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Abstract. Acceptance sampling plans are essential for quality assurance in reliability test-
ing. This study introduces a novel approach to variable acceptance sampling plans under
Type-II censoring, assuming an exponential distribution for failure times with an inverse
gamma prior. The proposed model applies a decision tree algorithm, simplifying the pro-
cess compared to traditional methods that rely on complex nonlinear or stochastic opti-
mization. By using Bayesian inference, the model incorporates prior knowledge and up-
dates decisions with new data, minimizing the number of failures required to terminate the
test, while ensuring product reliability and reducing testing costs. The decision tree method
with backward induction is used to evaluate costs from the leaf nodes to the root, ensuring
optimal decision-making with minimum cost. A real-life case study illustrates the practical
applications of this method, and a comparative analysis with an existing model demon-
strates that it is not only simpler but also has a significantly higher power of test, making
it suitable for real-world applications. A sensitivity analysis study is also conducted using
simulated data to assess how changes in cost parameters and prior parameters influence the
optimal decision cost.

1 Introduction

Acceptance sampling plans (ASPs) are essential in quality control, determining whether a lot
of products meet standards without testing each item. A comprehensive inspection is often
impractical due to cost and time, especially, when tests are destructive. Censoring schemes,
such as Type-I (fixed time T ) (Tsai et al. (2012)) and Type-II (fixed number of failures r)
(Chen, Yang and Liang (2016)), address these challenges by reducing the time and expense
of testing while maintaining product quality. The primary objective is to find the optimal
values of T and r to balance the costs associated with accepting, rejecting, or conducting
a comprehensive inspection of a lot. Kumar and Ramyamol (2016) developed an optimal
variable ASP using the maximum likelihood estimator for the exponential distribution, in-
corporating both Type-I and Type-II censoring methodologies. However, advanced censoring
schemes, such as hybrid censoring (Balakrishnan and Kundu (2013)), progressive censoring
(Balakrishnan and Cramer (2014)), and accelerated life testing, have become increasingly
important in addressing more complex and time-sensitive testing environments. Chakrabarty,
Roy and Chowdhury (2023) constructed a decision model to determine the optimal sampling
plan for the Weibull model under an accelerated life test setting, utilizing a Type-I hybrid
censoring scheme for products covered under warranty. Lee et al. (2024) introduced ASPs
using progressively Type-II right-censored samples for lifetime testing of exponential life-
time products and evaluated product quality through the process capability index under this
censoring scheme. Some examples of recent works include Kumar, Bajeel and Ramyamol

*Corresponding Author (email: mahesh@nitc.ac.in)
Keywords and phrases. Acceptance sampling plan, Bayseian estimation, Type-II censoring, exponential dis-

tribution, decision tree method.

1



2

(2020), Ramyamol and Kumar (2020), Lou, Zheng and Yang (2023), AlSultan and Al-Omari
(2023), which explore ASPs using various censoring schemes and accelerated life-testing
methods for different distributions.

Bayesian estimation provides a more efficient approach by incorporating prior knowledge
and updating it with new data, enabling better decision-making than the conventional meth-
ods. Integrating Bayesian methods into ASPs minimizes testing efforts, reduces costs, and
protects both producers and customers from unnecessary risk. Earlier studies by Yeh (1994,
1990), and Yeh and Choy (1995) adopted a Bayesian approach to investigate single-variable
sampling plans for the exponential distribution, focusing on Type-I, Type-II, and random cen-
soring schemes, respectively, laying the groundwork for the integration of Bayesian methods
in ASP design across various censoring techniques. Aminzadeh (2003) developed variable
ASPs using an inverse Gaussian model with costs of acceptance, rejection, and inspection.
Chen, Liang and Yang (2021) studied a Bayesian sampling plan for two exponential distribu-
tions linked by the cumulative exposure model through a simple step-stress accelerated life
test under the Type-II censoring scheme. Mathai and Kumar (2024) applied Bayesian esti-
mation with an inverse gamma prior, to design ASPs under Type-I hybrid censoring schemes
for the exponential distribution. In recent years, the Bayesian model has been used exten-
sively in designing ASPs by many authors; for instance, Liang and Yang (2011), Prajapati
and Kundu (2023), Prajapat et al. (2023) and so on. Apart from variable ASPs, Bayesian
estimation methods have been applied in areas like integer-valued time series, as discussed
by Peng, Yang and Dong (2024) and Yang et al. (2022).

In all these ASPs, conventional methods of complex nonlinear or stochastic optimization
are used, which can be time-consuming and computationally intensive. While the works dis-
cussed so far focus on variable ASPs with complex optimization methods, there has been
notable research in attribute sampling plans that employ decision tree approaches. With the
advent of artificial intelligence in quality control of manufacturing industries, machine learn-
ing algorithms are extensively used for decision-making. The decision tree model has been
a top-notch decision-making algorithm in computer science and engineering, and this algo-
rithm can also be applied to statistical models. This algorithm offers a simpler and more
efficient alternative for determining optimal parameters, bypassing the need for intricate
optimization techniques. For instance, Fallahnezhad, Niaki and Vahdat Zad (2012) intro-
duced a revised Bayesian model using a decision tree approach with the backward induction
method for decision-making, while Fallahnezhad and Babadi (2015) extended this work by
accounting for inspection errors and assuming a beta distribution for the number of defec-
tives. The economic aspects of Bayesian acceptance sampling problems were explored by
Fallahnezhad and Aslam (2013), where decision-making was guided by minimizing quality
inspection costs along with backward induction. Recently, Thomas and Kumar (2023) de-
veloped a model using Bayesian inference for the binomial-Poisson model, paired with a
decision tree method and backward induction, to determine the additional reviews needed to
find unidentified bugs in software and the expected costs of various outcomes. This provides
an insight into practical applications of ASPs using decision trees.

The proposed work introduces a novel approach to variable ASPs by incorporating a deci-
sion tree algorithm, setting it apart from existing studies in the literature. While Azam, Aslam
and Niaki (2020) have previously developed the prediction decision trees under the repetitive
group sampling plan based on process capability index, our focus is on applying the decision
tree approach in an optimal Bayesian ASP under a Type-II censoring scheme for exponen-
tially distributed lifetimes with an inverse gamma prior. In our model, Bayesian inference is
employed as the decision criterion for accepting or rejecting the lot. The proposed decision
tree method operates through an algorithm of a sequence of carefully executed queries or
tests, where each outcome influences subsequent tests. The backward induction is applied
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here to evaluate costs from the leaf nodes of the decision tree and works backward to the root
node to identify the optimal set of decisions. Cost functions for corresponding decisions are
derived and the optimal number of observed failures for test termination is determined, en-
suring a decision on the lot at minimal cost. The structure of the paper is outlined as follows:
Section 2 presents a detailed overview of the proposed model, including cost derivation and
the decision tree algorithm. In Section 3, the model is demonstrated with a real-life exam-
ple and simulated data. A sensitivity analysis study is also conducted. Finally, concluding
remarks are provided in Section 4.

2 Bayesian modeling in decision tree approach for variable sampling plan

In manufacturing, ensuring the quality of a lot while minimizing costs is a critical challenge,
especially when testing is destructive or time-consuming. Bayesian inference offers an effec-
tive approach to decision-making under uncertainty by incorporating prior knowledge and
updating beliefs as new data becomes available. This approach enables more informed de-
cisions, reducing the need for excessive testing while maintaining product reliability. This
study aims to develop an acceptance sampling plan with a decision tree method based on
Bayesian inference that determines whether to accept the lot, reject it, or subject it to 100%
testing. By using Bayesian methods, the proposed model aims to minimize testing costs and
inspection efforts while balancing risks for both producers and customers, optimizing the
quality assurance process.

Consider a sample of size n drawn from a lot containing N units, where the failure times of
all units are assumed to follow an exponential distribution. The probability density function
(PDF) of the failure time for each unit is expressed as

f(x,ϑ) =
1

ϑ
exp

(
−x

ϑ

)
, x≥ 0, ϑ > 0. (2.1)

Upon subjecting the sample to a Type-II censoring scheme, the failure data is obtained in the
form,{X1,n < X2,n < · · · < Xr,n}, where r < n. The corresponding likelihood function is
obtained as (see Khoolenjani and Shahsanaie (2016))

L(x,ϑ) =
n!

(n− r)!

1

ϑr
exp

{
− 1

ϑ

r∑
i=1

xi,n −
(n− r)

ϑ
xr,n

}
, (2.2)

where xi,n is the realization of the random variable Xi,n, i= 1,2, · · · , r.
Thus, the maximum likelihood estimator of ϑ based on the Type-II censored sample is

obtained as

θ̂MLE =
1

r

{
r∑

i=1

Xi,n + (n− r)Xr,n

}
. (2.3)

Here it is assumed that ϑ follows the conjugate prior probability distribution, inverse gamma
distribution with scale a and shape b, and its probability density function is given by

π(ϑ) =
ab

Γ(b)
ϑ−(b+1) exp

(
−a

ϑ

)
, ϑ > 0, a, b > 0. (2.4)

The inverse gamma distribution is used as the prior distribution because it serves as the natu-
ral conjugate prior to the exponential distribution. Additionally, its flexible form, which can
be adjusted by varying its parameters, allows for a reasonable representation of a particular
prior knowledge.
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Then the posterior density function of ϑ based on the observed data and the inverse gamma
prior for ϑ given by equation (2.4) becomes

f(ϑ |Data) =
π(ϑ)L(x,ϑ)

∞∫
0

π(ϑ)L(x,ϑ)dθ

=

(
rθ̂mle + a

)b+r

Γ(b+ r)
ϑ−(b+r+1) exp

{
− 1

ϑ

(
rθ̂mle + a

)}
,

(2.5)

where θ̂mle =

{
r∑

i=1
xi,n + (n− r)xr,n

}
/r is the maximum likelihood estimate of ϑ. Thus,

the posterior distribution of ϑ is again an inverse gamma distribution with scale parameter(
rθ̂mle + a

)
and shape (b+ r).

In this proposed method, Bayesian inference is conducted using the squared error loss
(SEL) function, which is symmetric. Its symmetry is illustrated by the expression (see Mathai
and Kumar (2024); Peng and Yan (2013))

l(ϑ, ϑ̂) = (ϑ̂− ϑ)2,

where ϑ̂ represents the estimate of the unknown parameter ϑ.
The Bayesian estimate of any function δ = δ(ϑ) under the SEL is expressed as

δ̂B =E(δ | Data) =

∫
ϑ δ(ϑ)L(x,ϑ)π(ϑ)dϑ∫

ϑL(x,ϑ)π(ϑ)dϑ
. (2.6)

Thus, from equation (2.6), the Bayesian estimator of δ(ϑ) = ϑ under the SEL function is
the mean of the posterior distribution and is obtained as

ϑ̂B =
r θ̂MLE + a

b+ r− 1
, (2.7)

provided that b+ r > 1.
By using censoring schemes in deriving ASPs, we can significantly reduce both time and

cost. Specifically, in this study, testing is carried out using Type-II censoring, where the test
is terminated after a fixed number of failures, r, are observed. In traditional variable ASPs
(Kumar and Ramyamol (2016)), the minimum value of r is determined to minimize test-
ing costs, subject to controlling Type I and Type II errors. However, these methods often
involve solving complex nonlinear equations, which can be time-intensive and computation-
ally demanding. To address these challenges, this study proposes the use of a decision tree
algorithm in variable ASP, which incorporates the costs of accepting, rejecting, or conduct-
ing 100% screening of the lot. The objective is to develop a variable ASP and determine
the optimal minimum value of r to achieve a decision on lot acceptance or rejection with
minimal cost. This approach provides a more efficient and cost-effective solution compared
to traditional ASPs.

Here, testing begins by selecting a sample from the lot and it is terminated once a prede-
termined number of failures have been observed. Applying prior knowledge from previous
tests, the probability density function for the lot can be obtained. The optimal value of r is
determined using a backward induction approach through a decision tree model, which eval-
uates the probabilities associated with the optimal decision outcome. The model assumes
prior information about the failure data X , the parameter ϑ, and incorporates uncertainty
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regarding the decision costs at the terminal nodes of the decision tree. The possible deci-
sions concerning the lot are represented by the set ∆ = {D1,D2,D3}, where D1 signifies
“accepting the lot”, D2 means “rejecting the lot”, and D3 denotes “100% testing”.

The proposed ASP under the Type-II censoring scheme is outlined as follows:

1. A random sample of size n is drawn from the lot, and testing continues until r failures
are observed. The resulting failure times are recorded as {X1,n <X2,n < · · ·<Xr,n},
where r < n is pre-specified.

2. Using the observed data, compute the Bayesian estimate of ϑ under the SEL function,
ϑ̂B , given by equation (2.7).

3. Accept the lot if ϑ̂B ≥ t0; otherwise, reject the lot.

According to the proposed ASP, the decision set for a fixed sample size n can be repre-
sented as R= {γr | r < n}, where γr denotes the decision to terminate testing after the obser-
vation of the rth failure. Upon reaching a decision from set R, the corresponding failure data
set of size r, X = {X1,n < X2,n < · · · < Xr,n}, is obtained, allowing for the computation
of the Bayesian estimate ϑ̂B . Furthermore, the value of the threshold t0 must be determined
within the ASP. The optimal decision depends on identifying the optimal values of (n,R, t0),
which collectively minimize the cost associated with decision-making, ensuring that the cost
of the final decision is minimized.

2.1 Construction of cost functions

In this section, the following assumptions are considered for deriving the cost function cor-
responding to the possible decisions in ∆ in the proposed ASP:

• The loss incurred due to the presence of defects per item, x, in an accepted lot is
denoted by l0(x). Here we consider the quadratic loss function for l0(x), which is
expressed as (see González and Palomo (2003))

l0(x) = kx2, (2.8)

for a positive constant k.
• Based on quadratic loss function, the conditional expected loss per unit for a given ϑ

is given by

L0(ϑ) =

∞∫
0

l0(x)f(x,ϑ)dx

= 2kϑ2.

(2.9)

• In this model, prior information about the failure data and the parameter, ϑ is taken into
account, while the costs associated with decisions at the terminal nodes of the decision
tree remain uncertain. The cost function corresponding to the decision ∆ for a given
set of parameters (n,R, t0) is a random variable. Thus, the expected cost of the three
decisions in ∆ are derived following the methods described in González and Palomo
(2003).

(I) Cost of accepting the lot: The cost of accepting a lot by testing a sample of
size n from a lot of size N is derived as follows:
From the proposed ASP, the probability of accepting the lot for a given value of
ϑ is obtained as

P (Accept | ϑ) = P
(
ϑ̂B ≥ t0 | ϑ

)
= P

(
r θ̂MLE + a

b+ r− 1
≥ t0

)
.

(2.10)
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According to Epstein (1954), 2rθ̂MLE

ϑ follows chi-square distribution with 2r de-
grees of freedom. Thus, equation (2.10) becomes

P (Accept | ϑ) = P

[
χ2
(2r) ≥

2

ϑ
{(b+ r− 1)t0 − a}

]

=

r−1∑
i=0

1

i!

{
(b+ r− 1)t0 − a

ϑ

}i

exp

[
−{(b+ r− 1)t0 − a}

ϑ

]
.

(2.11)

Considering all the possible values of the parameter ϑ, the probability of accept-
ing the lot becomes

PA =

∞∫
0

P (Accept | ϑ)π(ϑ)dϑ. (2.12)

Therefore, the expected cost of accepting the lot, ECA, is obtained as

ECA =N

∞∫
0

L0(ϑ)P (Accept | ϑ)π(ϑ)dϑ. (2.13)

Substituting equations (2.4), (2.9) and (2.11) in equation (2.13), we get

ECA = 2kN
ab

Γ(b)
{(b+ r− 1)t0}2−b

r−1∑
i=0

Γ(b+ i− 2)

i!

{
1− a

(b+ r− 1)t0

}i

.

(2.14)
Note that the total testing time under Type-II censoring is given by T =∑r

i=1Xi,n + (n − r)Xr,n and from Epstein (1954), we have 2T
ϑ follows chi-

square distribution with 2r degrees of freedom. If Ct denotes the cost of testing
a unit in the lot per unit time, then the expected cost of testing, ECT , is obtained
as

ECT =CtE(T ) =Ctrϑ. (2.15)

Thus, the total expected cost of accepting the lot, TCA, is given by

TCA =ECA +ECT . (2.16)

(II) Cost of rejecting the lot: Let Cr denote the cost of rejecting a unit item. The
probability of rejecting a lot is given by

PR = 1− PA.

Then, from equation (2.12), we get

PR = 1− ab

Γ(b)
{(b+ r− 1)t0}−b

r−1∑
i=0

Γ(b+ i)

i!

{
1− a

(b+ r− 1)t0

}i

. (2.17)

The expected cost of rejecting the lot, ECR, is given by

ECR =NCrPR, (2.18)

and substituting equation (2.17) into (2.18) , the expression for ECR becomes

ECR =NCr

[
1− ab

Γ(b)
{(b+ r− 1)t0}−b

r−1∑
i=0

Γ(b+ i)

i!

{
1− a

(b+ r− 1)t0

}i
]
.

(2.19)
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From equation (2.15), the total expected cost of rejection of the lot, TCR, is then
given by

TCR =ECR +ECT . (2.20)

(III) Cost of 100% testing the lot: Let Cs denote the cost of 100% testing per unit
time. The expected cost corresponding to 100% testing of lot, ECS is obtained
as

ECS =CsNϑ, (2.21)

where Nϑ is the expected total testing time. Using equation (2.15), the total
expected cost of 100% testing the lot, TCS , is given by

TCS =ECS +ECT . (2.22)

2.2 Algorithm

The following algorithm is applied for the decision tree method in the variable ASP:

1. Using the Bayesian rule for continuous distributions, we get the posterior PDF as given
in equation (2.5)

f(ϑ | n,γr, t0) = f(ϑ |Data).

2. The corresponding total costs for each decision in ∆ for a given set of (n,R, t0) and
data set X , is obtained as in equations (2.16), (2.20) and (2.22), that is

(i) Cost of accepting the lot, c(n,γr, t0,D1) = ECA +ECT .
(ii) Cost of rejecting the lot, c(n,γr, t0,D2) = ECR +ECT .
(iii) Cost of testing the entire lot, c(n,γr, t0,D3) = ECS +ECT .

3. Next, the conditional expected value of c is calculated since ECT is in terms of the
unknown quantity ϑ

c∗(n,γr, t0,Dj) =

∞∫
0

c(n,γr, t0,Dj)f(ϑ | n,γr, t0)dϑ. (2.23)

4. Applying the backward induction algorithm in the decision tree, first evaluate

c∗(γr, t0,Dj) =Min
n

c∗(n,γr, t0,Dj). (2.24)

5. Then find

c∗(γr,Dj) =Min
t0

c∗(γr, t0,Dj). (2.25)

6. Next for the optimal decision, find

c∗(Dj) =Min
γr

c∗(γr,Dj). (2.26)

7. For the required optimal cost, evaluate

c∗ =Min
Dj

c∗(Dj), (2.27)

such that the optimal decision cost is obtained for a γr, r < n, while satisfying the
decision criteria.
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The illustration of the algorithms is given using Figure 1. The plan parameters n, t0, and
γr are fixed step by step of the algorithm, and finally, the decision costs can be calculated
to identify the optimal minimum cost and corresponding decision. The optimal decision is
to select the value of r where optimal decision cost c∗ is minimized, ensuring that it meets
the decision criteria so that testing will stop after the rth failure. Thus, optimal decision
involves selecting γr for a combination of (n, t0), which gives the failure data set X , and the
decision regarding the lot is Dj . The decision maker relies on an inspection strategy or prior
information to choose (n, t0) and ∆, although γr cannot be arbitrarily chosen. The proposed
model aids in determining the optimal decision based on known parameters.

3 Illustration of the proposed ASP: Case study and simulated data analysis

3.1 Case study analysis of failure time data of electronic appliances

This section illustrates the application of the proposed decision tree method in variable ASP
using a real-world example from Noughabi (2015); Mathai and Kumar (2024). The failure
rates for 36 compact electrical appliances that underwent an automated life test are presented
in Table 1. The lifetimes refer to the number of operational cycles each appliance could
endure before failure. The failure data follows an exponential distribution, making it suitable
for the Bayesian decision tree approach discussed in Section 2. To validate and demonstrate

Table 1 Failure times (cycles) of 36 appliances.

11 35 49 170 329 381 708 958 1062 1167 1594 1925
1990 2223 2327 2400 2451 2471 2551 2565 2568 2694 2702 2761
2831 3034 3059 3112 3214 3478 3504 4329 6367 6976 7846 13403

the proposed model, let N = 500, k = 1 and consider different sets of values for (n≤ 36, t0)
given in Table 2. In practical situations, the experimenter determines these values based on
previous experience or particular criteria. Here, the Bayesian estimator is computed using the
hyper-parameters a= 1.25 and b= 2.5, which provide a more accurate Bayesian estimate for
ϑ (see Lin, Huang and Balakrishnan (2008); Yeh (1994)). In addition, the cost parameters are
set as Cr = 1, Cs = 1, and Ct = 1, to evaluate the total expected cost across various decision
outcomes. These cost parameters are user-defined and can be considered based on the specific
context and requirements of the experiment. From equation (2.23), c∗(n,γr, t0,Dj) for each

Table 2 Values of the decision parameters.

n 36,31,30,29,27 Sample size

t0 2065,2300,2500 Decision threshold

R γr = r, r < n Fixed number of failures to stop the test

∆ D1 Accept the lot
D2 Reject the lot
D3 100% testing

case of decision in ∆ is obtained as

c∗(n,γr, t0,D1) =ECA +Ctrϑ̂B,

c∗(n,γr, t0,D2) =ECR +Ctrϑ̂B,

c∗(n,γr, t0,D3) = (CsN +Ctr)ϑ̂B. (3.1)
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c∗ =min c∗(Dj)

D1
c∗(Dj)

γ1 γ2 ...
γr

c∗(γr,Dj)

t0 = 2065 t0 = 2300
t0 = 2500

c∗(t0, γr,Dj)

n= 36
c∗(n, t0, γr,Dj , )

n= 31 n= 30 n= 29 n= 27

D2 D3

Figure 1 Decison tree of the case study.

Applying the algorithm explained in Subsection 2.2, we get the optimal decision correspond-
ing to the optimal minimum decision cost aligned with the decision criteria. By implementing
the backward induction algorithm from Step 4 to Step 7 for cost optimization, as illustrated
in Figure 1, we compute the value of r < n and corresponding minimum decision costs, sat-
isfying the decision criteria, for each combination of fixed values of n and t0 presented in
Table 2. The value of r and the associated minimum decision cost satisfying the decision
criteria are obtained and are tabulated in Table 3 .

Table 3 Values of r and corresponding minimum decision costs for Cr =Cs =Ct = 1.

n t0 r c∗(n,γr, t0,D1) c∗(n,γr, t0,D2) c∗(n,γr, t0,D3)

36 2065 7 18343.5747 18795.7353 1325133.9706
2300 7 18341.0655 18795.7353 1325133.9706
2500 7 18339.215 18795.7353 1325133.9706

31 2065 7 15428.7961 15880.7961 1113983.3823
2300 8 20826.4356 20279.9999 1319530
2500 8 20824.54 20279.9999 1319530

30 2065 7 14845.8404 15297.3824 1071753.2647
2300 8 20019.7978 20473.2632 1268302.2106
2500 11 32386.9227 32841.0999 1502391.100

29 2065 8 19215.7412 19666.5263 1217074.4211
2300 8 19213.1599 19666.5263 1217074.4211
2500 11 30984.2997 31438.3799 1437228.38

27 2065 8 17602.4765 18053.0526 1114618.8421
2300 11 28181.0174 28632.9399 1306902.94
2500 11 28179.0548 28632.9399 1306902.94

The cost analysis presented in Table 3 suggests that the optimal decision is to accept the
lot for n= 30, t0 = 2065, and the corresponding value of r = 7 with c∗ = 14845.8404. That
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is, the lot can be accepted with $14,845.8404 under Type-II censoring by terminating the test
after observing 7 failures from a sample of 30.

The same dataset is used in Mathai and Kumar (2024), where they designed a variable ASP
under a Type-I hybrid censoring scheme using the Bayesian estimate of ϑ. In their approach,
they employed the complex conventional method of minimizing the overall expected testing
cost, subject to Type I and Type II error, with a power test of 80%, to obtain the optimal
values of n, t0, and r. According to their model, the lot is accepted, but testing is terminated
only after 9 failures. Additionally, they computed the cost without incorporating any loss
functions. Conversely, the proposed variable ASP with the decision tree method is simpler,
as it does not require complex nonlinear or stochastic optimization to determine the optimal
parameter values. It also offers the advantage of achieving a smaller value of r, allowing for
earlier test termination. Also, for the same user-defined values of acceptable and rejecting
quality level of life, the power of the test in our approach is significantly higher, reaching
about 98%. However, the inclusion of the loss function in our approach results in higher
cost, as we account for the cost of defects per item in the accepted lot. This makes our model
more comprehensive in terms of cost evaluation.

3.2 Illustration of ASP using simulated data

In this section, a sensitivity analysis study is conducted to analyze the impact of parameter
variations on the optimal decision cost. Simulated exponential data of size 50 with a mean of
100 is used for this purpose. Initially, the proposed ASP is demonstrated using the simulated
data, presented in Table 4, and then the prior and cost parameters are varied, to study how
these changes affect the performance and cost-effectiveness of the proposed sampling plan.
As in Subsection 3.1, consider the parameters a= 1.25, b= 2.5, Cr = 1, Cs = 1, and Ct = 1,

Table 4 Failure lifetimes of 50 units with a mean life of 100.

20.4906 9.8946 206.3672 9.0608 45.8298 232.7489 127.8344 60.3523 4.3422
184.7612 2.9848 4.3777 72.2832 22.2793 195.2729 86.3316 8.8028 23.2932
42.1990 333.2278 16.3544 6.8286 38.7524 27.7415 29.6881 93.5914 42.2391
34.8075 344.7257 128.4016 307.5395 233.1687 19.4243 36.4090 114.8540 5.1060
82.3838 96.3491 26.7204 22.9162 167.7328 71.3831 80.8365 43.6471 34.3385
3.5743 4.1351 176.5001 336.8360 28.1453

to compute the expected decision costs given in equation 3.1. By applying the decision tree
algorithm using the backward induction method outlined in Subsection 2.2, with decision
parameters n= 50,45,40,35,30,25, t0 = 150,200,250,300, and γr for r < n, the optimal
decision is identified as the one that minimizes costs while meeting the decision criteria. The
value of r < n and the corresponding minimum decision costs are computed for each combi-
nation of fixed values of n and t0, as shown in Figure 1. The optimal minimum decision cost
and the associated value of r satisfying the decision criteria are obtained and are summarized
in Table 5. The cost analysis presented in Table 5 indicates that the optimal decision is to
accept the lot when n = 35 and t0 = 250, with r = 4 and an associated minimum cost of
c∗ = 1216.9156. This means the lot can be accepted with an acceptance cost of 1216.9156
under Type-II censoring, where the test is terminated after observing the first 4 failures from
a sample of 50.

Additionally, a sensitivity analysis study is performed using the simulated data in Table 4
to assess how variations in cost parameters, (Ct,Cr,Cs), and prior parameters, (a, b), influ-
ence the optimal decision cost and the corresponding decision on the lot. Figure 2 shows the
results of varying Ct while keeping Cr , Cs fixed. It is observed that all three decision costs
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Table 5 Values of r and corresponding minimum decision costs for Cr =Cs =Ct = 1 with simulated data.

n t0 r c∗(n,γr, t0,D1) c∗(n,γr, t0,D2) c∗(n,γr, t0,D3)

50 150 6 2163.3356 2494.4583 168199.3790
200 6 2140.778 2494.4583 168199.3790
250 6 2125.6713 2494.4586 168199.3790
300 6 2113.9833 2494.4588 168199.3790

45 150 5 1664.0688 1997.3 151227.4398
200 5 1641.7879 1997.3007 151227.4398
250 5 1626.5672 1997.3010 151227.4398
300 4 1529.9692 1905.0416 177035.2874

40 150 6 1758.6116 2085.9808 133751.1689
200 6 1735.5528 2085.9815 133751.1689
250 6 1719.7994 2085.9818 133751.1689
300 7 2251.1361 2614.9703 153814.3119

35 150 6 1556.2496 1881.7424 116527.0638
200 6 1532.9402 1881.7431 116527.0638
250 4 1216.9156 1589.2423 137244.5790
300 11 4249.9464 4619.2036 191355.7479

30 150 6 1353.8876 1677.5039 99302.9588
200 7 1708.1159 2052.6139 112453.6617
250 11 3544.3403 3899.6107 157927.3952
300 11 3531.7595 3899.6109 157927.3952

25 150 7 1452.8153 1771.4351 92088
200 16 3766.0969 4098.8903 116064.2426
250 12 3236.2637 3589.1221 131802.5671
300 11 3093.3349 3173.4198 120003.559

Table 6 Effect of varying cost parameters Ct, Cr and Cs in decision costs.

Ct Cr Cs c∗(n,γr, t0,D1) c∗(n,γr, t0,D2) c∗(n,γr, t0,D3)

50 100 150 54589.8074 104462.1019 20477762.5891
60 110 160 65482.2343 120354.5256 21850208.3796
70 120 170 76374.6612 136246.9492 23222654.1702
80 130 180 87267.0881 152139.3729 24595099.9607
90 140 190 98159.5150 168031.7966 25967545.7513
100 150 200 109051.9420 183924.2202 27339991.5418

increase monotonically with the rise in Ct, resulting in a minimum acceptance cost. This
indicates that the acceptance cost increases as Ct increases. In contrast, Figure 3, where Cr

is varied while the other parameters remain fixed, shows that the acceptance cost remains
constant, as it does not depend on Cr . Similarly, Figure 4 shows the same pattern when Cs is
varied, with the acceptance cost remaining constant. Next, the analysis considers cases where
two parameters are varied while keeping the third one fixed. Figure 5 illustrates the changes
in optimal acceptance cost when Cs is held constant, while Ct and Cr are varied. The re-
sults show that the acceptance cost increases as both Ct and Cr rise. Similarly, in Figure 6
where Ct and Cs are varied with Cr fixed, an increase in the acceptance cost is observed.
However, when Ct is held constant and both Cr and Cs are varied, the acceptance cost re-
mains unchanged, as illustrated in Figure 7. Furthermore, when all three cost parameters are
increased simultaneously, the acceptance cost also increases, as summarized in Table 6. Ad-
ditionally, Figure 8 demonstrates the effect of varying the prior parameters a and b. It shows
that as a and b increases, acceptance cost decreases.
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Figure 2 Effect of varying Ct on optimal cost with Cr = 100, Cs = 150, a= 1.25, and b= 2.5.
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Figure 3 Effect of varying Cr on optimal cost with Ct = 50, Cs = 150, a= 1.25, and b= 2.5.

4 Conclusions

In real-world scenarios, conducting life tests on every item in a lot is often impractical due
to time and cost constraints, especially when testing is destructive. Censoring schemes, such
as Type-II censoring, are crucial in variable ASP as they allow testing to terminate after a
fixed number of failures, thereby minimizing both the duration of testing and the associated
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Figure 4 Effect of varying Cs on optimal cost with Ct = 50, Cr = 100, a= 1.25, and b= 2.5.

Figure 5 Effect of varying both Ct and Cr on optimal cost with Cs = 150, a= 1.25, and b= 2.5.

expenses. In this model, a variable ASP under Type-II censoring, is developed assuming
an exponential distribution for failure times with an inverse gamma prior for the parameter
estimation.

The proposed approach introduces a novel application of the decision tree method for vari-
able ASP design under Type-II censoring. Unlike traditional methods, which often involve
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Figure 6 Effect of varying both Ct and Cs on optimal cost with Cr = 100, a= 1.25, and b= 2.5.
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Figure 7 Effect of varying both Cr and Cs on optimal cost with Ct = 50, a= 1.25, and b= 2.5.

complex nonlinear or stochastic optimization to determine optimal parameters, this model
simplifies the process by using the decision tree algorithm. This method allows for efficient
decision-making and obtains the minimum number of failures (r) to terminate the test, with-
out the need for intricate optimization techniques, making it highly practical for real-world
applications.
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Figure 8 Effect of varying prior parameters a and b on optimal cost with Ct =Cr =Cs = 1.

By applying Bayesian inference, the model effectively incorporates prior knowledge and
updates decisions as new data is observed, which reduces the need for excessive testing while
ensuring product reliability. The key strength of this approach lies in its ability to provide the
optimal decision, along with the minimum cost and the minimum number of failures, r,
needed to terminate testing. The decision tree method ensures the computational simplic-
ity of the proposed plan and immediate decision-making irrespective of the sample size. A
real-life case study is conducted to illustrate the practical application of the proposed model.
Compared to the model presented in Mathai and Kumar (2024), which employs conventional
methods to design a variable ASP under Type-I hybrid censoring, our approach offers the
advantage of a smaller number of failures (r) required for test termination. Furthermore,
our plan has about a 24% increase in the power of test, providing a stronger capability to
detect defects. While their method involves complex nonlinear optimization without consid-
ering loss functions, our decision tree-based model simplifies the process but includes loss
functions, making it more comprehensive for cost evaluation. Additionally, sensitivity anal-
ysis is performed using simulated data to examine the effect of varying cost parameters and
prior parameters on the optimal decision cost. To further enhance the practical applications
of the decision tree algorithm in reliability testing, it is possible to incorporate progressive
censoring and accelerated life testing as a future area of research.
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