain-
ing area.

Finally, if repetitions are available, one of the patterns
can be different from the others and considered an outly-
ing pattern. Kuronen et al. (2021) analyze 15 sweat gland
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FIG 9. Pair-correlation functions of activated sweat gland patterns
from five healthy subjects.

videos of which five are from healthy subjects. The esti-
mated pair-correlation functions for the healthy patterns
are shown in Figure 9. One of the patterns (black), also
shown in Figure 6, shows a different behavior than the
other patterns with more points within a short distance
from each other. As pointed out earlier, some close pairs
of points in this outlying pattern are incorrectly recorded
as two sweat gland locations and by removing such er-
roneous points, the point pattern is no longer an outly-
ing pattern, see Figure 9 and Figure 6 (right). However,
if no errors are found, the possibility of outlying patterns
should be included in the modeling approach.

9. DISCUSSION AND CONCLUSIONS

In this paper, we have reviewed observation mechanism
that may lead to observed spatial point patterns that devi-
ate from the true underlying point pattern of interest, as
well as available statistical inference approaches to han-
dle such deviations. The deviations include such diverse
things as location errors, censoring, thinning, deformation
and ghost patterns or points. Thus, a diverse set of models
have been developed to handle these deviations and they
are found scattered in various strands of literature, often
published in application-specific journals.

Much of the work reviewed in this paper is relatively
old, and the computational approaches used may no
longer be available. Indeed, it is our experience that unless
software is made publicly available, new methodology
is very unlikely to be implemented by others. Software
for some of the analyses discussed above are available
in a GitHub repository at https://github.com/
PointProcess/PointPatternDeviations. There
are many software packages dealing with point pattern
analysis, but few, if any, explicitly allow errors in the lo-
cations of points. It would be beneficial if package devel-
opers would include simple approaches, such as second
order estimates for points with i.i.d. location errors.

Data types with deviant observation mechanisms are,
on the other hand, constantly evolving. For example, the

availability of image data has increased rapidly in recent
years due to advances in satellite and drone technology,
to the point where the large data quantities require the
use of automated detection algorithms (Eckerstorfer et al.,
2016). In some applications, see e.g. Eckerstorfer et al.
(2016) and Salberg (2015), the algorithms have a high
detection while they also tend to suffer from high false
detection rates, in effect generating ghost points, which
must be accounted for in the subsequent data analysis. An
appropriate modeling of the detection error can provide
valuable input for improving the detection algorithms,
calling for a direct synergy between the machine learn-
ing detection techniques and the statistical models.

In this paper, we have restricted ourselves to errors in
point locations, that is, in unmarked point patterns. Addi-
tional discrepancies may occur in the marks attached to
the points, if relevant. For example, in the multitype case
the points can be incorrectly classified, and in the case of
real valued marks, the marks can be measured with er-
ror. However, we consider a comprehensive discussion of
mark discrepancies outside of the scope of the current pa-
per.

Similarly, we have not provided a comprehensive dis-
cussion of every aspect of the chosen topics, especially
when the discussion requires leaving the spatial setting.
For a thinned point process, for example, the thinning
probability may be changing over space. This may, e.g.,
be due to varying sampling effort or spatially varying un-
derreporting. A point pattern may have a gap where an
unobserved process has thinned the points. A temporal ex-
ample is given by Lee and Brillinger (1979), who studied
historical Chinese earthquakes, where the probability of
an earthquake being recorded depends on which imperial
dynasty rules, and the value the dynasty sets on record-
ing historical events. Their approach is parametric, while
Guttorp and Thompson (1990) estimated the observation
probability by smoothing the counting process. Both pa-
pers were analyzing the autointensity function, a common
second order parameter function for temporal point pro-
cesses.

Varying thinning probabilities are common in citizen
science data, and can sometimes be modeled using co-
variates such as survey data or data on other species, e.g.,
Sicacha-Parada et al. (2021b). In the case where a point
pattern has gaps due to a not completely known pro-
cess, one possibility is to assume two overlapping ran-
dom fields, one with (almost) zero intensity which oper-
ates where the empty areas are; this would also work if
the deletion process is not deleting all the points, for ex-
ample using a variant of the approach in Jones-Todd et al.
(2018).

In conclusion, we have found that there is currently no
systematic way in the literature to deal with point pattern
deviations. This review illustrates many of the aspects that

https://github.com/PointProcess/PointPatternDeviations
https://github.com/PointProcess/PointPatternDeviations
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would need to be included in such an approach, while oth-
ers, including approaches to handle erroneous detection
in automatic detection algorithms, have yet to be devel-
oped. We are thus still far from being able to produce an
all-encompassing approach with the topic offering some
interesting open research questions.

ACKNOWLEDGEMENTS

JK, MK, and MM were financially supported by the
European Union—NextGenerationEU in the Academy of
Finland project (Grant number 348154) under Academy
of Finland flagship ecosystem for Forest-Human-Machine
Interplay—Building Resilience, Redefining Value Net-
works and Enabling Meaningful Experiences (UNITE)
(Grant numbers 337655 and 357909) and AS by Wil-
helm and Martina Lundgren’s science foundation. We
thank Adam Loavenbruck (University of Minnesota) for
providing the sweat gland data, Max Schneider (USGS)
for allowing us to use a plot out of his dissertation, as
well as Sauli Valkonen (Luke) for providing the Norway
spruce seedlings data (ERIKA), and Hilkka Ollikainen
and Juhani Korhonen for measuring the plots.

REFERENCES

Altwegg, R. and Nichols, J. D. (2019). Occupancy models for citizen-
science data. Methods in Ecology and Evolution, 10(1):8–21.

Andersson, C., Guttorp, P., and Särkkä, A. (2016). Discovering early
diabetic neuropathy from epidermal nerve fiber patterns. Statistics
in Medicine, 35:4427–4442.

Anselin, L. (1995). Local Indicators of Spatial Associ-
ation—LISA. Geographical Analysis, 27(2):93–115.
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1538-
4632.1995.tb00338.x.

Arce Guillen, R., Lindgren, F., Muff, S., Glass, T. W., Breed, G. A.,
and Schlaegel, U. E. (2023). Accounting for unobserved spatial
variation in step selection analyses of animal movement via spatial
random effects. bioRxiv, pages 2023–01.

Armstrong, M. P., Rushton, G., and Zimmerman, D. L. (1999). Geo-
graphically masking health data to preserve confidentiality. Statis-
tics in medicine, 18(5):497–525.

Assunção, R. and Guttorp, P. (1999). Robustness in point processes.
Annals of the Institute of Statistical Mathematics, 51:657–678.

Astrup, R., Ducey, M. J., Granhus, A., Ritter, T., and von Lüpke, N.
(2014). Approaches for estimating stand-level volume using ter-
restrial laser scanning in a single-scan mode. Canadian Journal of
Forest Research, 44(6):666–676.

Bachl, F. E., Lindgren, F., Borchers, D. L., and Illian, J. B. (2019).
inlabru: an r package for bayesian spatial modelling from ecological
survey data. Methods in Ecology and Evolution, 10(6):760–766.

Baddeley, A., Chang, Y.-M., and Song, Y. (2013). Leverage and influ-
ence diagnostics for spatial point processes. Scandinavian Journal
of Statistics, 40(1):86–104.

Baddeley, A., Rubak, E., and Turner, R. (2015). Spatial point patterns:
methodology and applications with R. CRC press.

Baddeley, A., Turner, R., Møller, J., and Hazelton, M. (2005). Residual
analysis for spatial point processes. Journal of the Royal Statistical
Society B, 67(5):617–666.

Bar-Hen, A., Chadoeuf, J., Dessard, H., and Monestiez, P. (2013). Es-
timating second order characteristics of point processes with known
independent noise. Statistics and Computing, 23:297–309.

Beaumont, M. (2010). Approximate bayesian computation in evolu-
tion and ecology. Annual Review of Ecology, Evolution, and Sys-
tematics, 41:379–406.

Borchers, D. L., Zucchini, W., and Fewster, R. M. (1998). Mark-
recapture models for line transect surveys. Biometrics, pages 1207–
1220.

Bowler, D. E., Nilsen, E. B., Bischof, R., O’Hara, R. B., Yu, T. T.,
Oo, T., Aung, M., and Linnell, J. D. (2019). Integrating data from
different survey types for population monitoring of an endangered
species: the case of the Elås deer. Scientific reports, 9(1):1–14.

Brockner, B., Williams, K., Luke, R., Sheen, D., Dowdy, J., Anderson,
D., and Veal, C. (2018). Convolutional neural network based side
attack explosive hazard detection in three dimensional voxel radar.
In Detection and sensing of mines, explosive objects and obscured
targets XXIII, page 51.

Buckland, S. T. (2006). Point-transect surveys for songbirds: Robust
methodologies. The Auk, 123(2):345–357.

Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L.,
Borchers, D. L., and Thomas, L. (2001). Introduction to distance
sampling: estimating abundance of biological populations. Oxford
(United Kingdom) Oxford Univ. Press.

Buckland, S. T., Rexstad, E. A., Marques, T. A., and Oedekoven, C. S.
(2015). Distance sampling: methods and applications, volume 431.
Springer.

Byers, S. and Raftery, A. (1998). Nearest-neighbor clutter removal
for estimating features in spatial point processes. Journal of the
American Statistical Association, 93:577–584.

Chakraborty, A. and Gelfand, A. (2010). Analyzing spatial point pat-
terns subject to measurement error. Bayesian Analysis, 5(1):97–
122.

Chandler, R. B., Royle, J. A., and King, D. I. (2011). Inference about
density and temporary emigration in unmarked populations. Ecol-
ogy, 92(7):1429–1435.

Chang, X., Waagepetersen, R., Yu, H., Ma, X., Holford, T. R., Wang,
R., and Guan, Y. (2015). Disease risk estimation by combining
case-control data with aggregated information on the population at
risk. Biometrics, 71(1):114–121.

Coeurjolly, J.-F. (2017). Median-based estimation of the intensity of
a spatial point process. Annals of the Institute of Statistical Mathe-
matics, 69:303–331.

Connor, B., Carrie, I., Craig, R., and Parsons, J. (2008). Discriminative
imaging using LWIr polarimetric imaging. In Proceedings of the
SPIE Security and Defence Conference.

Cressie, N. and Collins, L. B. (2001). Analysis of spatial point pat-
terns using bundles of product density LISA functions. Journal of
Agricultural, Biological, and Environmental Statistics, 6(1):118.

Cressie, N. and Lawson, A. (2000). Hierarchical probability models
and Bayesian analysis of mine locations. Advances in Applied Prob-
ability, 32:315–330.

Cucala, L. (2008). Intensity estimation for spatial point processes ob-
served with noise. Scand. J. Statist., pages 322–334.

Daley, D. J. and Vere-Jones, D. (2003). An introduction to the the-
ory of point processes Volume I: elementary theory and methods.
Springer.

Dasgupta, A. and Raftery, A. (1998). Detecting features in spatial point
processes with clutter via model-based clustering. Journal of the
American Statistical Association, 93:294–302.

Diggle, P. (1985). A kernel method for smoothing point process data.
J. Roy. Statist. Soc. Ser. C, 34:138–147.

Diggle, P. (1993). Point process modelling in environmental epidemi-
ology. In Barnett, V. and Turkman, F., editors, Statistics for the
environment, pages 89–110. Wiley.

Dorazio, R. M. (2014). Accounting for imperfect detection and survey
bias in statistical analysis of presence-only data. Global Ecology
and Biogeography, 23(12):1472–1484.



DEVIANT POINT PATTERNS 17

Dralle, K. and Rudemo, M. (1996). Stem number estimation by kernel
smoothing of aerial photos. Canadian Journal of Forest Research,
26:1228–1236.

Dralle, K. and Rudemo, M. (1997). Automatic estimation of individ-
ual tree positions from aerial photos. Canadian Journal of Forest
Research, 27:1728–1736.

Ducey, M. J. and Astrup, R. (2013). Adjusting for nondetection in
forest inventories derived from terrestrial laser scanning. Canadian
Journal of Remote Sensing, 39(5):410–425.

D’Angelo, N., Siino, M., D’Alessandro, A., and Adelfio, G. (2022).
Local spatial log-Gaussian Cox processes for seismic data. AStA
Advances in Statistical Analysis, 106(4):633–671.

Eckerstorfer, M., Bühler, Y., Frauenfelder, R., and Malnes, E. (2016).
Remote sensing of snow avalanches: Recent advances, potential,
and limitations. Cold Regions Science and Technology, 121:126–
140.

Fanshawe, T. and Diggle, P. (2011). Spatial prediction in the presence
of positional error. Environmetrics, 22(2):109–122.

Fronterrè, C., Giorgi, E., and Diggle, P. (2018). Geostatistical infer-
ence in the presence of geomasking: a composite-likelihood ap-
proach. Spatial Statistics, 28:319–330.

Glennie, R., Buckland, S. T., Langrock, R., Gerrodette, T., Ballance,
L., Chivers, S., and Scott, M. (2021). Incorporating animal move-
ment into distance sampling. Journal of the American Statistical
Association, 116(533):107–115.

Guttorp, P. (1995). Stochastic modeling of scientific data. Chapman &
Hall.

Guttorp, P. and Thompson, M. L. (1990). A note on point process anal-
ysis of Chinese earthquake data. Pure Appl. Geophys., 133:541–
546.

Guttorp, P. and Thorarinsdottir, T. L. (2012). What happened to dis-
crete chaos, the Quenouille process, and the sharp Markov prop-
erty? Some history of stochastic point processes. International Sta-
tistical Review, 80(2):253–268.

Häbel, H., Balazs, A., and Myllymäki, M. (2021). Spatial analysis of
airborne laser scanning point clouds for predicting forest structure.
Mathematical & Computational Forestry & Natural Resource Sci-
ences, 13(1):15–28.

Hable, S., Sigloch, K., Barruol, G., Stähler, S., and Hadziioannou,
C. (2018). Clock errors in land and ocean bottom seismograms:
high-accuracy estimates from multiple-component noise cross-
correlations. Geophysical Journal International, 214(3):2014–
2034.

Hayes, R. and Buckland, S. (1983). Radial-distance models for the
line-transect method. Biometrics, pages 29–42.

Hedley, S. L. and Buckland, S. T. (2004). Spatial models for line tran-
sect sampling. Journal of Agricultural, Biological, and Environ-
mental Statistics, 9(2):181–199.

Högmander, H. (1991). A random field approach to transect counts of
wildlife populations. Biometrical journal, 33:1013–1023.

Holmes, Q., Schwartz, C., Seldin, J., Wright, J., and Witter, L. (1995).
Adaptive multispectral CFAR detection of land mines. In Dubey,
A. C., Cindrich, I., Ralston, J. M., and Rigano, K. A., editors, De-
tection Technologies for Mines and Minelike Targets, volume 2496
of Society of Photo-Optical Instrumentation Engineers (SPIE) Con-
ference Series, pages 421–432.

Huang, H., Ma, X., Waagepetersen, R., Holford, T. R., Wang, R.,
Risch, H., Mueller, L., and Guan, Y. (2014). A new estimation ap-
proach for combining epidemiological data from multiple sources.
Journal of the American Statistical Association, 109(505):11–23.
PMID: 24683281.

Husen, S., Kissling, E., Deichmann, N., Wiemer, S., Giardini, D.,
and Baer, M. (2003). Probabilistic earthquake location in com-
plex three-dimensional velocity models: Application to Switzer-
land. J.Geophys. Res., 108.

Illian, J., Penttinen, A., Stoyan, H., and Stoyan, D. (2008). Statistical
analysis and modelling of spatial point patterns. Wiley.

Jacquez, G. M. (2012). A research agenda: does geocoding positional
error matter in health GIS studies? Spatial and spatio-temporal
epidemiology, 3(1):7–16.

Jensen, L. G., Williamson, D., and Hahn, U. (2022). Semiparametric
point process modeling of blinking artifacts in PALM. The Annals
of Applied Statistics, 16:1500–1523.

Johnson, D.S.and Hooten, M. and Kuhn, C. (2013). Estimating animal
resource selection from telemetry data using point process models.
Journal of Animal Ecology, 82:1155–64.

Jones-Todd, C. M., Caie, P., Illian, J. B., Stevenson, B. C., Savage,
A., Harrison, D. J., and Bown, J. L. (2019). Identifying prognostic
structural features in tissue sections of colon cancer patients using
point pattern analysis. Statistics in medicine, 38(8):1421–1441.

Jones-Todd, C. M., Swallow, B., B., I. J., and Toms, M. (2018). A
spatiotemporal multispecies model of a semicontinuous response.
Journal of the Royal Statistical Society. Series C (Applied Statis-
tics), 67:705–722.

Kagan, Y. Y. and Knopoff, L. (1980). Spatial distribution of earth-
quakes: The two point correlation function. Geophys. J. R. Astron.
Soc., 62:303–320.

Kansanen, K., Packalen, P., Maltamo, M., and Mehtätalo, L. (2021).
Horvitz-Thompson-like estimation with distance-based detection
probabilities for circular plot sampling of forests. Biometrics,
77(2):715–728.

Kansanen, K., Vauhkonen, J., Lähivaara, T., and Mehtátalo, L. (2016).
Stand density estimators based on individual tree detection and
stochastic geometry. Canadian Journal of Forest Research,
46(11):1359–1366.

Konstantinou, K. and Särkkä, A. (2021). Spatial modeling of epider-
mal nerve fiber patterns. Statistics in Medicine, 40:6479–6500.

Kostensalo, J., Mehtätalo, L., Tuominen, S., Packalen, P., and Myl-
lymäki, M. (2023). Recreating structurally realistic tree maps with
airborne laser scanning and ground measurements. Remote Sensing
of Environment, 298:113782.

Kuronen, M., Henttonen, H., and Myllymäki, M. (2019). Correcting
for nondetection in estimating forest characteristics from single-
scan terrestrial laser measurements. Canadian Journal of Forest
Research, 46:96–103.

Kuronen, M., Myllymäki, M., Loavenbruck, A., and Särkkä, A. (2021).
Point process models for sweat gland activation observed with
noise. Statistics in Medicine, 40:2055–2072.

Kuronen, M., Särkkä, A., Vihola, M., and Myllymäki, M. (2022). Hier-
archical log Gaussian Cox process for regeneration in uneven-aged
forests. Environmental and Ecological Statistics, 40(29):185–205.

Laake, J. and Borchers, D. (2004). Methods for incomplete detection
at distance zero, pages 108–189. Oxford University Press.

Lahivaara, T., Seppanen, A., Kaipio, J. P., Vauhkonen, J., Korhonen,
L., Tokola, T., and Maltamo, M. (2014). Bayesian approach to tree
detection based on airborne laser scanning data. IEEE Transactions
on Geoscience and Remote Sensing, 52(5):2690–2699.

Langley, R. (1997). The GPS error budget. GPS World, 8:51–56.
Larsen, M. and Rudemo, M. (1998). Optimizing templates for finding

trees in aerial photographs. Pattern Recognition Letters, 19:1153–
1162.

Law, R., Illian, J., Burslem, D. F., Gratzer, G., Gunatilleke, C., and
Gunatilleke, I. (2009). Ecological information from spatial patterns
of plants: insights from point process theory. Journal of Ecology,
97(4):616–628.

Lawson, A. (1993). A deviance residual for heterogeneous spatial
Poisson processes. Biometrics, 49:889–897.

Lee, W. H. K. and Brillinger, D. R. (1979). On Chinese earthquake
history–an attempt to model an incomplete data set by point process
analysis. Pure Appl. Geophys., 117:1229–1257.



18

Lund, J., Penttinen, A., and Rudemo, M. (1999). Bayesian analysis
of spatial point patterns from noisy observations. In the Ph.D. the-
sis Statistical inference and perfect simulation for point processes
observed with noise by J Lund, Department of Mathematics and
Physics, Royal Veterinary and Agricultural University, Denmark.

Lund, J. and Rudemo, M. (2000). Models for point processes observed
with noise. Biometrika, 87(2):235–249.

Lund, J. and Thönnes, E. (2004). Perfect simulation and inference for
point processes given noisy observations. Computational statistics,
19:317–336.

Martens, A. (1968). Errors in measurement and counting of particles
using light scattering. Journal of the Air Pollution Control Associ-
ation, 18:661–663.

Martino, S., Pace, D. S., Moro, S., Casoli, E., Ventura, D., Frachea,
A., Silvestri, M., Arcangeli, A., Giacomini, G., Ardizzone, G.,
et al. (2021). Integration of presence-only data from several
sources: a case study on dolphins’ spatial distribution. Ecography,
44(10):1533–1543.

Mehtätalo, L. (2006). Eliminating the effect of overlapping crowns
from aerial inventory estimates. Canadian Journal of Forest Re-
search, 36(7):1649–1660.

Mehtätalo, L., Yazigi, A., Kansanen, K., Packalen, P., Lähivaara, T.,
Maltamo, M., Myllymäki, M., and Penttinen, A. (2022). Estima-
tion of forest stand characteristics using individual tree detection,
stochastic geometry and a sequential spatial point process model.
International Journal of Applied Earth Observation and Geoinfor-
mation, 112:102920.

Menke, W. (1989). Geophysical Data Analysis: Discrete Inverse The-
ory. Academic Press.

Miller, D. L., Fifield, D., Wakefield, E., and Sigourney, D. B. (2021).
Extending density surface models to include multiple and double-
observer survey data. PeerJ, 9:e12113.

Milne, S., Martin, J. G., Reynolds, G., Vairappan, C. S., Slade, E. M.,
Brodie, J. F., Wich, S. A., Williamson, N., and Burslem, D. F.
(2021). Drivers of bornean orangutan distribution across a multiple-
use tropical landscape. Remote Sensing, 13(3):458.

Møller, J. and Waagepetersen, R. P. (2007). Modern statistics for spa-
tial point processes. Scandinavian Journal of Statistics, 34(4):643–
684.
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