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We first show that the Airy1 process is associated using the association property of the solution to the stochastic
heat equation and convergence of the KPZ equation to the KPZ fixed point. Then we apply Newman’s inequality to
establish the ergodicity and central limit theorem for the Airy1 process. Combined with the asymptotic behavior
of the tail probability, we derive a Poisson limit theorem for the Airy1 process and give a precise estimate on
the asymptotic behavior of the maximum of the Airy1 process over an interval. Analogous results for the Airy2
process are also presented.
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1. Introduction and main results

The Airy1 process, {A1 (𝑥) : 𝑥 ∈ R}, derived by Sasamoto [31] in the context of TASEP, is a stationary
stochastic process whose finite-dimensional distributions are given in terms of the Fredholm determi-
nant (see [35, Section 4.1.2]). In particular, the one-point distribution is a scalar multiple of the GOE
Tracy-Widom distribution, namely,

P{A1 (0) ≤ 𝑠} = 𝐹1 (2𝑠), 𝑠 ∈ R,

where 𝐹1 denotes the GOE Tracy-Widom distribution. Moreover, it was proven by Quastel and Remenik
[29] that the sample paths are Hölder continuous with exponent 1

2−.
Recently, Basu et al. [5] have shown that the covariance of the Airy1 process decays super-

exponentially by showing that Cov(A1 (𝑥) ,A1 (0)) = e−(
4
3+𝑜(1))𝑥

3
as 𝑥→∞. This immediately implies

a law of large numbers, i.e., as 𝑁→∞,

1
𝑁

∫ 𝑁

0
A1 (𝑥) d𝑥→ E[A1 (0)], in 𝐿2 (Ω).

We are aiming to establish the ergodicity and the matching central limit theorem for the Airy1 pro-
cess.

Theorem 1.1. {A1 (𝑥) : 𝑥 ∈ R} is ergodic, and as 𝑁→∞,

1
√
𝑁

∫ 𝑁

0
(A1 (𝑥) − E[A1 (𝑥)]) d𝑥

d−→ N(0, 𝜎2), (1)

where 𝜎2 =
∫
R

Cov(A1 (𝑥) ,A1 (0))d𝑥 ∈ (0,∞), and “
d−→” denotes convergence in distribution.

Note that Quastel and Remenik [29] proved that the Airy1 process fluctuates locally like a Brownian
motion (see [29, Theorem 3]), using a formula for the 𝑛-dimensional distributions of the Airy1 process
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in terms of a Fredholm determinant on 𝐿2 (R). We refer to Hägg [19] for the local central limit theorem
for the Airy2 process and Pimentel [25] for the local Brownian motion behavior of Airy processes.

The main tool to prove the ergodicity property and CLT (1) in Theorem 1.1 is the association property
of the Airy1 process. We recall from Esary et al. [17] that a random vector 𝑋 := (𝑋1 , . . . , 𝑋𝑚) is said
to be associated if

Cov[ℎ1 (𝑋) , ℎ2 (𝑋)] ≥ 0, (2)

for every pair of functions ℎ1, ℎ2 : R𝑚 → R that are nondecreasing in every coordinate and satisfy
ℎ1 (𝑋), ℎ2 (𝑋) ∈ 𝐿2 (Ω). A random field Φ = {Φ(𝑥)}𝑥∈R𝑑 is associated if (Φ(𝑥1) , . . . ,Φ(𝑥𝑚)) is asso-
ciated for every 𝑥1, . . . , 𝑥𝑚 ∈ R𝑑 . We remark that an associated random vector is also called to satisfy
the FKG inequalities; see Newman [23].

Theorem 1.2. {A1 (𝑥) : 𝑥 ∈ R} is associated.

The association property of the Airy1 process leads to a fundamental inequality, known as Newman’s
inequality (see (7) below), which plays a crucial role in proving ergodicity and CLT for the Airy1
process. Furthermore, Newman’s inequality implies an inequality for characteristic functions (see (9)
below), which together with the asymptotic behavior of the GOE Tracy-Widom distribution, enables
us to derive a Poisson limit theorem for high-level exceedances of the Airy1 process.

Denote by T the inverse function of 𝑠 ↦→ 1 − 𝐹1 (𝑠). We have the following Poisson approximation
for the Airy1 process.

Theorem 1.3. Fix 𝜆 > 0. Let {𝑥𝑘,𝑁 }𝑁 ≥1,1≤𝑘≤𝑁 ⊂ R satisfy

lim inf
𝑁→∞

min1≤ 𝑗≠𝑘≤𝑁 |𝑥 𝑗 ,𝑁 − 𝑥𝑘,𝑁 |
(3 log𝑁)1/3

> 1. (3)

Then, as 𝑁→∞,

𝑁∑︁
𝑘=1

1{A1 (𝑥𝑘,𝑁 )> 1
2 T(𝜆/𝑁 ) }

d−→ Poisson(𝜆), (4)

where Poisson(𝜆) denotes a Poisson random variable with parameter 𝜆.

The function T (inverse of 𝑠 ↦→ 1 − 𝐹1 (𝑠)) is introduced in (4) so that the expectation of the sum
in (4) is equal to the constant 𝜆, as in the classical Poisson approximation theorem for independent
Bernoulli random variables. Theorem 1.3 states that when the points 𝑥𝑘,𝑁 , 𝑘 = 1, . . . , 𝑁 are far apart
(namely, satisfy the distance condition (3)), then the identically distributed Bernoulli random variables
given by the indicator functions in (4) are approximately independent and hence the sum of them will
be approximated by the Poisson distribution.

Conus et al. [13] studied the spatial asymptotic behavior for the solution to the stochastic heat
equation using a localization argument (see Chen [12] for precise spatial asymptotic behavior for the
parabolic Anderson equation). This localization argument is based on the mild formula for the stochas-
tic heat equation and does not apply to the Airy1 process. However, the association property provides
a way to analyze the independence structure of the Airy1 process in terms of the asymptotic behavior
of the covariance (see the inequality (52) below). Combined with the asymptotic behavior of the tail
probability of the maximum of the Airy1 process (see Proposition 6.1 below), we can study the precise
asymptotic behavior of the maximum of the Airy1 process.
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Theorem 1.4. Almost surely,

lim
𝑁→∞

max0≤𝑥≤𝑁 A1 (𝑥)
(log𝑁)2/3

=
1
2

(
3
2

)2/3

. (5)

As for the Airy2 process {A2 (𝑥) : 𝑥 ∈ R}, we have the following.

Theorem 1.5. Almost surely,(
1
4

)2/3

≤ lim inf
𝑁→∞

max0≤𝑥≤𝑁 A2 (𝑥)
(log𝑁)2/3

≤ lim sup
𝑁→∞

max0≤𝑥≤𝑁 A2 (𝑥)
(log𝑁)2/3

≤
(

3
4

)2/3

. (6)

The paper is organized as follows. After introducing some preliminaries in Section 2, we first prove
Theorem 1.2 in Section 3. Then we establish the ergodicity and CLT in Section 4. The Poisson approx-
imation (Theorem 1.3) is established in Section 5. Finally, we prove Theorems 1.4 and 1.5 in Section
6.

Let us close the introduction with a brief description of the notation of this paper. For a Lipschitz
continuous function 𝑔 : R𝑚 ↦→ R, define

Lip(𝑔) := sup
𝑎,𝑏∈R𝑚 ,𝑎≠𝑏

|𝑔(𝑏) − 𝑔(𝑎) |
‖𝑏 − 𝑎‖

where ‖ · ‖ denotes the Euclidean norm on R𝑚, and for 𝑗 = 1, . . . , 𝑚, we define

Lip 𝑗 (𝑔) := sup
𝑎 𝑗≠𝑏 𝑗

|𝑔(𝑎) − 𝑔(𝑏) |
|𝑎 𝑗 − 𝑏 𝑗 |

,

where 𝑎 𝑗 and 𝑏 𝑗 are the 𝑗-th coordinates of 𝑎 and 𝑏 respectively.

2. Preliminaries

In this section, we will first recall some basic facts on associated random variables. We refer to [27] for
more details on associated sequences.

Recall the definition of association in (2). Esary et al. [17] showed that the random vector 𝑋 is asso-
ciated if and only if (2) holds for all bounded and continuous functions ℎ1, ℎ2 that are nondecreasing
coordinatewise. Using approximation and dominated convergence theorem, in order to verify that 𝑋
is associated, it suffices to check that (2) holds for all ℎ1, ℎ2 which are smooth, nondecreasing coordi-
natewise and have bounded partial derivatives.

Another concept of dependence is positive quadrant dependence. According to [21], a pair of random
variables 𝑋 , 𝑌 are said to be positive quadrant dependent if

P{𝑋 ≤ 𝑥,𝑌 ≤ 𝑦} − P{𝑋 ≤ 𝑥}P{𝑌 ≤ 𝑦} ≥ 0

for all 𝑥, 𝑦 ∈ R. For an associated random vector (𝑋,𝑌 ), it is clear that the random variables 𝑋 and 𝑌
are positive quadrant dependent. Therefore, according to Newman [23, Lemma 3], for an associated
random vector (𝑋,𝑌 ) such that both 𝑋 and 𝑌 have finite variance, we have

|Cov( 𝑓 (𝑋) , 𝑔(𝑌 )) | ≤ ‖ 𝑓 ′‖∞‖𝑔′‖∞ Cov(𝑋 ,𝑌 ), (7)
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for 𝐶1 complex valued functions 𝑓 , 𝑔 on R with 𝑓 ′, 𝑔′ bounded, where ‖ · ‖∞ denotes the sup norm
on R. Inequality (7) is known as Newman’s inequality. Bulinski [7] generalized (7) to Lipschitz con-
tinuous functions (see also [27, Theorem 6.2.4]). Moreover, according to Bulinski and Shabanovich
[8] (see also [27, Theorem 6.2.6]), letting (𝑌1, . . . ,𝑌𝑚) be an associated random vector such that each
component has finite variance, then we have for Lipschitz continuous functions 𝑓 , 𝑔 : R𝑚 ↦→ R,

|Cov( 𝑓 (𝑌1, . . . ,𝑌𝑚) , 𝑔(𝑌1, . . . ,𝑌𝑚)) | ≤
𝑚∑︁
𝑗=1

𝑚∑︁
ℓ=1

Lip 𝑗 ( 𝑓 )Lipℓ (𝑔) Cov(𝑌 𝑗 ,𝑌ℓ ), (8)

where Lip 𝑗 ( 𝑓 ),Lipℓ (𝑔) are defined at the end of Section 1. Inequality (8) generalizes [23, (12)], which
is a multivariate version of (7).

Another consequence of Newman’s inequality (7) is the following inequality for the characteristic
functions of associated random vector. Indeed, by [23, Theorem 1], for an associated random vector
(𝑌1, . . . ,𝑌𝑚) such that each component has finite variance, we have for any real numbers 𝑟1, . . . , 𝑟𝑚,����E [

ei
∑𝑚

𝑗=1 𝑟 𝑗𝑌𝑗

]
−

𝑚∏
𝑗=1

E
[
ei𝑟 𝑗𝑌𝑗

] ���� ≤ 1
2

∑︁
1≤ 𝑗 ,ℓ≤𝑚

𝑗≠ℓ

|𝑟 𝑗 | |𝑟ℓ |Cov(𝑌 𝑗 ,𝑌ℓ ). (9)

The study of central limit theorem for associated random sequences essentially relies on the above
inequality; see [23, Theorem 2]. We will see in Section 5 that inequality (9) also plays a crucial role in
the study of Poisson approximation for the Airy1 process. In order to prove Theorems 1.4 and 1.5, we
need the following probability inequalities for associated random vectors.

Lemma 2.1. Let (𝑌1, . . . ,𝑌𝑚) be an associated random vector. Let 𝑦1, . . . , 𝑦𝑚 be real numbers. For
subsets 𝐴, 𝐵 of {1, . . . , 𝑚},

P{𝑌 𝑗 ≤ 𝑦 𝑗 , 𝑗 ∈ 𝐴 ∪ 𝐵} − P{𝑌 𝑗 ≤ 𝑦 𝑗 , 𝑗 ∈ 𝐴}P{𝑌𝑘 ≤ 𝑦𝑘 , 𝑘 ∈ 𝐵}

≤
∑︁
𝑗∈𝐴

∑︁
𝑘∈𝐵

(
P{𝑌 𝑗 ≤ 𝑦 𝑗 ,𝑌𝑘 ≤ 𝑦𝑘 } − P{𝑌 𝑗 ≤ 𝑦 𝑗 }P{𝑌𝑘 ≤ 𝑦𝑘 }

)
. (10)

As a consequence,

P{𝑌 𝑗 ≤ 𝑦 𝑗 ,1 ≤ 𝑗 ≤ 𝑚} −
𝑚∏
𝑗=1

P{𝑌 𝑗 ≤ 𝑦 𝑗 }

≤
∑︁

1≤ 𝑗<𝑘≤𝑚

(
P{𝑌 𝑗 ≤ 𝑦 𝑗 ,𝑌𝑘 ≤ 𝑦𝑘 } − P{𝑌 𝑗 ≤ 𝑦 𝑗 }P{𝑌𝑘 ≤ 𝑦𝑘 }

)
. (11)

Proof. The proof of (10) is similar to that of [27, Theorem 1.2.2] (see also [20, Lemma 1]). We define
the random variables 𝑍 𝑗 = 1{𝑌𝑗 ≤𝑦 𝑗 }, for 𝑗 = 1, . . . , 𝑚. It is clear that (𝑍1, . . . , 𝑍𝑚) is associated. Then
we can follow along the same lines as in the proof of [27, Theorem 1.2.2] to conclude (10).

Clearly, the inequality (11) holds with 𝑚 = 2. Assume that the inequality (11) is true for 𝑚 − 1. Then
for integer 𝑚,

P{𝑌 𝑗 ≤ 𝑦 𝑗 ,1 ≤ 𝑗 ≤ 𝑚} −
𝑚∏
𝑗=1

P{𝑌 𝑗 ≤ 𝑦 𝑗 }
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= P{𝑌 𝑗 ≤ 𝑦 𝑗 ,1 ≤ 𝑗 ≤ 𝑚} − P{𝑌 𝑗 ≤ 𝑦 𝑗 ,1 ≤ 𝑗 ≤ 𝑚 − 1}P{𝑌𝑚 ≤ 𝑦𝑚}

+ P{𝑌 𝑗 ≤ 𝑦 𝑗 ,1 ≤ 𝑗 ≤ 𝑚 − 1}P{𝑌𝑚 ≤ 𝑦𝑚} −
𝑚∏
𝑗=1

P{𝑌 𝑗 ≤ 𝑦 𝑗 }

≤
𝑚−1∑︁
𝑗=1

(
P{𝑌𝑖 ≤ 𝑦 𝑗 ,𝑌𝑚 ≤ 𝑦𝑚} − P{𝑌 𝑗 ≤ 𝑦 𝑗 }P{𝑌𝑚 ≤ 𝑦𝑚}

)
+

∑︁
1≤ 𝑗<𝑘≤𝑚−1

(
P{𝑌 𝑗 ≤ 𝑦 𝑗 ,𝑌𝑘 ≤ 𝑦𝑘 } − P{𝑌 𝑗 ≤ 𝑦 𝑗 }P{𝑌𝑘 ≤ 𝑦𝑘 }

)
=

∑︁
1≤ 𝑗<𝑘≤𝑚

(
P{𝑌 𝑗 ≤ 𝑦 𝑗 ,𝑌𝑘 ≤ 𝑦𝑘 } − P{𝑌 𝑗 ≤ 𝑦 𝑗 }P{𝑌𝑘 ≤ 𝑦𝑘 }

)
,

where in the inequality, we have used (10) and the assumption for 𝑚−1. Hence, we prove the inequality
(11) by induction.

We next introduce some facts on the GOE and GUE Tracy-Widom distributions, denoted by 𝐹1 and
𝐹2 respectively. Let 𝐹 ′

1 and 𝐹 ′
2 be the derivatives of 𝐹1 and 𝐹2 respectively, which correspond to the

probability density functions of the GOE and GUE Tracy-Widom distributions. Recall from [1] (see
also [32,33]) that 𝐹1 and 𝐹2 can be written as

𝐹1 (𝑠) = 𝐹 (𝑠)𝐸 (𝑠), 𝐹2 (𝑠) = 𝐹 (𝑠)2, (12)

where

𝐹 (𝑠) = exp
(
−1

2

∫ ∞

𝑠

𝑅(𝑟)d𝑟
)
, 𝐸 (𝑠) = exp

(
−1

2

∫ ∞

𝑠

𝑞(𝑟)d𝑟
)
. (13)

Here the (real) function 𝑞 is the solution to the Painlevé II equation

𝑞′′ = 2𝑞3 + 𝑠𝑞,

that satisfies the boundary condition

𝑞(𝑠) ∼ 1
2
√
𝜋𝑠1/4

e−
2
3 𝑠

3/2
, 𝑠→+∞. (14)

The function 𝑅 is defined as 𝑅(𝑠) =
∫ ∞
𝑠

(𝑞(𝑟))2d𝑟. Taking derivative in (12) and using the formulas in
(13), we have

𝐹 ′
1 (𝑠) =

1
2
𝐹1 (𝑠) (𝑅(𝑠) + 𝑞(𝑠)) . (15)

According to the asymptotics of the functions 𝑞, 𝑅 and 𝐹1 as 𝑠→ −∞ (see [1, (11), (12), (18)]), we
derive from (15) that the probability density function 𝐹 ′

1 is continuous and bounded. Similarly, we have
𝐹 ′

2 (𝑠) = 𝐹2 (𝑠)𝑅(𝑠), and use the asymptotics of the functions 𝑅 and 𝐹2 as 𝑠→−∞ (see [1, (12), (16)]),
we deduce that the GUE Tracy-Widom distribution also has a bounded and continuous probability
density function.
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Moreover, in light of (14), we deduce that for all sufficiently large 𝑠,

𝑅(𝑠) ≤
∫ ∞

𝑠

1
√
𝜋𝑟1/4

e−
2
3 𝑟

3/2
𝑞(𝑟)d𝑟 ≤ e−

2
3 𝑠

3/2
.

Hence, we combine with (15) and (14) to obtain that there exists a constant 𝐶1 > 0 such that

𝐹 ′
1 (𝑠) ≤ e−

2
3 𝑠

3/2
, for all 𝑠 ≥ 𝐶1. (16)

Furthermore, we see from [15, Theorem 1] that for fixed 𝜖 ∈ (0, 2
3 ), there exists a positive constant 𝐶2

depending on 𝜖 such that

e−(
2
3+𝜖 )𝑠

3/2 ≤ 1 − 𝐹1 (𝑠) ≤ e−(
2
3−𝜖 )𝑠

3/2
, for all 𝑠 ≥ 𝐶2. (17)

See also [1, (25), (26)] for the precise upper tail of GOE Tracy-Widom distribution.
Recall that T denotes the inverse function of 𝑠 ↦→ 1− 𝐹1 (𝑠). The following lemma will be used when

we prove Theorem 1.3 in Section 5.

Lemma 2.2. Fix 𝜆 > 0 and 𝜖 ∈ (0, 2
3 ). There exist an integer 𝑁0 and a positive constant 𝐶 both de-

pending on 𝜆 and 𝜖 such that for all 𝑧 ≥ 𝑁0

T(𝜆/𝑧) − T(𝜆/(𝑧 − 1)) ≥ 𝐶𝑧−
2+6𝜖
2+3𝜖 . (18)

Proof. Taking derivative on both sides of the following identity∫ ∞

T(𝜆/𝑧)
𝐹 ′

1 (𝑠)d𝑠 =
𝜆

𝑧
, 𝑧 > 𝜆,

we observe that for all 𝑧 > 𝜆

d
d𝑧

T(𝜆/𝑧) = 𝜆

𝑧2𝐹 ′
1 (T(𝜆/𝑧))

. (19)

We can choose a sufficiently large integer 𝑁0 depending on 𝜆 > 0 and 𝜖 ∈ (0, 2
3 ) such that

T(𝜆/𝑧) > 𝐶1 ∨𝐶2, for all 𝑧 ≥ 𝑁0 − 1,

where 𝐶1,𝐶2 are the constants in (16) and (17) respectively. Hence, by (19) and (16), we derive that for
all 𝑧 ≥ 𝑁0 − 1,

d
d𝑧

T(𝜆/𝑧) ≥ 𝜆

𝑧2 e
2
3 ( [T(𝜆/𝑧) ]3/2) ≥ 𝜆

𝑧2

( 𝑧
𝜆

) 2
3

2
3 +𝜖 =𝐶𝑧−

2+6𝜖
2+3𝜖 ,

where the second inequality holds by the first inequality in (17). Finally, the above estimate and the
mean-value theorem imply (18).
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3. Association

We prove the association property of the Airy1 process in this section. We first consider the stochastic
heat equation

𝜕𝑡𝑍 (𝑡 , 𝑥) = 𝛿𝜕2
𝑥𝑍 (𝑡 , 𝑥) +

1
4
𝛿1/2𝑍 (𝑡 , 𝑥)𝜉 (𝑡 , 𝑥), 𝑡 > 0, 𝑥 ∈ R (20)

subject to flat initial data 𝑍 (0) ≡ 1 or narrow wedge initial data 𝑍 (0) = 𝛿0. In the above equation, 𝛿 is a
positive constant and 𝜉 denotes space-time white noise. Chen et al. [11, Theorem A.4] have established
the association property for stochastic heat equation with general diffusion coefficient and initial data,
by showing that the Malliavin derivative of the solution is non-negative almost surely (see [11, (A.4)])
and then applying the Clark-Ocone formula and Ito’s isometry to show that the covariance

Cov(ℎ1 (𝑍 (𝑡1 , 𝑥1), . . . , 𝑍 (𝑡𝑚 , 𝑥𝑚)) , ℎ2 (𝑍 (𝑡1 , 𝑥1), . . . , 𝑍 (𝑡𝑚 , 𝑥𝑚)))

is nonnegative for all ℎ1, ℎ2 which are smooth, nondecreasing coordinatewise and have bounded par-
tial derivatives. Although the constants (depending on 𝛿) in equation (20) are different from those in
equation (1.1) of [11], Theorem A.4 of [11] ensures that the solution to (20) is associated.

Theorem 3.1 ([11, Theorem A.4]). For every fixed 𝛿 > 0, the solution {𝑍 (𝑡 , 𝑥) : (𝑡, 𝑥) ∈ R+ × R} to
(20) with flat or narrow wedge initial condition is associated.

Now we prove Theorem 1.2.

Proof of Theorem 1.2. For 𝛿 > 0, define

ℎ̃𝛿 (𝑡 , 𝑥) = 4𝛿 log 𝑍 (𝑡, 𝑥) + 𝑡

12
, (𝑡, 𝑥) ∈ (0,∞) ×R, (21)

where 𝑍 (𝑡 , 𝑥) is the solution to (20) subject to flat initial condition 𝑍 (0) ≡ 1. It is clear that for each
𝛿 > 0, the process ℎ̃𝛿 = {ℎ̃𝛿 (𝑡, 𝑥) : (𝑡, 𝑥) ∈ (0,∞)×R} is associated. Let 𝔥 = {𝔥(𝑡, 𝑥; 0) : (𝑡, 𝑥) ∈ (0,∞)×
R} be the KPZ fixed point (see [22]) with flat initial data. According to [30, Theorem 2.2(3)], as
𝛿 → 0, the finite-dimensional distributions of ℎ̃𝛿 converge to those of 𝔥; see also [34, Theorem 1].
Since convergence in distribution preserves the association property (see (P5) of [17]), we see that 𝔥
is associated. Moreover, because {𝔥(1, 𝑥; 0) : 𝑥 ∈ R} has the same finite-dimensional distributions as
{21/3A1 (2−2/3𝑥) : 𝑥 ∈ R} (see [22, (4.15)]), we conclude that the Airy1 process is associated.

Proposition 3.2. The Airy2 process {A2 (𝑥) : 𝑥 ∈ R} is associated.

Proof. The proof is similar to that of Theorem 1.2. Denote by {𝔥(𝑡, 𝑥; 𝜕0) : (𝑡, 𝑥) ∈ (0,∞) × R} the
KPZ fixed point starting from narrow wedge at 0. Let ℎ̃𝛿 (𝑡 , 𝑥) be defined as in (21), where 𝑍 (𝑡 , 𝑥) is
the solution to (20) subject to narrow wedge initial condition 𝑍 (0) ≡ 𝛿0. By Theorem 3.1, we know
that for each 𝛿 > 0, the process {ℎ̃𝛿 (𝑡, 𝑥) : (𝑡, 𝑥) ∈ (0,∞) × R} is associated. Theorem 2.2(3) of [30]
ensures that the finite-dimensional distributions of {ℎ̃𝛿 (𝑡, 𝑥) : (𝑡, 𝑥) ∈ (0,∞) ×R} converge to those of
{𝔥(𝑡, 𝑥; 𝜕0) : (𝑡, 𝑥) ∈ (0,∞) × R} as 𝛿→ 0. This implies that the process {𝔥(𝑡, 𝑥; 𝜕0) : (𝑡, 𝑥) ∈ (0,∞) ×
R} is associated. In particular, the process {𝔥(1, 𝑥; 𝜕0) : 𝑥 ∈ R} is associated and hence the process
{𝔥(1, 𝑥; 𝜕0) + 𝑥2 : 𝑥 ∈ R} is also associated. Moreover, since the process {𝔥(1, 𝑥; 𝜕0) + 𝑥2 : 𝑥 ∈ R} has
the same finite-dimensional distributions as the Airy2 process {A2 (𝑥) : 𝑥 ∈ R} (see [22, (4.14)]), we
conclude that the Airy2 process is associated.
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Remark 3.3. The association property of Airy processes can also be derived from last passage perco-
lation by extending the argument in [5, Lemma 3.2]; see also [4, Remark 2].

4. Ergodicity and CLT

We prove the ergodicity and central limit theorem for the Airy1 process in this section. We first prove
the ergodicity.

Proof of Theorem 1.1: ergodicity. Chen et al. [10, Lemma 7.2] present a general criterion on the er-
godicity for stationary process, which has been modified to a variant by Balan and Zheng [3]. According
to Balan and Zheng [3, Lemma 4.2], in order to prove that the Airy1 process is ergodic, we need to
verify that

lim
𝑁→∞

1
𝑁2 Var

( ∫
[0,𝑁 ]

𝐺

( 𝑘∑︁
𝑗=1

𝑏𝑖A1 (𝑥 + 𝜁 𝑗 )
)
d𝑥

)
= 0, (22)

for all integers 𝑘 ≥ 1, for every 𝑏1, . . . , 𝑏𝑘 , 𝜁1, . . . , 𝜁𝑘 ∈ R, and for 𝐺 ∈ {𝑥 ↦→ cos 𝑥, 𝑥 ↦→ sin 𝑥}.
Notice that

1
𝑁2 Var

( ∫
[0,𝑁 ]

𝐺

( 𝑘∑︁
𝑗=1

𝑏𝑖A1 (𝑥 + 𝜁 𝑗 )
)
d𝑥

)
=

1
𝑁2

∫
[0,𝑁 ]2

d𝑥d𝑦 Cov
(
𝐺

( 𝑘∑︁
𝑗=1

𝑏 𝑗A1 (𝑥 + 𝜁 𝑗 )
)
, 𝐺

( 𝑘∑︁
𝑗=1

𝑏 𝑗A1 (𝑦 + 𝜁 𝑗 )
))
. (23)

Since the Airy1 process is associated, we apply the inequality (8) with 𝑌 𝑗 = A1 (𝑥 + 𝜁 𝑗 ) for 𝑗 =

1, . . . , 𝑘 ,𝑌 𝑗 =A1 (𝑦+ 𝜁 𝑗−𝑘 ) for 𝑗 = 𝑘 +1, . . . , 2𝑘 , 𝑓 (𝑦1, . . . , 𝑦2𝑘 ) =𝐺 (∑𝑘
𝑗=1 𝑏 𝑗 𝑦 𝑗 ), and 𝑔(𝑦1, . . . , 𝑦2𝑘 ) =

𝐺 (∑2𝑘
𝑗=𝑘+1 𝑏 𝑗−𝑘 𝑦 𝑗 ), to see that

Cov
(
𝐺

( 𝑘∑︁
𝑗=1

𝑏𝑖A1 (𝑥 + 𝜁 𝑗 )
)
, 𝐺

( 𝑘∑︁
𝑗=1

𝑏𝑖A1 (𝑦 + 𝜁 𝑗 )
))

≤
𝑘∑︁
𝑗=1

𝑘∑︁
ℓ=1

|𝑏 𝑗 | |𝑏ℓ |Cov(A1 (𝑥 + 𝜁 𝑗 ) ,A1 (𝑦 + 𝜁ℓ )).

Here, we also use the fact that Lip 𝑗 ( 𝑓 ) ≤ |𝑏 𝑗 | for 1 ≤ 𝑗 ≤ 𝑘 , Lip 𝑗 ( 𝑓 ) = 0 for 𝑗 = 𝑘 + 1, . . . ,2𝑘 and
Lipℓ (𝑔) = 0 for 1 ≤ ℓ ≤ 𝑘 , Lipℓ (𝑔) ≤ |𝑏ℓ−𝑘 | for ℓ = 𝑘 + 1, . . . ,2𝑘 . According to [5, Corollary 2.2], there
exist constants 𝑐, 𝑐1, 𝑐2 > 0 such that for all 𝑥 ∈ R,

Cov(A1 (𝑥) ,A1 (0)) ≤ e𝑐𝑥
2
e−

4
3 |𝑥 |

3 ≤ 𝐾 (𝑥) := 𝑐1e−𝑐2𝑥
2
.

Hence, the left-hand side of (23) is bounded above by

sup1≤ 𝑗≤𝑘 𝑏
2
𝑗

𝑁2

𝑘∑︁
𝑗=1

𝑘∑︁
ℓ=1

∫
[0,𝑁 ]2

𝐾 (𝑥 − 𝑦 + 𝜁 𝑗 − 𝜁ℓ )d𝑥d𝑦 =

[
sup

1≤ 𝑗≤𝑘
𝑏2
𝑗

]
𝑘∑︁
𝑗=1

𝑘∑︁
ℓ=1

(
1𝑁 ∗ 1̃𝑁 ∗ 𝐾

)
(𝜁 𝑗 − 𝜁ℓ ),
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where the function 1𝑁 is defined as 1𝑁 (𝑥) = 1
𝑁

1[0,𝑁 ] (𝑥) for 𝑥 ∈ R and 1̃𝑁 (𝑥) = 1𝑁 (−𝑥). The function
1𝑁 ∗ 1̃𝑁 ∗ 𝐾 is non-negative definite and hence maximized at the origin. Hence we have

1
𝑁2 Var

( ∫
[0,𝑁 ]

𝑔

( 𝑘∑︁
𝑗=1

𝑏𝑖A1 (𝑥 + 𝜁 𝑗 )
)
d𝑥

)
≤ sup

1≤ 𝑗≤𝑘
𝑏2
𝑗 𝑘

2 (
1𝑁 ∗ 1̃𝑁 ∗ 𝐾

)
(0) ≤ sup

1≤ 𝑗≤𝑘
𝑏2
𝑗

𝑘2

𝑁

∫ 𝑁

−𝑁
𝐾 (𝑥)d𝑥

which converges to 0 as 𝑁→∞. Thus, (22) is verified and we complete the proof of ergodicity.

Remark 4.1. We refer to [14,26] for the ergodicity of the Airy2 process.

We proceed to prove the central limit theorem (1).

Proof of Theorem 1.1: CLT. We will apply [23, Theorem 2] (see also [27, Theorem 1.2.19]) to prove
the central limit theorem in Theorem 1.1. We can assume that the limit in (1) is taken along integers.
Denote

𝑋𝑘 =

∫ 𝑘+1

𝑘

A1 (𝑥)d𝑥, 𝑘 ∈ Z.

Since the Airy1 process is stationary and A1 (0) has finite second moment, the process {𝑋𝑘 : 𝑘 ∈ Z} is
stationary and 𝑋0 has finite second moment. For each 𝑘 ∈ Z, let

𝑋
(𝑛)
𝑘

=
1
𝑛

𝑛∑︁
𝑗=1

A1 (𝑘 +
𝑗

𝑛
), 𝑛 ≥ 1.

Clearly, for each 𝑛 ≥ 1, the process {𝑋 (𝑛)
𝑘

: 𝑘 ∈ Z} is associated. Moreover, since the Airy1 process has
continuous sample paths (see [29]), we know that as 𝑛→ ∞, the finite-dimensional distributions of
{𝑋 (𝑛)

𝑘
: 𝑘 ∈ Z} converge to those of {𝑋𝑘 : 𝑘 ∈ Z}. Hence, the process {𝑋𝑘 : 𝑘 ∈ Z} is associated.

In order to apply [23, Theorem 2], it remains to verify that

𝜎2 :=
∑︁
𝑘∈Z

Cov(𝑋0 , 𝑋𝑘 )

is finite. Indeed, by the stationarity of the Airy1 process,

𝜎2 =
∑︁
𝑘∈Z

Cov
(∫ 1

0
A1 (𝑥)d𝑥 ,

∫ 𝑘+1

𝑘

A1 (𝑦)d𝑦
)
=

∑︁
𝑘∈Z

∫ 1

0
d𝑥

∫ 𝑘+1

𝑘

d𝑦Cov(A1 (𝑥) ,A1 (𝑦))

=

∫ 1

0
d𝑥

∫
R

d𝑦Cov(A1 (𝑥 − 𝑦) ,A1 (0)) =
∫
R

Cov(A1 (𝑥) ,A1 (0))d𝑥,

which is finite by [5, Corollary 2.2].
Therefore, all the conditions in [23, Theorem 2] are met and we conclude that as 𝑁→∞,

𝑋0 + . . . + 𝑋𝑁−1 − 𝑁E[𝑋0]√
𝑁

d−→ N(0, 𝜎2),

which implies (1).
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Remark 4.2. (1) We can also apply [23, Theorem 2] to derive a discrete version of (1), that is, as
𝑁→∞,

A1 (1) + . . . +A1 (𝑁) − 𝑁E[A1 (0)]√
𝑁

d−→ N(0, 𝜏2)

with 𝜏2 =
∑

𝑘∈ZCov(A1 (𝑘) ,A1 (0)).
(2) One can apply the Berry-Esseen theorem for associated sequences (see for instance [27, p.15-16])

to obtain the rate of convergence in the central limit theorem for the Airy1 process.
(3) Recall that {𝔥(𝑡, 𝑥; 0) : (𝑡, 𝑥) ∈ (0,∞) ×R} denotes the KPZ fixed point (see [22]) with flat initial

data. Using the scaling invariance property of the KPZ fixed point (see [22, Theorem 4.5(i)]) and (1),
we deduce that for fixed 𝑡 > 0, as 𝑁→∞,

1
√
𝑁

∫ 𝑁

0
(𝔥(𝑡, 𝑥; 0) − E[𝔥(𝑡, 𝑥; 0)]) d𝑥

d−→ N(0,24/3𝑡4/3𝜎2),

where 𝜎2 is the quantity given in Theorem 1.1. One may expect that a corresponding functional central
limit theorem in 𝑡 also holds.

Similarly, we can also establish the central limit theorem for the Airy2 process.

Proposition 4.3. As 𝑁→∞,

1
√
𝑁

∫ 𝑁

0
(A2 (𝑥) − E[A2 (𝑥)]) d𝑥

d−→ N(0, �̃�2),

where �̃�2 =
∫
R

Cov(A2 (𝑥) ,A2 (0))d𝑥 ∈ (0,∞).

Proof. The proof follows along the same lines as that of (1), applying [23, Theorem 2] with the station-
arity (see [26]), association (see Proposition 3.2) of the Airy2 process and the fact that the covariance
of the Airy2 process is integrable since the decay rate of Cov(A2 (𝑥) ,A2 (0)) is 𝑥−2 as 𝑥 → ∞ (see
[36]).

We conclude this section by another application of Newman’s inequality, which is used to study
the Lebesgue measure of the set 𝑥 ∈ [0, 𝑁] where A1 (𝑥) exceeds a high level. The following result is
analogous to [10, Corollary 9.5], where the Poincaré inequality is used to estimate the covariance of the
solution to stochastic partial differential equation. In the context of the Airy1 process, when it comes
to the estimate of covariance, Newman’s inequality plays the role as the Poincaré inequality.

Corollary 4.4. For 𝛼 ∈ (0,3/4), as 𝑁→∞,

1
log𝑁

log
(∫ 𝑁

0
1{A1 (𝑥)> 1

2 (𝛼 log 𝑁 )2/3 }d𝑥
)
→ 1 − 2

3
𝛼, in probability. (24)

Proof. Choose and fix 𝛼 ∈ (0,3/4). For 𝑁 ≥ 1, we define 𝑎𝑁 = 1
2 (𝛼 log𝑁)2/3 and the two functions

𝐺𝑁 (𝑧) := 1 ∧ (𝑧 − 𝑎𝑁 + 1)+ and 𝑔𝑁 (𝑧) = 1 ∧ (𝑧 − 𝑎𝑁 )+, 𝑧 ∈ R.
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Recall that P{A1 (0) ≤ 𝑠} = 𝐹1 (2𝑠), where 𝐹1 denotes the GOE Tracy-Widom distribution function.
According to [15, Theorem 1], 𝑠−3/2 log P{A1 (0) > 1

2 𝑠} → − 2
3 as 𝑠→+∞. By stationarity of the Airy1

process, we see that as 𝑁→∞,

E
∫ 𝑁

0
𝑔𝑁 (A1 (𝑥))d𝑥 = 𝑁1− 2

3 𝛼+𝑜 (1) and E
∫ 𝑁

0
𝐺𝑁 (A1 (𝑥))d𝑥 = 𝑁1− 2

3 𝛼+𝑜 (1) . (25)

Using Chebychev’s inequality, we have for any fixed 𝜖 ∈ (0,1),

P
{����∫ 𝑁

0
𝑔𝑁 (A1 (𝑥))d𝑥 − E

∫ 𝑁

0
𝑔𝑁 (A1 (𝑥))d𝑥

���� > 𝜖 E
∫ 𝑁

0
𝑔𝑁 (A1 (𝑥))d𝑥

}
≤ Var

(∫ 𝑁

0
𝑔𝑁 (A1 (𝑥))d𝑥

)
𝜖−2

����E∫ 𝑁

0
𝑔𝑁 (A1 (𝑥))d𝑥

����−2

. (26)

Notice that for all 𝑁 ≥ 1

Var
(∫ 𝑁

0
𝑔𝑁 (A1 (𝑥))d𝑥

)
=

∫
[0,𝑁 ]2

d𝑥d𝑦 Cov(𝑔𝑁 (A1 (𝑥)) , 𝑔𝑁 (A1 (𝑦)))

≤ [Lip(𝑔𝑁 )]2
∫
[0,𝑁 ]2

d𝑥d𝑦 Cov(A1 (𝑥) ,A1 (𝑦))

=

∫
[0,𝑁 ]2

d𝑥d𝑦 Cov(A1 (𝑥) ,A1 (𝑦)) ≤ 𝑁
∫
R

Cov(A1 (𝑥) ,A1 (0))d𝑥, (27)

where the first inequality holds by the association property of the Airy1 process and (8), and the second
equality is because Lip(𝑔𝑁 ) = 1. Hence, we substitute (27) into (26) to see that

P
{����∫ 𝑁

0
𝑔𝑁 (A1 (𝑥))d𝑥 − E

∫ 𝑁

0
𝑔𝑁 (A1 (𝑥))d𝑥

���� > 𝜖 E
∫ 𝑁

0
𝑔𝑁 (A1 (𝑥))d𝑥

}
≤ 𝜖−2𝑁

4
3 𝛼−1+𝑜 (1)

∫
R

Cov(A1 (𝑥) ,A1 (0))d𝑥.

Since 𝛼 ∈ (0,3/4), we obtain that as 𝑁→∞,∫ 𝑁

0 𝑔𝑁 (A1 (𝑥))d𝑥

E
∫ 𝑁

0 𝑔𝑁 (A1 (𝑥))d𝑥
→ 1 in probability.

Taking logarithm and using (25), we conclude that as 𝑁→∞,

log
(∫ 𝑁

0 𝑔𝑁 (A1 (𝑥))d𝑥
)

log𝑁
→ 1 − 2

3
𝛼 in probability.

Similarly, we can prove that as 𝑁→∞,

log
(∫ 𝑁

0 𝐺𝑁 (A1 (𝑥))d𝑥
)

log𝑁
→ 1 − 2

3
𝛼 in probability.

Since 𝑔𝑁 ≤ 1(𝑎𝑁 ,∞) ≤ 𝐺𝑁 , the preceding displays imply (24) and hence complete the proof.
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Remark 4.5. The convergence in (24) also holds almost surely. This follows from a standard sub-
sequencing and sandwich type argument (see the proof of [16, Theorem 2.3.9]). We omit the details
here.

5. Poisson approximation

We prove Theorem 1.3 in this section. The proof of Theorem 1.3 is based on inequality (9) and some
standard arguments; see [24, Theorem 11] for a general result on limit theorems for sums of associated
variables.

The indicator function in (4) is not Lipschitz continuous. In order to apply the inequalities (8) and
(9) to derive the Poisson limit theorem, we will first approximate the indicator function in (4) by a
Lipschitz continuous function. Fix 𝜆 > 0. For 𝑁 ≥ 2, we introduce the function

𝑔𝑁 (𝑧) = 1 ∧
(𝑧 − 1

2 T(𝜆/𝑁))+
[T(𝜆/(𝑁 + 1)) − T(𝜆/𝑁)]/2

, 𝑧 ∈ R, (28)

where we recall that T denotes by the inverse function of 𝑠 ↦→ 1 − 𝐹1 (𝑠). It is clear that for all 𝑁 ≥ 2,

𝑔𝑁 (𝑧) ≤ 1( 1
2 T(𝜆/𝑁 ) ,∞) (𝑧) ≤ 𝑔𝑁−1 (𝑧), for all 𝑧 ∈ R, (29)

and

Lip(𝑔𝑁 ) = 2
T(𝜆/(𝑁 + 1)) − T(𝜆/𝑁) . (30)

We first prove the following result on Poisson approximation for the Airy1 process.

Proposition 5.1. Fix 𝜆 > 0. Let 𝑔𝑁 be defined as in (28) for 𝑁 ≥ 2. Let {𝑥𝑘,𝑁 }𝑁 ≥1,1≤𝑘≤𝑁 ⊂ R satisfy
the condition in (3). Then, as 𝑁→∞,

𝑁∑︁
𝑘=1

𝑔𝑁 (A1 (𝑥𝑘,𝑁 )) d−→ Poisson(𝜆). (31)

Proof. Step 1. Let 𝑈1,𝑁 , . . . ,𝑈𝑁 ,𝑁 be independent random variables, each having the same distribu-
tion as 𝑔𝑁 (A1 (0)) (for this, we can enlarge the probability space if necessary). The first task will be
to show that

𝑁∑︁
𝑘=1

𝑈𝑘,𝑁
d−→ Poisson(𝜆), as 𝑁→∞. (32)

Notice that the law of the family of the random variables
∑𝑁

𝑘=1𝑈𝑘,𝑁 , 𝑁 ≥ 1 is tight. This is because
that by the definition of 𝑔𝑁 in (28),

sup
𝑁 ≥1

E

[
𝑁∑︁
𝑘=1

𝑈𝑘,𝑁

]
= sup

𝑁 ≥1
(𝑁E[𝑔𝑁 (A1 (0))]) ≤ sup

𝑁 ≥1

(
𝑁E

[
1( 1

2 T(𝜆/𝑁 ) ,∞) (A1 (0))
] )

= 𝜆,

where the first inequality is due to the first inequality in (29). Thus, in order to prove (32), it suffices to
prove that the moment generating function of

∑𝑁
𝑘=1𝑈𝑘,𝑁 converges to that of Poisson(𝜆), as 𝑁→∞.
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For 𝜃 ∈ R, define

𝜙𝑁 (𝜃) := E
[
e−𝜃𝑔𝑁 (A1 (0))

]
and Φ𝑁 (𝜃) := E

[
e−𝜃

∑𝑁
𝑘=1𝑈𝑘,𝑁

]
= (𝜙𝑁 (𝜃))𝑁 .

Thanks to (29), for all 𝜃 > 0, we have

𝜙𝑁 (𝜃) ≥ E
[
e
−𝜃1( 1

2 T(𝜆/𝑁 ) ,∞) (A1 (0))
]
=
𝜆

𝑁
e−𝜃 + (1 − 𝜆

𝑁
) = 1 − 𝜆

𝑁
(1 − e−𝜃 ),

and

𝜙𝑁 (𝜃) ≤ E
[
e
−𝜃1( 1

2 T(𝜆/(𝑁+1) ) ,∞) (A1 (0))
]
= 1 − 𝜆

𝑁 + 1
(1 − e−𝜃 ).

This leads to that for all 𝜃 > 0,(
1 − 𝜆

𝑁
(1 − e−𝜃 )

)𝑁
≤ Φ𝑁 (𝜃) ≤

(
1 − 𝜆

𝑁 + 1
(1 − e−𝜃 )

)𝑁
. (33)

Letting 𝑁→∞, we obtain that for all 𝜃 > 0,

lim
𝑁→∞

Φ𝑁 (𝜃) = e−𝜆(1−e−𝜃 ) .

The above display also holds when 𝜃 ≤ 0 by switching the first and third terms in (33). This verifies
(32).

Step 2. We proceed to compare the characteristic functions of
∑𝑁

𝑘=1 𝑔𝑁 (A1 (𝑥𝑘,𝑁 )) and
∑𝑁

𝑘=1𝑈𝑘,𝑁 .
First, we have for all 𝜃 ∈ R,���E [

ei𝜃
∑𝑁

𝑘=1 𝑔𝑁 (A1 (𝑥𝑘,𝑁 ))
]
− E

[
ei𝜃

∑𝑁
𝑘=1𝑈𝑘,𝑁

] ���
=

�����E [
ei

∑𝑁
𝑘=1 𝜃𝑔𝑁 (A1 (𝑥𝑘,𝑁 ))

]
−

𝑁∏
𝑘=1

E
[
ei𝜃𝑔𝑁 (A1 (𝑥𝑘,𝑁 ))

] ����� . (34)

Since the Airy1 process is associated and 𝑔𝑁 is a nondecreasing function, the random vector
(𝑔𝑁 (A1 (𝑥1,𝑁 )), . . . , 𝑔𝑁 (A1 (𝑥𝑁 ,𝑁 )) is associated. Clearly, each component of this random vector
has finite variance. Hence, by (9), we have for all 𝜃 ∈ R,�����E [

ei
∑𝑁

𝑘=1 𝜃𝑔𝑁 (A1 (𝑥𝑘,𝑁 ))
]
−

𝑁∏
𝑘=1

E
[
ei𝜃𝑔𝑁 (A1 (𝑥𝑘,𝑁 ))

] �����
≤ 1

2

∑︁
1≤ 𝑗 ,𝑘≤𝑁

𝑗≠𝑘

𝜃2 Cov(𝑔𝑁 (A1 (𝑥 𝑗 ,𝑁 )) , 𝑔𝑁 (A1 (𝑥𝑘,𝑁 )))

≤ 1
2
[Lip(𝑔𝑁 )]2𝜃2

∑︁
1≤ 𝑗 ,𝑘≤𝑁

𝑗≠𝑘

Cov(A1 (𝑥 𝑗 ,𝑁 ) ,A1 (𝑥𝑘,𝑁 )), (35)
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where the second inequality is due to (8). According to [5, Theorem 1.1], there exists a positive constant
𝑐′ such that for all 𝑥, 𝑦 ∈ R with |𝑥 − 𝑦 | > 1,

Cov(A1 (𝑥) ,A1 (𝑦)) ≤ e𝑐
′ |𝑥−𝑦 |2e−

4
3 |𝑥−𝑦 |

3
. (36)

Thus, a combination of (34), (35) and (36) yields that for all 𝜃 ∈ R,���E [
ei𝜃

∑𝑁
𝑘=1 𝑔𝑁 (A1 (𝑥𝑘,𝑁 ))

]
− E

[
ei𝜃

∑𝑁
𝑘=1𝑈𝑘,𝑁

] ���
≤ 𝜃2

2
[Lip(𝑔𝑁 )]2

∑︁
1≤ 𝑗 ,𝑘≤𝑁

𝑗≠𝑘

e𝑐
′ |𝑥 𝑗,𝑁−𝑥𝑘,𝑁 |2 e−

4
3 |𝑥 𝑗,𝑁−𝑥𝑘,𝑁 |3 (37)

for all sufficiently large 𝑁 .
Under the assumption (3), there exists 𝛼1 > 0 such that for all sufficiently large 𝑁

min
1≤ 𝑗≠𝑘≤𝑁

|𝑥 𝑗 ,𝑁 − 𝑥𝑘,𝑁 | ≥ (3 log𝑁)1/3 (1 + 𝛼1). (38)

Choose and fix 𝜖 ∈ (0, 2
3 ) such that 4(1+𝛼1)3 > 2+ 2(2+6𝜖 )

2+3𝜖 . Furthermore, we can choose a sufficiently
small number 𝛼2 ∈ (0,1) such that

3( 4
3
− 𝛼2) (1 + 𝛼1)3 > 2 + 2(2 + 6𝜖)

2 + 3𝜖
. (39)

We first derive from (37) that for all sufficiently large 𝑁 ,���E [
ei𝜃

∑𝑁
𝑘=1 𝑔𝑁 (A1 (𝑥𝑘,𝑁 ))

]
− E

[
ei𝜃

∑𝑁
𝑘=1𝑈𝑘,𝑁

] ��� ≤ 𝜃2

2
[Lip(𝑔𝑁 )]2

∑︁
1≤ 𝑗 ,𝑘≤𝑁

𝑗≠𝑘

e−(
4
3−𝛼2) |𝑥 𝑗,𝑁−𝑥𝑘,𝑁 |3

≤ 𝜃2

2
[Lip(𝑔𝑁 )]2𝑁2e−(

4
3−𝛼2) min1≤ 𝑗≠𝑘≤𝑁 |𝑥 𝑗,𝑁−𝑥𝑘,𝑁 |3 .

Then, by (30) and Lemma 2.2, for all sufficiently large 𝑁 ,���E [
ei𝜃

∑𝑁
𝑘=1 𝑔𝑁 (A1 (𝑥𝑘,𝑁 ))

]
− E

[
ei𝜃

∑𝑁
𝑘=1𝑈𝑘,𝑁

] ���
≤ 𝐶2𝜃2𝑁2 (𝑁 + 1)

2(2+6𝜖 )
2+3𝜖 e−(

4
3−𝛼2) min1≤ 𝑗≠𝑘≤𝑁 |𝑥 𝑗,𝑁−𝑥𝑘,𝑁 |3

≤ 𝐶2𝜃2𝑁2 (𝑁 + 1)
2(2+6𝜖 )

2+3𝜖 𝑁−3( 4
3−𝛼2) (1+𝛼1)3

, by (38)

which implies by (39) that for all 𝜃 ∈ R,

lim
𝑁→∞

���E [
ei𝜃

∑𝑁
𝑘=1 𝑔𝑁 (A1 (𝑥𝑘,𝑁 ))

]
− E

[
ei𝜃

∑𝑁
𝑘=1𝑈𝑘,𝑁

] ��� = 0. (40)

Therefore, we complete the proof of (31) by (40) and (32).
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Proposition 5.2. Fix 𝜆 > 0. Let 𝑔𝑁−1 be defined as in (28) with 𝑁 replaced by 𝑁 − 1 for 𝑁 ≥ 2. Let
{𝑥𝑘,𝑁 }𝑁≥1,1≤𝑘≤𝑁 ⊂ R satisfy the condition in (3). Then, as 𝑁→∞,

𝑁∑︁
𝑘=1

𝑔𝑁−1 (A1 (𝑥𝑘,𝑁 )) d−→ Poisson(𝜆). (41)

Proof. The proof follows along the same lines as that of Proposition 5.1. One just needs to replace 𝑔𝑁
by 𝑔𝑁−1.

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. This is an immediate consequence of Propositions 5.1, 5.2 and (29).

6. Asymptotic behavior of the maximum

In this section, we prove Theorems 1.4 and 1.5. We start with the following estimate on the upper tail
probability of the maximum of the Airy1 process.

Proposition 6.1. There exists a positive constant 𝐶 such that for all 𝑀 ≥ 2

P
{

max
0≤𝑥≤1

A1 (𝑥) > 𝑀
}
≤ 𝐶 𝑀7/4e(2−

√
2)𝑀+

√
2𝑀 e−

4
3

√
2𝑀3/2

, (42)

and it holds that

lim
𝑀→∞

log P {max0≤𝑥≤1 A1 (𝑥) > 𝑀}
𝑀3/2

= −4
3

√
2. (43)

Proof. Because P{max0≤𝑥≤1 A1 (𝑥) > 𝑀} ≥ P{A1 (0) > 𝑀}, the equality (43) follows immediately
from the estimate (42) and the asymptotic behavior of the GOE Tracy-Widom distribution (see [15,
Theorem 1]). In order to prove (42), we recall from [29, Theorem 4] that

P
{

max
0≤𝑥≤1

A1 (𝑥) > 𝑀
}
= 1 − P

{
max

0≤𝑥≤1
A1 (𝑥) ≤ 𝑀

}
= 1 − P {A1 (𝑥) ≤ 𝑀, for all 𝑥 ∈ [0,1]}

= 1 − det
(
𝐼 − 𝐵0 +Λ

𝑔

[0,1]e
−Δ𝐵0

)
𝐿2 (R)

, (44)

where in the Fredholm determinant, the kernel Λ𝑔

[0,1] has the formula given by (1.15) of [29] with
𝑔 ≡ 𝑀 on [0,1] and the kernel 𝐵0 is given in terms of the Airy function (see the equality below (1.5)
of [29]).

We will adopt the method in the proof of [29, Proposition 2.3(a)] to estimate the above tail probabil-
ity. We introduce the operator𝑈 (depending on 𝑀) as

𝑈 𝑓 (𝑥) = e−
√

2𝑀𝑥 𝑓 (𝑥).
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Let 𝜑(𝑧) =
√︁

1 + 𝑧2 and write

𝑉 (𝑥, 𝑧) =
(
eΔ −Λ

𝑔

[0,1]

)
(𝑥, 𝑧)e−

√
2𝑀𝑥𝜑(𝑧)e−

√
2𝑀𝑧 ,

𝑊 (𝑧, 𝑦) =
(
e−Δ𝐵0

)
(𝑧, 𝑦)𝜑(𝑧)−1e

√
2𝑀𝑧e

√
2𝑀𝑦 .

Then

𝑈

(
𝐵0 −Λ

𝑔

[0,1]e
−Δ𝐵0

)
𝑈−1 =𝑉𝑊.

We will estimate the Hilbert-Schmidt norms ‖𝑉 ‖2 and ‖𝑊 ‖2 and the use the inequality ‖𝑉𝑊 ‖1 ≤
‖𝑉 ‖2‖𝑊 ‖2 to give an upper bound on the trace norm ‖𝑉𝑊 ‖1.

We first estimate ‖𝑊 ‖2. Denote by Ai the Airy function and ‖𝜑−1‖2 the 𝐿2 (R)-norm of 𝜑−1. Using
(1.9) of [29], we write

‖𝑊 ‖2
2 =

∫
R2

d𝑥d𝑦
e−

4
3+2(

√
2𝑀−1) (𝑥+𝑦)

𝜑(𝑥)2 Ai(𝑥 + 𝑦 + 1)2 = ‖𝜑−1‖2
2

∫ ∞

−∞
e−

4
3+2(

√
2𝑀−1)𝑦Ai(𝑦 + 1)2d𝑦

= ‖𝜑−1‖2
2 e−

4
3−2(

√
2𝑀−1)

∫ ∞

−∞
e2(

√
2𝑀−1)𝑦Ai(𝑦)2d𝑦.

By the estimate (2.19) of [29] on the Airy function, we have for all 𝑀 ≥ 2

‖𝑊 ‖2
2 ≤ 𝐶‖𝜑

−1‖2
2 e−

4
3−2(

√
2𝑀−1)

(∫ 0

−∞
e2(

√
2𝑀−1)𝑦d𝑦 +

∫ ∞

0
e2(

√
2𝑀−1)𝑦− 4

3 𝑦
3/2

d𝑦
)

≤ 𝑐′1 (
√

2𝑀 − 1)2e−2(
√

2𝑀−1)e
2
3 (

√
2𝑀−1)3

, (45)

where the second inequality holds by Lemma A.1 in the supplementary material [28].
We proceed to estimate ‖𝑉 ‖2. We use the formula (1.15) of [29] to write

𝑉 (𝑥, 𝑦) = 𝜑(𝑦)√
4𝜋

e−
(𝑥−𝑦)2

4 −
√

2𝑀 (𝑥+𝑦)P�̂� (0)=𝑥,�̂� (1)=𝑦

(
�̂�(𝑡) ≥ 𝑀 for some 𝑡 ∈ [0,1]

)
,

where �̂� denotes a Brownian bridge from 𝑥 at time 0 to 𝑦 at time 1 with diffusion constant 2. This
probability equals e−(𝑥−𝑀 ) (𝑦−𝑀 ) if 𝑥 ≤ 𝑀, 𝑦 ≤ 𝑀 and 1 otherwise (see line one on page 621 of [29] or
page 69 in [6]). Hence,

‖𝑉 ‖2
2 =

1
4𝜋

∫
(−∞,𝑀 ]2

d𝑥d𝑦 (1 + 𝑦2)
[
e−

(𝑥−𝑦)2
4 −

√
2𝑀 (𝑥+𝑦)−(𝑥−𝑀 ) (𝑦−𝑀 )

]2

+ 1
4𝜋

∫
R2\(−∞,𝑀 ]2

d𝑥d𝑦 (1 + 𝑦2)
[
e−

(𝑥−𝑦)2
4 −

√
2𝑀 (𝑥+𝑦)

]2

:= 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4,

where

𝐼1 =
1

4𝜋

∫
(−∞,𝑀 ]2

d𝑥d𝑦 e−
(𝑥−𝑦)2

2 −2
√

2𝑀 (𝑥+𝑦)−2(𝑥−𝑀 ) (𝑦−𝑀 ) ,
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𝐼2 =
1

4𝜋

∫
(−∞,𝑀 ]2

d𝑥d𝑦 𝑦2e−
(𝑥−𝑦)2

2 −2
√

2𝑀 (𝑥+𝑦)−2(𝑥−𝑀 ) (𝑦−𝑀 ) ,

𝐼3 =
1

4𝜋

∫
R2\(−∞,𝑀 ]2

d𝑥d𝑦 e−
(𝑥−𝑦)2

2 −2
√

2𝑀 (𝑥+𝑦) ,

𝐼4 =
1

4𝜋

∫
R2\(−∞,𝑀 ]2

d𝑥d𝑦 𝑦2e−
(𝑥−𝑦)2

2 −2
√

2𝑀 (𝑥+𝑦) .

Using change of variable [𝑥→ 𝑥 +𝑀, 𝑦→ 𝑦 +𝑀],

𝐼1 =
e−4

√
2𝑀3/2

4𝜋

∫
(−∞,0]2

d𝑥d𝑦 e−
(𝑥+𝑦)2

2 −2
√

2𝑀 (𝑥+𝑦) ≤ 𝑐′2e8𝑀 e−4
√

2𝑀3/2
(46)

for all 𝑀 ≥ 2, where the inequality holds by Lemma A.2 in the supplementary material [28]. Similarly,
using the inequality (𝑎 + 𝑏)2 ≤ 2𝑎2 + 2𝑏2,

𝐼2 =
e−4

√
2𝑀3/2

4𝜋

∫
(−∞,0]2

d𝑥d𝑦 (𝑦 +𝑀)2e−
(𝑥+𝑦)2

2 −2
√

2𝑀 (𝑥+𝑦)

≤ 2𝑀2𝐼1 +
e−4

√
2𝑀3/2

2𝜋

∫
(−∞,0]2

d𝑥d𝑦 𝑦2e−
(𝑥+𝑦)2

2 −2
√

2𝑀 (𝑥+𝑦) ≤ 𝑐′3𝑀
2e8𝑀 e−4

√
2𝑀3/2

(47)

for all 𝑀 ≥ 2, where the second inequality holds by (46) and Lemma A.3 in the supplementary material
[28].

We move on to estimate 𝐼3 and 𝐼4. We use change of variable [𝑥→ 𝑥 +𝑀, 𝑦→ 𝑦 +𝑀] to see that

𝐼3 =
e−4

√
2𝑀3/2

4𝜋

∫
R2\(−∞,0]2

d𝑥d𝑦 e−
(𝑥−𝑦)2

2 −2
√

2𝑀 (𝑥+𝑦) ≤ 𝑐′4
√
𝑀e4𝑀 e−4

√
2𝑀3/2

(48)

for all 𝑀 ≥ 2, where the inequality holds by Lemma A.4 in the supplementary material [28]. It remains
to estimate 𝐼4. By change of variable [𝑥→ 𝑥 +𝑀, 𝑦→ 𝑦 +𝑀],

𝐼4 =
e−4

√
2𝑀3/2

4𝜋

∫
R2\(−∞,0]2

d𝑥d𝑦 (𝑦 +𝑀)2e−
(𝑥−𝑦)2

2 −2
√

2𝑀 (𝑥+𝑦)

≤ 2𝑀2𝐼3 +
e−4

√
2𝑀3/2

2𝜋

∫
R2\(−∞,0]2

d𝑥d𝑦 𝑦2e−
(𝑥−𝑦)2

2 −2
√

2𝑀 (𝑥+𝑦) ≤ 𝑐′5𝑀
5/2e4𝑀 e−4

√
2𝑀3/2

(49)

for all 𝑀 ≥ 2, where the second inequality holds by (48) and Lemma A.5 in the supplementary material
[28].

Now we combine the estimates (45), (46), (47),(48) and (49) to see that there exists a constant 𝐶 ′ > 0
such that for all 𝑀 ≥ 2,

‖𝑉 ‖2
2‖𝑊 ‖2

2 ≤ 𝐶
′𝑀7/2e(8−2

√
2)𝑀 e

2
3 (

√
2𝑀−1)3−4

√
2𝑀3/2

=𝐶 ′ e−2/3𝑀7/2e(4−2
√

2)𝑀+2
√

2𝑀 e−
8
3

√
2𝑀3/2

,

which implies that for all 𝑀 ≥ 2,

‖𝑉𝑊 ‖1 ≤ ‖𝑉 ‖2‖𝑊 ‖2 ≤
√
𝐶 ′e−1/3𝑀7/4e(2−

√
2)𝑀+

√
2𝑀 e−

4
3

√
2𝑀3/2

. (50)
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Thus,𝑈 (𝐵0 −Λ
𝑔

[0,1]e
−Δ𝐵0)𝑈−1 is a trace class operator on 𝐿2 (R) and we deduce from (44) that

P
{

max
0≤𝑥≤1

A1 (𝑥) > 𝑀
}
= 1 − det

(
𝐼 −𝑈 (𝐵0 −Λ

𝑔

[0,1]e
−Δ𝐵0)𝑈−1

)
𝐿2 (R)

= 1 − det (𝐼 −𝑉𝑊)𝐿2 (R) ≤ ‖𝑉𝑊 ‖1e‖𝑉𝑊 ‖1+1, (51)

where the inequality follows from (3.1) of [29]. Therefore, we conclude from (50) and (51) that there
exists 𝐶 > 0 such that for all 𝑀 ≥ 2,

P
{

max
0≤𝑥≤1

A1 (𝑥) > 𝑀
}
≤ 𝐶 𝑀7/4e(2−

√
2)𝑀+

√
2𝑀 e−

4
3

√
2𝑀3/2

.

The proof is complete.

Remark 6.2. We remark that another asymptotics on the probability that the Airy1 process stays below
a given threshold 𝑐 for a time span of length 𝐿 is investigated in [18].

Before we prove Theorem 1.4, we present a probability inequality for the Airy1 process: there exists
a constant 𝐾 > 0 such that for all 𝑥, 𝑦 ∈ R,

sup
𝑠,𝑡 ∈R

(P {A1 (𝑥) ≤ 𝑠,A1 (𝑦) ≤ 𝑡} − P {A1 (𝑥) ≤ 𝑠}P {A1 (𝑦) ≤ 𝑡}) ≤ 𝐾 [Cov(A1 (𝑥) ,A1 (𝑦))]1/3 .

(52)

The above inequality follows from [27, (6.2.20)] (see also [27, Theorem 6.2.15]) because the Airy1 pro-
cess is associated and its one-point distribution, i.e., the GOE Tracy-Widom distribution has bounded
and continuous density and finite second moment.

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. We first show that almost surely

lim inf
𝑁→∞

max0≤𝑥≤𝑁 A1 (𝑥)
(log𝑁)2/3

≥ 1
2

(
3
2

)2/3

. (53)

Let 𝛽 be a positive number that is strictly less than 3
2 . Choose and fix 𝑎, 𝜖 ∈ (0,1) (𝑎 close to 1 and 𝜖

close to 0) such that

𝛽 <
3𝑎

2(1 + 𝜖) . (54)

Define 𝑥 𝑗 = 𝑗𝑁/b𝑁𝑎c for 𝑗 = 1, . . . , b𝑁𝑎c. Here the notation b𝑥c denotes the largest integer which is
less than or equal to 𝑥. By the stationarity of the Airy1 process,

P
{

max
0≤𝑥≤𝑁

A1 (𝑥) ≤
1
2
(𝛽 log𝑁)2/3

}
≤ P

{
max

1≤ 𝑗≤b𝑁 𝑎 c
A1 (𝑥 𝑗 ) ≤

1
2
(𝛽 log𝑁)2/3

}
= P

{
max

1≤ 𝑗≤b𝑁 𝑎 c
A1 (𝑥 𝑗 ) ≤

1
2
(𝛽 log𝑁)2/3

}
−

b𝑁 𝑎 c∏
𝑗=1

P
{
A1 (𝑥 𝑗 ) ≤

1
2
(𝛽 log𝑁)2/3

}
+

(
P
{
A1 (0) ≤

1
2
(𝛽 log𝑁)2/3

}) b𝑁 𝑎 c
.
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Since the Airy1 process is associated, by (11), we see that

P
{

max
0≤𝑥≤𝑁

A1 (𝑥) ≤
1
2
(𝛽 log𝑁)2/3

}
≤

∑︁
1≤ 𝑗<𝑘≤b𝑁 𝑎 c

(
P
{
A1 (𝑥 𝑗 ) ≤

1
2
(𝛽 log𝑁)2/3,A1 (𝑥𝑘 ) ≤

1
2
(𝛽 log𝑁)2/3

}
− P

{
A1 (𝑥 𝑗 ) ≤

1
2
(𝛽 log𝑁)2/3

}
P
{
A1 (𝑥𝑘 ) ≤

1
2
(𝛽 log𝑁)2/3

} )
+

(
P
{
A1 (0) ≤

1
2
(𝛽 log𝑁)2/3

}) b𝑁 𝑎 c
.

We apply (52) to deduce that

P
{

max
0≤𝑥≤𝑁

A1 (𝑥) ≤
1
2
(𝛽 log𝑁)2/3

}
≤ 𝐾

∑︁
1≤ 𝑗<𝑘≤b𝑁 𝑎 c

[
Cov(A1 (𝑥 𝑗 ) ,A1 (𝑥𝑘 ))

]1/3 +
(
P
{
A1 (0) ≤

1
2
(𝛽 log𝑁)2/3

}) b𝑁 𝑎 c
. (55)

We can assume that 𝑁 is sufficiently large such that 𝑁/b𝑁𝑎c > max{1,3𝑐′} with 𝑐′ being the number
in (36), b𝑁𝑎c > 𝑁𝑎/2 and (𝛽 log𝑁)2/3 > 𝐶2, where 𝐶2 is the constant in (17). Hence, by (36),

P
{

max
0≤𝑥≤𝑁

A1 (𝑥) ≤
1
2
(𝛽 log𝑁)2/3

}
≤ 𝐾

∑︁
1≤ 𝑗<𝑘≤b𝑁 𝑎 c

e
𝑐′
3 |𝑥 𝑗−𝑥𝑘 |2e−

4
9 |𝑥 𝑗−𝑥𝑘 |3 + 𝐹1

(
(𝛽 log𝑁)2/3

) b𝑁 𝑎 c

≤ 𝐾
∑︁

1≤ 𝑗<𝑘≤b𝑁 𝑎 c
e−

1
3 |𝑥 𝑗−𝑥𝑘 |3 +

(
1 − e−

2
3 (1+𝜖 )𝛽 log 𝑁

) b𝑁 𝑎 c

≤ 𝐾𝑁2𝑎e−
1
3 𝑁

3(1−𝑎) + e−𝑁
− 2

3 (1+𝜖 )𝛽 b𝑁 𝑎 c ≤ 𝐾𝑁2𝑎e−
1
3 𝑁

3(1−𝑎) + e−
1
2 𝑁

− 2
3 (1+𝜖 )𝛽+𝑎

,

where in the second inequality, we use the first inequality in (17), and in the third inequality, we use the
fact 1 − 𝑥 ≤ e−𝑥 for all 𝑥 ≥ 0. Since − 2

3 (1 + 𝜖)𝛽 + 𝑎 > 0 by (54), we conclude that

∞∑︁
𝑁=1

P
{

max
0≤𝑥≤𝑁

A1 (𝑥) ≤
1
2
(𝛽 log𝑁)2/3

}
<∞.

Therefore, Borel-Cantelli’s lemma implies that almost surely,

lim inf
𝑁→∞

max0≤𝑥≤𝑁 A1 (𝑥)
(log𝑁)2/3

≥ 1
2
𝛽2/3.

The above liminf is taken along integers. By the monotonicity of max0≤𝑥≤𝑁 A1 (𝑥) in 𝑁 , we see that
the preceding also holds when the liminf is taken along real numbers. Finally, by letting 𝛽 ↑ 3

2 , we
obtain (53).

We turn to proving that almost surely

lim sup
𝑁→∞

max0≤𝑥≤𝑁 A1 (𝑥)
(log𝑁)2/3

≤ 1
2

(
3
2

)2/3

. (56)



20

Let 𝛾 be a positive number that is strictly larger than 3
4
√

2
. Choose and fix 𝜖 ∈ (0,1) such that

𝛾 >
1

4
3

√
2 − 𝜖

. (57)

For this fixed 𝜖 ∈ (0,1), Proposition 6.1 ensures that there exists constant 𝐶1 > 0 depending on 𝜖 such
that

P
{

max
0≤𝑥≤1

A1 (𝑥) > 𝑀
}
≤ e−(

4
3

√
2−𝜖 )𝑀3/2

, for all 𝑀 ≥ 𝐶1. (58)

Assume for the moment that 𝑁 is a sufficiently large integer such that (𝛾 log𝑁)2/3 ≥ 𝐶1 with 𝐶1 being
the constant in (58). By the stationarity of the Airy1 process,

P
{

max
0≤𝑥≤𝑁

A1 (𝑥) > (𝛾 log𝑁)2/3
}
= P

{
∪𝑁

𝑗=1

{
max

𝑗−1≤𝑥≤ 𝑗
A1 (𝑥) > (𝛾 log𝑁)3/2

}}
≤ 𝑁P

{
max

0≤𝑥≤1
A1 (𝑥) > (𝛾 log𝑁)2/3

}
≤ 𝑁e−(

4
3

√
2−𝜖 )𝛾 log 𝑁 = 𝑁1−( 4

3

√
2−𝜖 )𝛾 ,

where the second inequality follows from (58). Since ( 4
3

√
2− 𝜖)𝛾 > 1 by (57), letting 𝑁 = 2𝑛, we obtain

that

∞∑︁
𝑛=1

P
{

max
0≤𝑥≤2𝑛

A1 (𝑥) > (𝛾 log 2𝑛)2/3
}
<∞,

which implies that almost surely

lim sup
𝑛→∞

max0≤𝑥≤2𝑛 A1 (𝑥)
(log 2𝑛)2/3

≤ 𝛾2/3

by Borel-Cantelli’s lemma. Since the quantity max0≤𝑥≤𝑁 A1 (𝑥) is monotone in 𝑁 , we obtain that
almost surely

lim sup
𝑁→∞

max0≤𝑥≤𝑁 A1 (𝑥)
(log𝑁)2/3

≤ 𝛾2/3.

Letting 𝛾 ↓ 3
4
√

2
, we prove (56).

Theorem 1.4 follows from (53) and (56).

We proceed to prove Theorem 1.5. Recall from [15, Theorem 1] that for 𝜖 ∈ (0,1), there exists a
positive constant �̃�2 depending on 𝜖 such that

e−(
4
3+𝜖 )𝑠

3/2 ≤ P{A2 (0) ≥ 𝑠} ≤ e−(
4
3−𝜖 )𝑠

3/2
, for all 𝑠 ≥ �̃�2. (59)

Analogous to (52), using the association property of the Airy2 process and the fact that the GUE Tracy-
Widom distribution has bounded continuous probability density function and finite second moment, we
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see from [27, (6.2.20)] (see also [27, Theorem 6.2.15]) that there exists a constant 𝐾 > 0 such that for
all 𝑥, 𝑦 ∈ R,

sup
𝑠,𝑡 ∈R

(P {A2 (𝑥) ≤ 𝑠,A2 (𝑦) ≤ 𝑡} − P {A2 (𝑥) ≤ 𝑠}P {A2 (𝑦) ≤ 𝑡}) ≤ 𝐾 [Cov(A2 (𝑥) ,A2 (𝑦))]1/3 .

(60)

Now we start the proof of Theorem 1.5.

Proof of Theorem 1.5. We first prove the lower bound in (6). The strategy is similar to that of the proof
of (5), using the association property of the Airy2 process, the asymptotic behavior of the covariance
of the Airy2 process and the tail distribution of the GUE Tracy-Widom distribution.

Let 𝛽 be a positive number that is strictly less than 1
4 . Choose and fix 𝑎 ∈ (0, 1

3 ), 𝜖 ∈ (0,1) such that

𝛽 <
𝑎

4
3 + 𝜖

. (61)

Define 𝑥 𝑗 = 𝑗𝑁/b𝑁𝑎c for 𝑗 = 1, . . . , b𝑁𝑎c. Then by the stationarity of the Airy2 process,

P
{

max
0≤𝑥≤𝑁

A2 (𝑥) ≤ (𝛽 log𝑁)2/3
}
≤ P

{
max

1≤ 𝑗≤b𝑁 𝑎 c
A2 (𝑥 𝑗 ) ≤ (𝛽 log𝑁)2/3

}
= P

{
max

1≤ 𝑗≤b𝑁 𝑎 c
A2 (𝑥 𝑗 ) ≤ (𝛽 log𝑁)2/3

}
−

b𝑁 𝑎 c∏
𝑗=1

P
{
A2 (𝑥 𝑗 ) ≤ (𝛽 log𝑁)2/3

}
+

(
P
{
A2 (0) ≤ (𝛽 log𝑁)2/3

}) b𝑁 𝑎 c
.

We can assume that 𝑁 is sufficiently large such that b𝑁𝑎c > 𝑁𝑎/2 and (𝛽 log𝑁)2/3 > 𝐶 ′
2, where 𝐶 ′

2 is
the constant in (59). Since the Airy2 process is associated (see Proposition 3.2), by (11), we see that

P
{

max
0≤𝑥≤𝑁

A2 (𝑥) ≤ (𝛽 log𝑁)2/3
}

≤
∑︁

1≤ 𝑗<𝑘≤b𝑁 𝑎 c

(
P
{
A2 (𝑥 𝑗 ) ≤ (𝛽 log𝑁)2/3,A2 (𝑥𝑘 ) ≤ (𝛽 log𝑁)2/3

}
− P

{
A2 (𝑥 𝑗 ) ≤ (𝛽 log𝑁)2/3

}
P
{
A2 (𝑥𝑘 ) ≤ (𝛽 log𝑁)2/3

} )
+

(
1 − P

{
A2 (0) > (𝛽 log𝑁)2/3

}) b𝑁 𝑎 c

≤ 𝐾
∑︁

1≤ 𝑗<𝑘≤b𝑁 𝑎 c

[
Cov(A2 (𝑥 𝑗 ) ,A2 (𝑥𝑘 ))

]1/3 +
(
1 − P

{
A2 (0) > (𝛽 log𝑁)2/3

}) b𝑁 𝑎 c
, (62)

where the second inequality holds by (60). Moreover, since the decay rate of the covariance Cov(A2 (𝑥),
A2 (0)) is 𝑥−2 as 𝑥→∞ (see [36]), we deduce that

P
{

max
0≤𝑥≤𝑁

A2 (𝑥) ≤ (𝛽 log𝑁)2/3
}
≤ 𝐾 ′

∑︁
1≤ 𝑗<𝑘≤b𝑁 𝑎 c

1
|𝑥𝑘 − 𝑥 𝑗 |2/3

+
(
1 − e−(

4
3+𝜖 )𝛽 log 𝑁

) b𝑁 𝑎 c
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≤ 𝐾 ′𝑁
2
3 (𝑎−1)

∑︁
1≤ 𝑗<𝑘≤b𝑁 𝑎 c

1
|𝑘 − 𝑗 |2/3

+ e−b𝑁 𝑎 c𝑁 −( 4
3 +𝜖 )𝛽

,

where we have used (59) in the first inequality and 1 − 𝑥 ≤ e−𝑥 for all 𝑥 ≥ 0 in the second inequality.
Because for integer 𝑚 ≥ 2,

𝑚∑︁
𝑘=2

𝑘−1∑︁
𝑗=1

1
(𝑘 − 𝑗)2/3

=

𝑚∑︁
𝑘=2

𝑘−1∑︁
𝑗=1

1
𝑗2/3

≤
𝑚∑︁
𝑘=2

∫ 𝑘−1

0

d𝑥
𝑥2/3

= 3
𝑚∑︁
𝑘=2

(𝑘 − 1)1/3 ≤ 9
4

∫ 𝑚

0
𝑥1/3d𝑥 =

9
4
𝑚4/3,

we conclude that

P
{

max
0≤𝑥≤𝑁

A2 (𝑥) ≤ (𝛽 log𝑁)2/3
}
≤ 9𝐾 ′

4
𝑁

2
3 (𝑎−1)+ 4

3 𝑎 + e−
1
2 𝑁

𝑎−( 4
3 +𝜖 )𝛽

.

Letting 𝑁 = 2𝑛, we obtain that

P
{

max
0≤𝑥≤2𝑛

A2 (𝑥) ≤ (𝛽 log 2𝑛)2/3
}
≤ 9𝐾 ′

4
2−

2
3 (1−3𝑎)𝑛 + e−

1
2 2(𝑎−( 4

3 +𝜖 )𝛽)𝑛
.

Since 𝑎 < 1
3 and 𝑎 > ( 4

3 + 𝜖)𝛽 (see (61)), we see that

∞∑︁
𝑛=1

P
{

max
0≤𝑥≤2𝑛

A2 (𝑥) ≤ (𝛽 log 2𝑛)2/3
}
<∞.

Hence, by Borel-Cantelli’s lemma, we have almost surely,

lim inf
𝑛→∞

max0≤𝑥≤2𝑛 A2 (𝑥)
(log 2𝑛)2/3

≥ 𝛽2/3.

A monotonicity argument yields that almost surely,

lim inf
𝑁→∞

max0≤𝑥≤𝑁 A2 (𝑥)
(log𝑁)2/3

≥ 𝛽2/3.

Letting 𝛽 ↑ 1
4 , we obtain the lower bound in (6).

We proceed to prove the upper bound in (6). By [9, Corollary 1.3] and stationarity of the Airy2
process, there exists a positive constant 𝑠0 such that

sup
𝑥∈R

P

(
sup

0≤𝑦≤2
|A2 (𝑥 + 𝑦) − A2 (𝑥) | ≥ 𝑠

)
≤ e−

𝑠2
16 , for all 𝑠 > 𝑠0. (63)

Let 𝛾 be a positive number that is strictly larger than 3
4 . Choose and fix 𝛿 ∈ (0,1) and 𝜖 ∈ (0,1) such

that

( 4
3
− 𝜖)𝛿

3
2 𝛾 > 1. (64)

Assume 𝑁 is sufficiently large so that

𝛿(𝛾 log𝑁)2/3 > �̃�2 and (1 − 𝛿) (𝛾 log𝑁)2/3 > 𝑠0,
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where the constants �̃�2 and 𝑠0 are given in (59) and (63) respectively. By the triangle inequality and
stationarity of the Airy2 process,

P
(

max
0≤𝑥≤2𝑁

A2 (𝑥) ≥ (𝛾 log(2𝑁))2/3
)
≤ P

(
∪𝑁−1

𝑗=0

{
A2 (2 𝑗) ≥ 𝛿(𝛾 log(2𝑁))2/3

})
+ P

(
∪𝑁

𝑗=1 sup
𝑦∈[2( 𝑗−1) ,2 𝑗 ]

|A2 (𝑦) − A2 (2( 𝑗 − 1)) | ≥ (1 − 𝛿) (𝛾 log(2𝑁))2/3

)
≤ 𝑁P

(
A2 (0) ≥ 𝛿(𝛾 log(2𝑁))2/3

)
+ 𝑁P

(
sup

𝑦∈[0, 2]
|A2 (𝑦) − A2 (0) | ≥ (1 − 𝛿) (𝛾 log(2𝑁))2/3

)
≤ 𝑁e−(

4
3−𝜖 ) 𝛿

3
2 𝛾 log(2𝑁 ) + 𝑁e−

(1−𝛿)2
16 (𝛾 log(2𝑁 ))4/3

= 𝑐0𝑁
−( 4

3−𝜖 ) 𝛿
3
2 𝛾+1 + 𝑁e−

(1−𝛿)2
16 (𝛾 log(2𝑁 ))4/3

,

where the last inequality follows from (59) and (63). Letting 𝑁 = 2𝑛 and because of (64), we obtain
that

∞∑︁
𝑛=1

P
(

max
0≤𝑥≤2𝑛+1

A2 (𝑥) ≥ (𝛾 log 2𝑛+1)2/3
)
<∞,

which implies that almost surely,

lim sup
𝑛→∞

max0≤𝑥≤2𝑛+1 A2 (𝑥)
log 2𝑛+1 ≤ 𝛾2/3,

thanks to Borel-Cantelli’s lemma. Appealing to the monotonicity argument again, we conclude that
almost surely,

lim sup
𝑁→∞

max0≤𝑥≤𝑁 A2 (𝑥)
log𝑁

≤ 𝛾2/3.

Letting 𝛾 ↓ 3
4 , we obtain the upper bound in (6).

The proof is complete.

Remark 6.3. The approach for the lower bounds in Theorems 1.4 and 1.5 essentially depends on the
decay rate of the covariance of the Airy processes; see (55) and (62). The exponential decay rate of the
Airy1 process established in [5] leads to the desired lower bound in Theorem 1.4, while the polynomial
decay rate of the Airy2 process established in [36] results in a non-optimal lower bound in Theorem
1.5. The precise limit of the growth of maximum of the Airy2 processes is proved in a recent work
[4, Theorem 1.1(i)] using last passage percolation after this paper appeared as preprint, and a different
proof of Theorem 1.4 is given in [4, Theorem 1.2(i)]. See also [4, Theorem 1.1(ii) and Theorem 1.2(ii)]
for the asymptotics of minimum of Airy processes.
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