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This work aims at making a comprehensive contribution in the general area of parametric inference for discretely
observed diffusion processes. Established approaches for likelihood-based estimation invoke a time-discretisation
scheme for the approximation of the intractable transition dynamics of the Stochastic Differential Equation (SDE)
model over finite time periods. The scheme is applied for a step-size 𝛿 > 0, that is either user-selected or determined
by the data. Recent research has highlighted the critical effect of the choice of numerical scheme on the behaviour
of derived parameter estimates in the setting of hypo-elliptic SDEs. In brief, in our work, first, we develop two
weak second order sampling schemes (to cover both hypo-elliptic and elliptic SDEs) and produce a small time
expansion for the density of the schemes to form a proxy for the true intractable SDE transition density. Then, we
establish a collection of analytic results for likelihood-based parameter estimates obtained via the formed proxies,
thus providing a theoretical framework that showcases advantages from the use of the developed methodology for
SDE calibration. We present numerical results from carrying out classical or Bayesian inference, for both elliptic
and hypo-elliptic SDEs.

Keywords: CLT; data augmentation; hypo-elliptic diffusion; small time density expansion; stochastic differential
equation

1. Introduction

Our work is placed within the general framework of parametric inference for diffusion processes. Cal-
ibration approaches under broad observation regimes, in both Bayesian and classical settings, necessi-
tate the use of a numerical scheme used as proxy for the underlying, typically intractable, Markovian dy-
namics of the model over finite time steps. Following the latest contributions in the area, we aim to make
connections between approximation schemes (i.e., a research area mainly within the remit of stochastic
analysis) and their impact on the accuracy and performance of induced likelihood-based inferential
approaches (i.e., the field of statistical calibration for Stochastic Differential Equations (SDEs)).

Let (Ω,F , {F𝑡 }𝑡≥0,P) be a filtered probability space and 𝐵 = (𝐵1,𝑡 , . . . , 𝐵𝑑𝑅 ,𝑡 )𝑡≥0 a standard 𝑑𝑅-
dimensional Brownian motion defined thereon, 𝑑𝑅 ≥ 1. We use the convention 𝐵0,𝑡 = 𝑡. Consider the
following general class of SDEs:

𝑑𝑋𝑡 =

[
𝑑𝑋𝑅,𝑡
𝑑𝑋𝑆,𝑡

]
=

[
𝑉𝑅,0 (𝑋𝑡 , 𝛽)
𝑉𝑆,0 (𝑋𝑡 , 𝛾)

]
𝑑𝑡 +

∑︁
1≤𝑘≤𝑑𝑅

[
𝑉𝑅,𝑘 (𝑋𝑡 , 𝜎)

0𝑑𝑆

]
𝑑𝐵𝑘,𝑡 , 𝑋0 = 𝑥0 ∈ R𝑑 , (1)

with 𝑉𝑅,0 : R𝑑 ×Θ𝛽 → R𝑑𝑅 , 𝑉𝑆,0 : R𝑑 ×Θ𝛾 → R𝑑𝑆 , 𝑉𝑅,𝑘 : R𝑑 ×Θ𝜎 → R𝑑𝑅 , 1 ≤ 𝑘 ≤ 𝑁 , where 𝑑𝑆 ≥ 0
and 𝑑 = 𝑑𝑅 + 𝑑𝑆 . Also, Θ𝛽 ⊆ R𝑑𝛽 , Θ𝛾 ⊆ R𝑑𝛾 , Θ𝜎 ⊆ R𝑑𝜎 , 𝑑𝛽 ≥ 1, 𝑑𝛾 ≥ 0, 𝑑𝜎 ≥ 1. We set 𝜃 = (𝛽, 𝛾, 𝜎)
and Θ = Θ𝛽 × Θ𝛾 × Θ𝜎 . 𝑋𝑅,𝑡 and 𝑋𝑆,𝑡 denote the rough and smooth components, respectively, of
process 𝑋𝑡 that solves (1). For 𝑑𝑆 > 0, {𝑋𝑡 }𝑡≥0 is a hypo-elliptic diffusion if the law of 𝑋𝑡 , 𝑡 > 0, admits
a density with respect to (w.r.t.) the Lebesgue measure, while for 𝑑𝑆 = 0 the process is an elliptic one.
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For such a diffusion model, we consider the problem of estimating 𝜃 ∈ Θ given observations for state
𝑋𝑡 at the discrete-time instances 0 ≤ 𝑡0 < 𝑡1 < · · · < 𝑡𝑛−1 < 𝑡𝑛, 𝑛 ≥ 0. For simplicity, we assume that
observation times are equidistant and set Δ := 𝑡𝑖 − 𝑡𝑖−1, 1 ≤ 𝑖 ≤ 𝑛.

Non-linear SDEs do not permit, in general, analytical solutions, thus one must rely on approximate,
time-discretisation schemes to generate diffusion sample paths and obtain closed-form expressions for
the SDE transition density. Development of approximation schemes with high accuracy can lead to ef-
fective parameter estimation methods, e.g. to Bayesian data augmentation without excessive imputation
of latent variables to cover a non-small step-size Δ. Indeed, several works on Markov chain Monte-Carlo
(MCMC) methods for diffusion processes suggest use of high order approximations, e.g. the Milstein or
a strong 1.5 order scheme (Kloeden and Platen, 1992), but practical application of such schemes is re-
stricted to limited classes of SDEs due to involvement of intractable random variables, such as the Lévy
area

∫ Δ

0 (𝐵𝑘1 ,𝑠𝑑𝐵𝑘2 ,𝑠 − 𝐵𝑘2 ,𝑠𝑑𝐵𝑘1 ,𝑠), 𝑘1 ≠ 𝑘2. Motivated by the above, we develop our work under the
following strategy. First, we propose an explicit sampling scheme for the generation of sample paths
for model (1), with higher order accuracy in distributional sense compared to classical (conditionally)
Gaussian numerical schemes, e.g. the Euler-Maruyama scheme. Then, we derive an Edgeworth-type
density expansion of the above sampling scheme. Instances of the expansion will be used to provide
proxies for the true intractable transition density and, ultimately, likelihood-based parameter estimates.
Finally, we provide analytic results showcasing advantages of the obtained parameter estimates in both
high/low-frequency observation regimes, where in the former case one assumes Δ→ 0 and in the latter
that Δ is fixed and not small enough.

One set of analytic results that we provide in this work – and in accordance with recent contributions
involving hypo-elliptic SDEs by, e.g., Ditlevsen and Samson (2019), Gloter and Yoshida (2021) – will
correspond to asymptotic results for the Maximum Likelihood Estimator (MLE), in the high-frequency
regime, with 𝑛→∞ and Δ = Δ𝑛 → 0, and in a setting of complete discrete-time observations. That is,
the dataset 𝑌 𝑐 is as follows:

𝑌 𝑐 := {𝑋𝑡0 , 𝑋𝑡1 , . . . , 𝑋𝑡𝑛 }. (2)
We refer to the dataset in (2) in the high-frequency setting as the ‘complete observation regime’ in the
sequel. We stress that the discretisation schemes developed in the above context are practically relevant
for generic observation regimes, e.g. within Bayesian data augmentation methods. Consideration of
these latter methods motivates the derivation of further analytic results, now in a low-frequency regime.
In particular, for elliptic SDEs, we explicitly connect the weak order of the numerical scheme with the
proximity between the true transition density over a period of size Δ and the transition density produced
by convolution of 𝑀 ≥ 1 proxy transition densities over time intervals of size 𝛿 = Δ/𝑀 .

We briefly review recent works in the high-frequency regime. In the hypo-elliptic setting, a first main
contribution is the work of Pokern, Stuart and Wiberg (2009) that uses an Itô-Taylor expansion to add
a noise term of size O(Δ3/2) in the numerical scheme for the smooth component of SDE (1), thus
obtaining a non-degenerate (conditionally) Gaussian approximation of the true transition density. The
class of models considered in Pokern, Stuart and Wiberg (2009) is restrictive and no analytical results
are provided. Ditlevsen and Samson (2019) make a major contribution by starting with a strong 1.5
order scheme before removing terms that do not affect their asymptotic results. Noise of size O(Δ3/2) is
propagated onto the smooth component (as in Pokern, Stuart and Wiberg (2009)) and quantities of size
O(Δ2) are retained in the mean terms. These latter components remove the bias for the estimates of drift
parameters observed experimentally (within a Bayesian data augmentation setting) in Pokern, Stuart
and Wiberg (2009). Ditlevsen and Samson (2019) provide analytic asymptotic results for a contrast
estimator in the complete observation regime (2), under the condition Δ𝑛 = 𝑜(𝑛−1/2); this is a type of
condition referred to as ‘rapidly increasing experimental design’ in early investigations for elliptic SDEs
in Prakasa Rao (1988). The estimation procedure in Ditlevsen and Samson (2019) is separated into two
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contrast functions, one for 𝛾 assuming knowledge of the true values of (𝛽, 𝜎), and vice-versa for the
contrast function for (𝛽, 𝜎). The analysis provides marginal CLTs for the estimates of the parameters
rather than an ideal joint CLT. The class of models covered is restricted to a scalar smooth component
and diagonal diffusion coefficient matrix for the rough component. Gloter and Yoshida (2020, 2021)
provide the most recent contributions. Closer to our purposes, Gloter and Yoshida (2020) describe a
non-adaptive approach (as opposed to one-step adaptive methods in Gloter and Yoshida (2021)) and
prove a CLT in the complete observation regime for Δ𝑛 = 𝑜(𝑛−1/2), as in Ditlevsen and Samson (2019),
but without strong restrictions on the class of models. In the elliptic setting, Kessler (1997) developed
contrast functions for the scalar case that, within regime (2), deliver estimates satisfying a CLT for
Δ𝑛 = 𝑜(𝑛−1/𝑞), for any integer 𝑞 ≥ 2. The method in Kessler (1997) is based on the use of a Gaussian
density for the approximation of the transition density of the SDE for small Δ, together with high order
expansions in Δ for the mean and variance of the SDE transitions. Uchida and Yoshida (2012) extended
such results to general model dimension based on multi-step adaptive estimates.

Our main contributions can be summarised as follows:
(a) In the hypo-elliptic case we propose a new weak second order sampling scheme. The scheme is

explicit as one can produce SDE sample paths by generating Gaussian variates. A related weak
second order scheme is also put forward for the elliptic case.

(b) The above sampling scheme possess, in general, an intractable transition density due to involve-
ment of polynomials of Gaussian variates. We derive a closed-form small time density expansion of
the scheme by making use of tools from Malliavin calculus.

(c) In the high-frequency regime, we develop our contrast function by selecting appropriate high order
terms from the density expansion. We then prove a joint CLT for the deduced parameter estimates
under Δ𝑛 = 𝑜(𝑛−1/3), which is the largest step-size permitted in the hypo-elliptic case to the best
of our knowledge. In particular, a main improvement by the new estimator – when compared with
the existing estimator satisfying the CLT under Δ𝑛 = 𝑜(𝑛−1/2) – is observed in the estimation of
diffusion parameter 𝜎.

(d) In the low-frequency regime, we choose particular high order terms from the small time density
expansion to develop our local weak third order transition density scheme. We then study the use
of the developed scheme in the practical setting where its density is iteratively applied with user-
specified steps of size 𝛿 = Δ/𝑀 , 𝑀 ≥ 1, to cover fixed inter-observation times of length Δ. We prove
that the induced bias is O(𝑀−2) for elliptic SDEs.

(e) We show numerical examples illustrating the benefits of the new schemes in applications with
hypo-elliptic SDEs in the high-frequency regime. In the context of Bayesian data augmentation, in
the low-frequency regime, we apply the sampling scheme to an elliptic model and observe that the
bias in the induced posterior is reduced when comparing with the Euler-Maruyama scheme.

The remaining part of the paper is organised as follows. Section 2 puts forward our sampling schemes
for elliptic and hypo-elliptic SDEs. Section 3 derives the closed-form small time density expansion
for the sampling scheme. Section 4 provides a collection of analytical results for parameter inference
carried out via appropriate choice of high order terms from the developed density expansion, both in
the high and low-frequency regimes. Section 5 provides numerical experiments related to the analytic
results. Section 6 concludes our work.

Notation. We define:

𝑉0 (·, 𝛽, 𝛾) =
[
𝑉𝑅,0 (·, 𝛽)⊤,𝑉𝑆,0 (·, 𝛾)⊤

]⊤
, 𝑉𝑘 (·, 𝜎) =

[
𝑉𝑅,𝑘 (·, 𝜎)⊤,0⊤𝑑𝑆

]⊤
, 1 ≤ 𝑘 ≤ 𝑑𝑅 .

We set 𝑉𝑅 =𝑉𝑅 (𝑥, 𝜎) =
[
𝑉𝑅,1 (𝑥, 𝜎), . . . ,𝑉𝑅,𝑑𝑅 (𝑥, 𝜎)

]
∈ R𝑑𝑅×𝑑𝑅 , and define:

𝑎𝑅 (𝑥, 𝜎) =𝑉𝑅 (𝑥, 𝜎)𝑉𝑅 (𝑥, 𝜎)⊤ ∈ R𝑑𝑅×𝑑𝑅 . (3)



4

Let 𝐶∞
𝑏 (R𝑛;R𝑚) (resp. 𝐶∞

𝑝 (R𝑛;R𝑚)), 𝑚, 𝑛 ≥ 1, be the space of smooth (i.e. infinitely differentiable)
bounded (resp. of polynomial growth) functions 𝑓 : R𝑛 → R𝑚 with bounded derivatives (resp. with
derivatives of polynomial growth). We write 𝜕𝑢 =

[
𝜕

𝜕𝑢1 , . . . ,
𝜕

𝜕𝑢𝑛

]⊤
, 𝜕2

𝑢 = 𝜕𝑢𝜕
⊤
𝑢 ≡

(
𝜕2

𝜕𝑢𝑖𝜕𝑢 𝑗

)𝑛
𝑖, 𝑗=1 for the

standard differential operators acting upon maps R𝑛 → R, 𝑛 ≥ 1. As above with 𝑢 = (𝑢1, . . . , 𝑢𝑛)⊤ ∈ R𝑛,
we use superscripts to specify co-ordinates of a vector when needed. For sufficiently smooth functions
𝑓 = 𝑓 (𝑥) = 𝑓 (𝑥𝑅, 𝑥𝑆) : R𝑑 → R, we define:

𝑉̂0 𝑓 = 𝑉̂0 𝑓 (𝑥, 𝜃) :=
〈
𝑉0, 𝜕𝑥 𝑓

〉
+ 1

2

∑︁
1≤𝑘≤𝑑𝑅

𝑉⊤
𝑅,𝑘

(
𝜕2
𝑥𝑅
𝑓
)
𝑉𝑅,𝑘 ;

𝑉̂𝑘 𝑓 = 𝑉̂𝑘 𝑓 (𝑥, 𝜎) :=
〈
𝑉𝑘 , 𝜕𝑥 𝑓

〉
=
〈
𝑉𝑅,𝑘 , 𝜕𝑥𝑅 𝑓

〉
, 1 ≤ 𝑘 ≤ 𝑑𝑅 .

𝑉̂0, 𝑉̂𝑘 apply to vector-valued functions by separate consideration of the scalar co-ordinates. Note that
the original SDE (1) is equivalently given as the Stratonovitch-type SDE with drift function defined as:

𝑉0 (𝑥, 𝜃) =𝑉0 (𝑥, 𝜃) − 1
2

∑︁
1≤𝑘≤𝑑𝑅

𝑉̂𝑘𝑉0 (𝑥, 𝜃). (4)

We define the vector-valued function:

[𝑉𝑘 ,𝑉𝑙] = 𝑉̂𝑘𝑉𝑙 (𝑥, 𝜃) − 𝑉̂𝑙𝑉𝑘 (𝑥, 𝜃), 1 ≤ 𝑘, 𝑙 ≤ 𝑑𝑅 . (5)

We write 𝜃† = (𝛽†, 𝛾†, 𝜎†) ∈ Θ for the (assumed unique) true value of 𝜃 = (𝛽, 𝛾, 𝜎). We denote iterated
stochastic integrals w.r.t. Brownian paths as:

𝐼𝛼 (𝑡) =
∫ 𝑡

0
· · ·

∫ 𝑡2

0
𝑑𝐵𝛼1 ,𝑡1 · · · 𝑑𝐵𝛼𝑙 ,𝑡𝑙 , 𝑡 > 0, 𝛼 ∈ {0,1, . . . , 𝑑𝑅}𝑙 , 𝑙 ≥ 0. (6)

We will sometimes write P𝜃 , E𝜃 to emphasise the involvement of 𝜃 in calculations. Similarly, we
will write P𝜃† , E𝜃† to stress, when needed, that derivations are under the true parameter value, and

write
P
𝜃†−−−→,

L
𝜃†−−−→ to express convergence in probability and in distribution, respectively, under 𝜃†. For

a multi-index 𝛼 = (𝛼1, . . . , 𝛼𝑙) ∈ {1, . . . , 𝑑}𝑙 , 𝑙 ≥ 1 and a sufficiently smooth 𝑓 : R𝑑 → R, we write
𝜕
𝜉
𝛼 𝑓 (𝜉) := 𝜕𝑙 𝑓 (𝜉)/𝜕𝜉𝛼1 · · · 𝜕𝜉𝛼𝑙

, 𝜉 ∈ R𝑑 .

2. Sampling schemes for elliptic & hypo-elliptic diffusions

We propose explicit sampling schemes for the SDE (1). We introduce the conditions so that the law of
𝑋𝑡 , 𝑡 > 0, admits a smooth Lebesgue density in Section 2.1. Then, we present the sampling schemes
in Section 2.2. Hereafter, we make use of the notation 𝑋 𝑥

𝑡 , 𝑡 > 0, when needed to emphasise the initial
state 𝑋0 = 𝑥 ∈ R𝑑 .

2.1. Basic assumptions for diffusion class

We introduce basic conditions to characterise the SDE (1) we consider in this work.
(H1) Θ is a compact subset of R𝑑𝜃 . For each 𝑥 ∈ R𝑑 , and any multi-index 𝛼 ∈ {1, . . . , 𝑑}𝑙 , 𝑙 ≥ 0, the

function 𝜃 ↦→ 𝜕𝑥𝛼𝑉
𝑖
𝑗 (𝑥, 𝜃), 0 ≤ 𝑗 ≤ 𝑑𝑅, 1 ≤ 𝑖 ≤ 𝑑, is continuous.

(H2) For each 𝜃 ∈ Θ, 𝑉 𝑗 (·, 𝜃) ∈ 𝐶∞
𝑏 (R𝑑;R𝑑), 0 ≤ 𝑗 ≤ 𝑑𝑅.

(H3) The matrix 𝑎𝑅 = 𝑎𝑅 (𝑥;𝜎) defined in (3) is positive-definite for all (𝑥, 𝜃) ∈ R𝑑 ×Θ.
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(H4) For any 𝜃 ∈ Θ and any 𝑥 ∈ R𝑑 , the set of the 2𝑑𝑅 vectors:{
𝑉1 (𝑥, 𝜃), . . . ,𝑉𝑑𝑅 (𝑥, 𝜃), [𝑉0,𝑉1] (𝑥, 𝜃), . . . , [𝑉0,𝑉𝑑𝑅 ] (𝑥, 𝜃)

}
spans R𝑑 , where 𝑉0 =𝑉0 (𝑥, 𝜃) is defined in (4) and [𝑉0,𝑉 𝑗 ] (𝑥, 𝜃) is defined as (5).

(H4) is relevant for hypo-elliptic SDEs and is stronger than Hörmander’s condition (Nualart, 2006),
thus the law of 𝑋 𝑥

𝑡 is absolutely continuous w.r.t. the Lebesgue measure for any 𝑡 > 0, (𝑥, 𝜃) ∈ R𝑑 ×Θ.
Hörmander’s condition allows for iterated Lie brackets of order larger than one (used here), e.g. of
order two [𝑉0, [𝑉0,𝑉𝑘]], 1 ≤ 𝑘 ≤ 𝑑𝑅, or above, to obtain vectors spanning R𝑑 . We require (H4) so that
certain discretisation schemes arising in our methodology also have a Lebesgue density. Note that (H2),
(H4) combined imply that the density of 𝑋 𝑥

𝑡 , 𝑡 > 0, is infinitely differentiable (Nualart, 2006, Theorems
2.3.2, 2.3.3).

2.2. Approximate sampling scheme

We propose approximate sampling schemes for elliptic/hypo-elliptic SDE (1) that satisfy the following
three Criteria:

(i) The scheme is explicit.
(ii) The scheme has local weak third order accuracy, i.e. for test functions 𝜑 ∈ 𝐶∞

𝑝 (R𝑑;R) there exists
a constant 𝐶 =𝐶 (𝑥, 𝜃) > 0 such that:��E𝜃 [𝜑(𝑋 𝑥

Δ
)] − E𝜃 [𝜑( 𝑋̄ 𝑥

Δ
)]
�� ≤ 𝐶Δ3, Δ ≥ 0,

where 𝑋̄ 𝑥
Δ

denotes the approximated SDE position after a single step of size Δ > 0 with an initial
value 𝑋̄ 𝑥

0 = 𝑥 ∈ R𝑑 .
(iii) The distribution of 𝑋̄ 𝑥

Δ
admits a Lebesgue density.

Criterion (ii) implies that the sampling scheme is a weak second order approximation of {𝑋𝑡 } in the
following sense. Let 𝑇 > 0, 𝑛 ≥ 1, and consider the partition 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑛−1 < 𝑡𝑛 = 𝑇 with
𝑡𝑖 − 𝑡𝑖−1 = 𝑇/𝑛, 1 ≤ 𝑖 ≤ 𝑛. Then, for 𝜑 ∈ 𝐶∞

𝑝 (R𝑑;R), there exists a constant 𝐶 = 𝐶 (𝑥,𝑇, 𝜃) > 0 such

that
��E𝜃 [𝜑(𝑋 𝑥

𝑇 )] − E𝜃 [𝜑( 𝑋̄
(𝑛) ,𝑥
𝑇

)]
�� ≤ 𝐶/𝑛2, where 𝑋̄ (𝑛) ,𝑥

𝑇
is obtained after 𝑛 iterations of a single step

of the scheme, starting from the initial state 𝑥 ∈ R𝑑 . Criterion (iii) is required so that a well-defined
contrast function can be obtained and estimates of the parameters be produced.

2.2.1. Sampling scheme for elliptic diffusions

Before writing down our scheme satisfying Criteria (i)-(iii) above for elliptic diffusions, we present the
ideas underlying the construction of a weak second order discretisation scheme (equivalently, a local
weak third order scheme) following the moment matching techniques in (Milstein and Tretyakov, 2021,
Section 2.1.2). We apply an Itô-Taylor expansion (Kloeden and Platen, 1992) for SDE model (1) with
𝑑𝑆 = 0 and obtain that 𝑋 𝑥

𝑒,Δ = 𝑋̂ 𝑥
𝑒,Δ + 𝜌𝑒,Δ (𝑥, 𝜃), where

𝑋̂ 𝑥
𝑒,Δ = 𝑥 +𝑉𝑅,0 (𝑥, 𝜃)Δ +

∑︁
1≤𝑘≤𝑑𝑅

𝑉𝑅,𝑘 (𝑥, 𝜃)𝐵𝑘,Δ +
∑︁

0≤𝑘1 ,𝑘2≤𝑑𝑅
𝑉̂𝑘1𝑉𝑅,𝑘2 (𝑥, 𝜃)𝐼(𝑘1 ,𝑘2) (Δ), (7)

and 𝜌𝑒,Δ (𝑥, 𝜃) is a residual term involving stochastic iterated integrals of order three and above. Then,
it can be shown (Milstein and Tretyakov, 2021) that for test functions 𝜑 ∈ 𝐶∞

𝑝 (R𝑑𝑅 ;R), 𝑋̂ 𝑥
Δ

has local
weak third order accuracy, though it is not an explicit scheme due to the presence of 𝐼(𝑘1 ,𝑘2) (Δ), 1 ≤
𝑘1, 𝑘2 ≤ 𝑑𝑅, 𝑘1 ≠ 𝑘2, in its expression. Thus, we aim at replacing 𝐼(𝑘1 ,𝑘2) (Δ) in (7) by some tractable
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random variables {𝜉𝑘1𝑘2 ,Δ}𝑘1 ,𝑘2 so that a scheme using 𝜉𝑘1𝑘2 ,Δ still achieves local weak third order
convergence. Lemma 2.1.5 in Milstein and Tretyakov (2021) states the local weak third order accuracy
is preserved if the random variables {𝜉𝑘1𝑘2 ,Δ}𝑘1 ,𝑘2 have finite moments up to 6th order and satisfy a
collection of moment conditions.

Thus, we write the sampling scheme for elliptic diffusions as:

𝑋̄ 𝑥
𝑒,Δ = 𝑥 +𝑉𝑅,0 (𝑥, 𝜃)Δ +

∑︁
1≤𝑘≤𝑑𝑅

𝑉𝑅,𝑘 (𝑥, 𝜃)𝐵𝑘,Δ +
∑︁

0≤𝑘1 ,𝑘2≤𝑑𝑅
𝑉̂𝑘1𝑉𝑅,𝑘2 (𝑥, 𝜃) 𝜉𝑘1𝑘2 ,Δ, (8)

with the following specification of the random variables 𝜉𝑘1𝑘2 ,Δ, 0 ≤ 𝑘1, 𝑘2 ≤ 𝑑𝑅, satisfying the mo-
ment conditions given in Lemma 2.1.5 Milstein and Tretyakov (2021): for 1 ≤ 𝑘1, 𝑘2 ≤ 𝑑𝑅,

𝜉00,Δ = Δ2

2 , 𝜉𝑘10,Δ = 𝜉0𝑘1 ,Δ = 1
2𝐵𝑘1 ,ΔΔ, 𝜉𝑘1𝑘1 ,Δ = 1

2𝐵𝑘1 ,Δ𝐵𝑘1 ,Δ − 1
2Δ;

𝜉𝑘1𝑘2 ,𝑡 =
1
2𝐵𝑘1 ,Δ𝐵𝑘2 ,Δ + 1

2𝐵𝑘1 ,Δ𝐵𝑘2 ,Δ · 1𝑘1<𝑘2 − 1
2𝐵𝑘2 ,Δ𝐵𝑘1 ,Δ · 1𝑘1>𝑘2 .

(9)

Here, 𝐵 := (𝐵2,𝑡 , . . . , 𝐵𝑑𝑅 ,𝑡 )𝑡≥0 denotes a (𝑑𝑅 − 1)-dimensional standard Brownian motion, indepen-
dent of 𝐵. Our scheme is marginally different from the one appearing in Milstein and Tretyakov (2021),
with the former scheme using (2𝑑𝑅 − 1) Gaussian variates, rather than 2𝑑𝑅 ones involved in the latter.
The scheme is explicit as it only involves Gaussian variates – thus Criterion (i) stated above is satisfied.
Criterion (ii) is satisfied, given the above discussion. Criterion (iii) is clearly satisfied under (H3).

Remark 2.1. Scheme (8) under the choice of variates in (9) can also be used in a hypo-elliptic setting as
an explicit weak second order scheme. However, such a specification fails to meet Criterion (iii). Some
more details are given in Remark 2.5. Hence, in this work, we propose separate sampling schemes for
the elliptic/hypo-elliptic classes.

In (8) we introduced the extra subscript ‘𝑒’ for sampling scheme 𝑋̄ 𝑥
𝑒,Δ to stress that it involves the

elliptic case (not the hypo-elliptic one). We adopt a similar convention for mathematical expressions,
when needed, in the rest of the paper.

2.2.2. Sampling scheme for hypo-elliptic diffusions

We treat hypo-elliptic SDEs, thus 𝑑𝑆 ≥ 1. We make use of an Itô-Taylor expansion where for the rough
component we retain all second order integrals and for the smooth one we retain the second order and
third order integrals for which the outside integrator is 𝑑𝑡. That is, we have 𝑋 𝑥

Δ
= 𝑋̂ 𝑥

Δ
+ 𝜌Δ (𝑥, 𝜃) where:

𝑋̂ 𝑥
𝑅,Δ = 𝑥𝑅 +𝑉𝑅,0 (𝑥, 𝜃)Δ +

∑︁
1≤𝑘≤𝑑𝑅

𝑉𝑅,𝑘 (𝑥, 𝜃) 𝐵𝑘,Δ +
∑︁

0≤𝑘1 ,𝑘2≤𝑑𝑅
𝑉̂𝑘1𝑉𝑅,𝑘2 (𝑥, 𝜃) 𝐼(𝑘1 ,𝑘2) (Δ);

𝑋̂ 𝑥
𝑆,Δ = 𝑥𝑆 +𝑉𝑆,0 (𝑥, 𝜃)Δ +

∑︁
0≤𝑘≤𝑑𝑅

𝑉̂𝑘𝑉𝑆,0 (𝑥, 𝜃) 𝐼(𝑘,0) (Δ) +
∑︁

0≤𝑘1 ,𝑘2≤𝑑𝑅
s.t. 𝑘1=𝑘2≠0

𝑉̂𝑘1𝑉̂𝑘2𝑉𝑆,0 (𝑥, 𝜃) 𝐼(𝑘1 ,𝑘2 ,0) (Δ).

As with the elliptic case, we next replace the non-explicit iterated integrals 𝐼(𝑘1 ,𝑘2) (Δ), 𝐼(𝑘1 ,𝑘2 ,0) (Δ),
1 ≤ 𝑘1, 𝑘2 ≤ 𝑑𝑅, 𝑘1 ≠ 𝑘2, with explicit variates, based on moment conditions that ensure that the re-
sulted scheme remains a weak second order one. The tools in Milstein and Tretyakov (2021) cover only
the setting of double integrals, thus we need to carry out an extension of such methodology in the pres-
ence of triple integrals. The extension (see the proof of Proposition 2.3 stated below for details) gives
rise to the sampling scheme 𝑋̄ 𝑥

Δ
= [( 𝑋̄ 𝑥

𝑅,Δ)
⊤, ( 𝑋̄ 𝑥

𝑆,Δ)
⊤]⊤, 𝑥 = [𝑥⊤𝑅, 𝑥

⊤
𝑆 ]

⊤ ∈ R𝑑 for hypo-elliptic SDEs
determined as follows:
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𝑋̄ 𝑥
𝑅,Δ = 𝑥𝑅 +𝑉𝑅,0 (𝑥, 𝜃)Δ +

∑︁
1≤𝑘≤𝑑𝑅

𝑉𝑅,𝑘 (𝑥, 𝜃) 𝐵𝑘,Δ +
∑︁

0≤𝑘1 ,𝑘2≤𝑑𝑅
𝑉̂𝑘1𝑉𝑅,𝑘2 (𝑥, 𝜃) 𝜁𝑘1𝑘2 ,Δ;

𝑋̄ 𝑥
𝑆,Δ = 𝑥𝑆 +𝑉𝑆,0 (𝑥, 𝜃)Δ +

∑︁
0≤𝑘≤𝑑𝑅

𝑉̂𝑘𝑉𝑆,0 (𝑥, 𝜃) 𝜁𝑘0,Δ +
∑︁

0≤𝑘1 ,𝑘2≤𝑑𝑅
s.t. 𝑘1=𝑘2≠0

𝑉̂𝑘1𝑉̂𝑘2𝑉𝑆,0 (𝑥, 𝜃) 𝜂𝑘1𝑘2 ,Δ.
(10)

Variables 𝜁𝑘1𝑘2 ,Δ are such that 𝜁00,Δ = Δ2/2 and for 1 ≤ 𝑘1, 𝑘2 ≤ 𝑑𝑅:

𝜁0𝑘1 ,Δ = 𝐼(0,𝑘1) (Δ), 𝜁𝑘10,Δ = 𝐼(𝑘1 ,0) (Δ), 𝜁𝑘1𝑘2 ,Δ = 𝜉𝑘1𝑘2 ,Δ, (11)

for 𝜉’s as determined earlier in (9) for the elliptic case. Variables 𝜂𝑘1𝑘2 ,𝑡 are required to satisfy the
following moment conditions, with 1 ≤ 𝑘1, 𝑘2, 𝑘3, 𝑘4 ≤ 𝑑𝑅:

E[𝜂𝑘1𝑘2 ,Δ] = E[𝐼(𝑘1 ,𝑘2 ,0) (Δ)] = 0, E[𝜂𝑘10,Δ] = E[𝐼(𝑘1 ,0,0) (Δ)] = 0;

E[𝜂0𝑘1 ,Δ] = E[𝐼(0,𝑘1 ,0) (Δ)] = 0, E[𝜂𝑘1𝑘2 ,Δ𝐵𝑘3 ,Δ] = E[𝐼(𝑘1 ,𝑘2 ,0) (Δ)𝐵𝑘3 ,Δ] = 0;

E[𝜂𝑘10,Δ𝐵𝑘2 ,Δ] = E[𝜂0𝑘1 ,Δ𝐵𝑘2 ,Δ] = E[𝐼(𝑘1 ,0,0) (Δ)𝐵𝑘2 ,Δ] = E[𝐼(0,𝑘1 ,0) (Δ)𝐵𝑘2 ,Δ] = Δ3

6 × 1𝑘1=𝑘2 ;

E[𝜂𝑘10,Δ𝜁𝑘20,Δ] = E[𝐼(𝑘1 ,0,0) (Δ)𝐼(𝑘2 ,0) (Δ)] =
Δ4

8 × 1𝑘1=𝑘2 ;

E[𝜂0𝑘1 ,Δ𝜁𝑘20,Δ] = E[𝐼(0,𝑘1 ,0) (Δ)𝐼(𝑘2 ,0) (Δ)] =
Δ4

6 × 1𝑘1=𝑘2 ;

E[𝜂𝑘1𝑘2 ,Δ𝜁𝑘3𝑘4 ,Δ] = E[𝐼(𝑘1 ,𝑘2 ,0) (Δ)𝐼(𝑘3 ,𝑘4) (Δ)] =
Δ3

6 × 1𝑘1=𝑘3 ,𝑘2=𝑘4 ;

E[𝜂𝑘1𝑘2 ,Δ𝜂𝑘3𝑘4 ,Δ] = E[𝐼(𝑘1 ,𝑘2 ,0) (Δ)𝐼(𝑘3 ,𝑘4 ,0) (Δ)] =
Δ4

12 × 1𝑘1=𝑘3 ,𝑘2=𝑘4 .

A particular choice for the 𝜂’s that we adopt for the rest of the paper is the one below:

𝜂𝑘10,Δ = Δ
2 𝜁𝑘10,Δ − Δ2

12 𝐵𝑘1 ,Δ, 𝜂0𝑘1 ,Δ = Δ𝜁𝑘10,Δ − Δ2

3 𝐵𝑘1 ,Δ, 𝜂𝑘1𝑘2 ,Δ = 1
3 𝜁𝑘1𝑘2 ,ΔΔ − 𝜂𝑘1𝑘2 ,ΔΔ.

We have set:

𝜂𝑘1𝑘2 ,Δ =


1

6
√

2
(𝐵𝑘,Δ𝐵𝑘,Δ − Δ), 𝑘1 = 𝑘2 = 𝑘;

1
6
√

2
(𝐵𝑘1 ,Δ𝐵𝑘2 ,Δ + 𝐵𝑘1 ,Δ𝑊𝑘2 ,Δ · 1𝑘1<𝑘2 − 𝐵𝑘2 ,Δ𝑊𝑘1 ,Δ · 1𝑘1>𝑘2 ) 𝑘1 ≠ 𝑘2;

where 𝐵 := (𝐵1,𝑡 , . . . , 𝐵𝑑𝑅 ,𝑡 )𝑡≥0 and 𝑊 = (𝑊2,𝑡 , . . . ,𝑊𝑑𝑅 ,𝑡 )𝑡≥0 are standard Brownian motions, mutu-
ally independent and independent of 𝐵.

Remark 2.2. Generation of the Gaussian variables 𝜁0𝑘,Δ and 𝜁𝑘0,Δ = 𝐵𝑘,ΔΔ − 𝜁0𝑘,Δ in (11) must
take under consideration the dependency structure amongst {𝐵𝑘,Δ}, {𝜁0𝑘,Δ}. That is, we have:
E[𝐵𝑘1 ,Δ𝜁0𝑘2 ,Δ] = Δ2/2 · 1𝑘1=𝑘2 , E[𝜁0𝑘1 ,Δ𝜁0𝑘2 ,Δ] = Δ3/3 · 1𝑘1=𝑘2 for 1 ≤ 𝑘1, 𝑘2 ≤ 𝑑𝑅. Thus, one can
generate {𝐵𝑘,Δ}, {𝜁0𝑘,Δ} and {𝜁𝑘0,Δ} as follows:

𝐵𝑘,Δ = Δ1/2 𝑍𝑘 , 𝜁0𝑘,Δ=
Δ3/2

2
(
𝑍𝑘 + 1√

3
𝑍𝑘

)
, 𝜁𝑘0,Δ=Δ

3/2𝑍𝑘 − 𝜁0𝑘,Δ, 1 ≤ 𝑘 ≤ 𝑑𝑅,

where 𝑍𝑘 , 𝑍𝑘 ∼ N (0,1), 1 ≤ 𝑘 ≤ 𝑑𝑅, are i.i.d. random variables.

We have developed scheme (10) that is explicit (Criterion (i)) and, as stated in the proposition below,
it has local weak third order accuracy (Criterion (ii)), with the proof given in Section D of Supplemen-
tary Material. Criterion (iii) is discussed after the following proposition.
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Proposition 2.3. Let 𝑑𝑆 ≥ 1 and consider 𝜑 ∈ 𝐶∞
𝑝 (R𝑑;R). Under conditions (H1)–(H2), for any

(𝑥, 𝜃) ∈ R𝑑 ×Θ, there exist constants 𝐶 > 0, 𝑞 ≥ 1 such that:��E𝜃 [𝜑(𝑋 𝑥
Δ
)] − E𝜃 [𝜑( 𝑋̄ 𝑥

Δ
)]
�� ≤ 𝐶 (1 + |𝑥 |𝑞)Δ3.

Finally, w.r.t Criterion (iii) we notice that scheme (10) contains in its specification (i.e. once some terms
are removed from (10)) the local Gaussian scheme 𝑋LG,𝑥

Δ
=
[
(𝑋 𝑥

𝑅,Δ)
⊤, (𝑋 𝑥

𝑆,Δ)
⊤]⊤ given as:

𝑋 𝑥
𝑅,Δ = 𝑥𝑅 +𝑉𝑅,0 (𝑥, 𝛽)Δ +

∑︁
1≤𝑘≤𝑑𝑅

𝑉𝑅,𝑘 (𝑥, 𝜎)𝐵𝑘,Δ;

𝑋 𝑥
𝑆,Δ = 𝑥𝑆 +𝑉𝑆,0 (𝑥, 𝛾)Δ + 𝑉̂0𝑉𝑆,0 (𝑥, 𝜃) Δ

2

2 +
∑︁

1≤𝑘≤𝑑𝑅
𝑉̂𝑘𝑉𝑆,0 (𝑥, 𝜃)𝐼(𝑘,0) (Δ),

(12)

where the covariance matrix is given as:

Σ(Δ, 𝑥; 𝜃) =


∑︁

1≤𝑘≤𝑑𝑅
𝑉𝑅,𝑘 (𝑥, 𝜎)𝑉𝑅,𝑘 (𝑥, 𝜎)⊤Δ

∑︁
1≤𝑘≤𝑑𝑅

𝑉𝑅,𝑘 (𝑥, 𝜎)𝑉̂𝑘𝑉𝑆,0 (𝑥, 𝜃)⊤ Δ2

2∑︁
1≤𝑘≤𝑑𝑅

𝑉̂𝑘𝑉𝑆,0 (𝑥, 𝜃)𝑉𝑅,𝑘 (𝑥, 𝜎)⊤ Δ2

2

∑︁
1≤𝑘≤𝑑𝑅

𝑉̂𝑘𝑉𝑆,0 (𝑥, 𝜃)𝑉̂𝑘𝑉𝑆,0 (𝑥, 𝜃)⊤ Δ3

3

 . (13)

Σ(Δ, 𝑥; 𝜃) is positive definite for any (Δ, 𝑥, 𝜃) ∈ (0,∞) × R𝑑 × Θ under Assumptions (H3)–(H4), thus
Criterion (iii) is satisfied.

Remark 2.4. Proposition 2.3 holds for scheme (10) with or without retainment of the triple integral
term in the smooth component 𝐼3 :=

∑
(𝑘1 ,𝑘2) ∈{0,...,𝑑𝑅 }2\{0,0} 𝑉̂𝑘1𝑉̂𝑘2𝑉𝑆,0 (𝑥, 𝜃) 𝐼(𝑘1 ,𝑘2 ,0) (Δ). However,

our analysis of statistical methodology based on the above scheme will illustrate that inclusion of term
𝐼3 (or, more precisely, of an explicit substitute for 𝐼3) is necessary for obtaining a CLT for the MLE in
the complete observation regime under the improved rate Δ𝑛 = 𝑜(𝑛−1/3).

Remark 2.5. A difference versus the scheme for elliptic SDEs in (8) is that in (10) variables 𝐼(𝑘,0) (Δ),
𝐼(0,𝑘) (Δ), 1 ≤ 𝑘 ≤ 𝑑𝑅, are kept and are not replaced by 1

2𝐵𝑘,ΔΔ. A replacement of 𝐼(𝑘,0) (Δ) by 1
2𝐵𝑘,ΔΔ

would lead to a degenerate covariance matrix in place of Σ(Δ, 𝑥; 𝜃) and a violation of Criterion (iii).

3. Small time density expansion

We denote the transition densities of the given SDE (1) and the sampling scheme 𝑋̄ 𝑥
Δ

by

𝑦 ↦→ 𝑝𝑋Δ (𝑥, 𝑦; 𝜃) = P𝜃 [𝑋 𝑥
Δ
∈ 𝑑𝑦]/𝑑𝑦, 𝑦 ↦→ 𝑝𝑋̄Δ (𝑥, 𝑦; 𝜃) = P𝜃 [𝑋̄ 𝑥

Δ
∈ 𝑑𝑦]/𝑑𝑦

respectively, for (Δ, 𝑥, 𝜃) ∈ (0,∞) × R𝑑 × Θ. The (one step) sampling scheme 𝑋̄ 𝑥
Δ

in (8) or (10), for
elliptic or hypo-elliptic SDEs respectively, does not admit, in general, a closed-form density function.
To obtain a proxy for the density, we work with a small time expansion of the density of 𝑋̄ 𝑥

Δ
given

below in Lemma 3.1. The expansion will be called upon in Section 4 to provide a method for statisti-
cal inference that will possess advantageous characteristics compared with existing methods that use
constrast functions induced by conditionally Gaussian discretisation schemes, e.g. the local Gaussian
scheme (12) in the hypo-elliptic case or the Euler-Maruyama scheme in the elliptic case. We proceed
by assuming a hypo-elliptic setting with 𝑑𝑆 ≥ 1, but our analysis also covers the elliptic case 𝑑𝑆 = 0.
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3.1. Background material

Before giving the small time expansion formula for 𝑝𝑋̄Δ (𝑥, 𝑦; 𝜃) we sketch its derivation via use of Malli-
avin calculus, a differential calculus on Wiener space. Full rigorous arguments are given in Section E
of Supplementary Material. We refer interested readers to, e.g., Ikeda and Watanabe (2014), Watanabe
(1987).

We consider Wiener functionals, 𝐹 = 𝐹 (𝜔) : Ω→ R𝑑 , where for current Section 3.1, (Ω,F , {F𝑡 },P)
is the probability space giving rise to the 3 × 𝑑𝑅 − 1 Brownian motions involved in the definition of
sampling scheme 𝑋̄Δ in (10). Malliavin calculus allows for 𝛿𝑦 (𝐹), with 𝛿𝑦 the Dirac measure at 𝑦 ∈ R𝑑 ,
to be well-defined as an element of a Sobolev space of Wiener functionals, provided that 𝐹 satisfies
regularity and non-degeneracy conditions, in which case such a Wiener functional is referred to as
smooth and non-degenerate in the Malliavin sense. The non-degeneracy is a sufficient condition for the
existence of Lebesgue density for the law of 𝐹, and in the case of a Gaussian variate, non-degeneracy is
equivalent to the positive definiteness of the covariance matrix. It is shown that the Lebesgue density,
𝑝𝐹 (𝑦), of 𝐹 coincides with E [ 𝛿𝑦 (𝐹) ], i.e. the generalised expectation of 𝛿𝑦 (𝐹), if 𝐹 is smooth and
non-generate in the Malliavin sense. We consider an 𝐹 = 𝐹 𝜀 , for small 𝜀 ∈ (0,1), of the form

𝐹 𝜀 = 𝑓0 + 𝜀 𝑓1 + 𝜀2 𝑓2 + · · · + 𝜀𝐽 𝑓𝐽 (14)

for Wiener functionals 𝑓𝑖 = 𝑓𝑖 (𝜔), 0 ≤ 𝑖 ≤ 𝐽, 𝐽 ≥ 1. We assume that 𝐹 𝜀 is smooth and non-degenerate
in the Malliavin sense for any 𝜀 ∈ (0,1). Then, Theorem 9.4 in Ikeda and Watanabe (2014) gives an
asymptotic expansion of the density, 𝑝𝐹

𝜀 (𝑦), of 𝐹 𝜀 as follows. For every 𝑛 ≥ 0, there exist Wiener
functionals 𝜙𝑘 = 𝜙𝑘 (𝜔, 𝑦), 0 ≤ 𝑘 ≤ 𝑛 − 1, and R-valued 𝑟𝑛 (·) such that

𝑝𝐹
𝜀 (𝑦) = E [ 𝛿𝑦 (𝐹 𝜀) ] =

∑︁
0≤𝑘≤𝑛−1

𝜀𝑘 · E [ 𝜙𝑘 (·, 𝑦) ] + 𝜀𝑛 · 𝑟𝑛 (𝑦, 𝜀), (15)

with |𝑟𝑛 (𝑦, 𝜀) | ≤ 𝐶 for constant 𝐶 > 0 independent of 𝜀 ∈ (0,1), 𝑦 ∈ R𝑑 , and the 𝜙𝑘’s are given via a
formal Taylor expansion of 𝜀→ 𝛿𝑦 (𝐹 𝜀), e.g., 𝜙0 = 𝛿𝑦 ( 𝑓0), 𝜙1 = ⟨𝜕𝑧𝛿𝑦 (𝑧) |𝑧= 𝑓0 , 𝑓1⟩.

3.2. Density expansion for sampling scheme

We develop a small time expansion for the density 𝑝𝑋̄Δ (𝑥, 𝑦; 𝜃) of 𝑋̄ 𝑥
Δ

in (10) via reference to (14), (15).
We make use of the multi-index notation: ∥𝛼∥ := 𝑙+ (# of zeros in 𝛼), |𝛼 | := 𝑙, for 𝛼 ∈ {0,1, . . . , 𝑑}𝑙 , 𝑙 ≥
0. Based on the expression for 𝑋̄ 𝑥

Δ
in (10), we define 𝑋̄ 𝜀,𝑥

Δ
=
[
( 𝑋̄ 𝜀,𝑥

𝑅,Δ
)⊤, ( 𝑋̄ 𝜀,𝑥

𝑆,Δ
)⊤

]⊤ as follows:

𝑋̄
𝜀,𝑥

𝑅,Δ
= 𝑥𝑅 + 𝜀2𝑉𝑅,0 (𝑥, 𝛽)Δ + 𝜀

∑︁
1≤𝑘≤𝑑𝑅

𝑉𝑅,𝑘 (𝑥, 𝜎) 𝐵𝑘,Δ +
∑︁

0≤𝑘1 ,𝑘2≤𝑑𝑅
𝜀 ∥ (𝑘1 ,𝑘2) ∥𝑉̂𝑘1𝑉𝑅,𝑘2 (𝑥, 𝜃) 𝜁𝑘1𝑘2 ,Δ;

𝑋̄
𝜀,𝑥

𝑆,Δ
= 𝑥𝑆 + 𝜀2𝑉𝑆,0 (𝑥, 𝛾)Δ +

∑︁
0≤𝑘≤𝑑𝑅

𝜀 ∥ (𝑘,0) ∥𝑉̂𝑘𝑉𝑆,0 (𝑥, 𝜃) 𝜁𝑘0,Δ (16)

+
∑︁

0≤𝑘1 ,𝑘2≤𝑑𝑅
s.t. 𝑘1=𝑘2≠0

𝜀 ∥ (𝑘1 ,𝑘2 ,0) ∥𝑉̂𝑘1𝑉̂𝑘2𝑉𝑆,0 (𝑥, 𝜃) 𝜂𝑘1𝑘2 ,Δ.

The rationale in the consideration of the above process is that, first, the latter is connected with scheme
𝑋̄ 𝑥
Δ

in (10) via the equality in distributions P𝜃
[
𝑋̄ 𝑥
Δ
∈ 𝑑𝑦

]
= P𝜃

[
𝑋̄

√
Δ,𝑥

1 ∈ 𝑑𝑦
]

and, second, it is straight-
forward to perform the standardisation defined below upon process (16). We cannot apply expansion
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(15) on the density of 𝑋̄ 𝜀,𝑥

1 as {𝑋̄ 𝜀,𝑥

1 }𝜀 is degenerate in the Malliavin sense as 𝜀→ 0, e.g. notice that
𝑋̄

0,𝑥
1 = 𝑥 is deterministic. Instead, we introduce 𝑌 𝜀 via an appropriate standarisation of 𝑋̄ 𝜀,𝑥

1 based
upon the local Gaussian scheme 𝑋LG,𝑥

Δ
=
[
(𝑋 𝑥

𝑅,Δ)
⊤, (𝑋 𝑥

𝑆,Δ)
⊤]⊤ in (12). Thus, the small time expan-

sion ultimately obtained will be centred around the density of the local Gaussian scheme. In particular,
we set

𝑚𝑥, 𝜃,𝜀 (𝑦) :=
[
𝑚𝑅,𝑥, 𝜃,𝜀 (𝑦𝑅)
𝑚𝑆,𝑥, 𝜃 ,𝜀 (𝑦𝑆)

]
=


𝑦𝑅 − 𝑥𝑅 − 𝜀2𝑉𝑅,0 (𝑥, 𝛽)

𝜀
𝑦𝑆 − 𝑥𝑆 − 𝜀2𝑉𝑆,0 (𝑥, 𝛾) − 𝜀4

2 𝑉̂0𝑉𝑆,0 (𝑥, 𝜃)
𝜀3

 , (17)

and, define

𝑌 𝜀 =
[ (
𝑌 𝜀
𝑅

)⊤
,
(
𝑌 𝜀
𝑆

)⊤]⊤
=𝑚𝑥, 𝜃,𝜀 ( 𝑋̄ 𝜀,𝑥

1 ) =𝑌 (0) +
∑︁

1≤𝑙≤3

𝜀𝑙 ·𝑌 (𝑙) , (18)

where one can obtain the O(1)-term in (18), 𝑌0 = [(𝑌 (0)
𝑅

)⊤, (𝑌 (0)
𝑆

)⊤]⊤, as

𝑌
(0)
𝑅

=
∑︁

1≤𝑘≤𝑑𝑅
𝑉𝑅,𝑘 (𝑥, 𝜎)𝐵𝑘,1, 𝑌

(0)
𝑆

=
∑︁

1≤𝑘≤𝑑𝑅
𝑉̂𝑘𝑉𝑆,0 (𝑥, 𝜃)𝐼(𝑘,0) (1),

with the remaining terms 𝑌 (𝑙) , 1 ≤ 𝑙 ≤ 3, explicitly derived via (16)–(18). 𝑌 (0) follows a Gaussian dis-
tribution and is non-degenerate under (H3)–(H4), as the covariance matrix Σ(1, 𝑥; 𝜃) in (13) is positive
definite. In brief, the above lead to non-degeneracy in the Malliavin sense of {𝑌 𝜀}𝜀 , uniformly in
𝜀 ∈ (0,1). Simple change of variables with 𝜀 =

√
Δ yields:

𝑝𝑋̄Δ (𝑥, 𝑦; 𝜃) = P𝜃
[
𝑋̄

√
Δ,𝑥

1 ∈ 𝑑𝑦
]
/𝑑𝑦 = 1

√
Δ𝑑𝑅+3𝑑𝑆

𝑝𝑌
√
Δ (𝜉; 𝜃) | 𝜉=𝑚

𝑥,𝜃,
√
Δ
(𝑦) . (19)

Thus, application of expansion (15) for the density of 𝑌 𝜀 , 𝑝𝑌
𝜀 (𝜉; 𝜃) = E [ 𝛿𝜉 (𝑌 𝜀) ], produces the small

time expansion of 𝑝𝑋̄Δ (𝑥, 𝑦; 𝜃). Due to starting off from (17) the rightmost side of (19) expands around
the density of the local Gaussian scheme (12), that is:

1
√
Δ𝑑𝑅+3𝑑𝑆

× 𝑝𝑌 (0) (𝜉; 𝜃)
��
𝜉=𝑚

𝑥,𝜃,
√
Δ
(𝑦) = 𝑝

𝑋LG

Δ (𝑥, 𝑦; 𝜃), (20)

where 𝜉 ↦→ 𝑝𝑌
(0) (𝜉; 𝜃) denotes the density of the probability law of𝑌 (0) and 𝑦 ↦→ 𝑝𝑋

LG

Δ (𝑥, 𝑦; 𝜃) denotes
the density of the local Gaussian scheme 𝑋LG,𝑥

Δ
defined in (12) and given as:

𝑝𝑋
LG

Δ (𝑥, 𝑦; 𝜃) = 1√
(2𝜋)𝑑 |Σ (Δ,𝑥;𝜃) |

exp
(
− 1

2
(
𝑦 − 𝜇(Δ, 𝑥; 𝜃))⊤Σ−1 (Δ, 𝑥; 𝜃) (𝑦 − 𝜇(Δ, 𝑥; 𝜃)

) )
, (21)

for mean vector:

𝜇(Δ, 𝑥; 𝜃) =
[
𝜇𝑅 (Δ, 𝑥; 𝛽)
𝜇𝑆 (Δ, 𝑥; 𝜃)

]
=

[
𝑥𝑅 +𝑉𝑅,0 (𝑥, 𝛽)Δ

𝑥𝑆 +𝑉𝑆,0 (𝑥, 𝛾)Δ + 𝑉̂0𝑉𝑆,0 (𝑥, 𝜃) Δ
2

2

]
, (22)

and covariance matrix Σ(Δ, 𝑥; 𝜃) given in (13).
To state the asymptotic expansion of 𝑝𝑋̄Δ (𝑥, 𝑦; 𝜃), we introduce a class of Hermite polynomials based

on the density of 𝑌 (0) . To simplify the notation we henceforth write 𝑌 =𝑌 (0) . Thus, we define:

H𝑌
𝛼 (𝜉; 𝜃) := (−1) |𝛼 | 𝜕 𝜉

𝛼 𝑝
𝑌 (𝜉; 𝜃)/𝑝𝑌 (𝜉; 𝜃), 𝜉 ∈ R𝑑 , 𝜃 ∈ Θ. (23)
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Also, we write H𝛼 (Δ, 𝑥, 𝑦; 𝜃) =H𝑌
𝛼 (𝜉; 𝜃) | 𝜉=𝑚

𝑥,𝜃,
√
Δ
(𝑦) , (Δ, 𝑥, 𝑦, 𝜃) ∈ (0,∞) × R𝑑 × R𝑑 × Θ. We then

have the following result whose proof is provided in Section E of Supplementary Material.

Lemma 3.1. Let 𝑥, 𝑦 ∈ R𝑑 , Δ > 0, 𝜃 ∈ Θ, and assume that conditions (H1)–(H4) hold. Then, for any
integer 𝐽 ≥ 4, the transition density 𝑦 ↦→ 𝑝𝑋̄Δ (𝑥, 𝑦; 𝜃) admits the following representation:

𝑝𝑋̄Δ (𝑥, 𝑦; 𝜃) = 𝑝𝑋LG

Δ (𝑥, 𝑦; 𝜃)
{
1 +

∑︁
1≤𝑙≤𝐽−1

Δ𝑙/2 Ψ𝑙 (Δ, 𝑥, 𝑦; 𝜃)
}
+ Δ𝐽/2
√
Δ𝑑𝑅+3𝑑𝑆

𝑅𝐽 (𝑥, 𝑦; 𝜃), (24)

where 𝑅𝐽 (𝑥, 𝑦; 𝜃) is the residual term satisfying sup𝑥,𝑦∈R𝑑 , 𝜃 ∈Θ |𝑅𝐽 (𝑥, 𝑦; 𝜃) | < 𝐶 for some constant
𝐶 > 0, and Ψ𝑙 (Δ, 𝑥, 𝑦; 𝜃), 𝑙 ≥ 1, have the general form:

Ψ𝑙 (Δ, 𝑥, 𝑦; 𝜃) =
∑︁

1≤𝑘≤𝜈 (𝑙)

∑︁
𝛼∈{1,...,𝑑 }𝑘

𝑣𝛼 (𝑥, 𝜃) ×H𝛼 (Δ, 𝑥, 𝑦; 𝜃), (25)

for some positive integer 𝜈(𝑙), where 𝑣𝛼 : R𝑑 ×Θ→ R is explicitly given as a summation of products of
𝑉 𝑗 (𝑥, 𝜃), 0 ≤ 𝑗 ≤ 𝑑𝑅, and their partial derivatives. For the first two Ψ-terms in the expansion, we get:

Ψ1 (Δ, 𝑥, 𝑦; 𝜃) =
∑︁

1≤ 𝑗1 , 𝑗2≤𝑑𝑅
1≤𝑖1≤𝑑

{
𝑉̂ 𝑗1𝑉

𝑖1
𝑗2
(𝑥, 𝜃) · 11≤𝑖1≤𝑑𝑅 + 1

3𝑉̂ 𝑗1𝑉̂ 𝑗2𝑉
𝑖1
0 (𝑥, 𝜃) · 1𝑑𝑅+1≤𝑖1≤𝑑

}
· Ψ̃𝑖1

𝑗1 𝑗2
(Δ, 𝑥, 𝑦; 𝜃),

with

Ψ̃
𝑖1
𝑗1 𝑗2

(Δ, 𝑥, 𝑦; 𝜃) = 1
2

∑︁
1≤𝑖2 ,𝑖3≤𝑑𝑅

𝑉
𝑖2
𝑗1
(𝑥, 𝜃)𝑉 𝑖3

𝑗2
(𝑥, 𝜃) H(𝑖1 ,𝑖2 ,𝑖3) (Δ, 𝑥, 𝑦; 𝜃)

+
∑︁

𝑑𝑅+1≤𝑖2≤𝑑
1≤𝑖3≤𝑑𝑅

{
1
3𝑉̂ 𝑗1𝑉

𝑖2
0 (𝑥, 𝜃)𝑉 𝑖3

𝑗2
(𝑥, 𝜃) + 1

6𝑉
𝑖3
𝑗1
(𝑥, 𝜃)𝑉̂ 𝑗2𝑉

𝑖2
0 (𝑥, 𝜃)

}
H(𝑖1 ,𝑖2 ,𝑖3) (Δ, 𝑥, 𝑦; 𝜃)

+ 1
8

∑︁
𝑑𝑅+1≤𝑖2 ,𝑖3≤𝑑

𝑉̂ 𝑗1𝑉
𝑖2
0 (𝑥, 𝜃)𝑉̂ 𝑗2𝑉

𝑖3
0 (𝑥, 𝜃)H(𝑖1 ,𝑖2 ,𝑖3) (Δ, 𝑥, 𝑦; 𝜃).

Also, Ψ2 (Δ, 𝑥, 𝑦; 𝜃) = Φ2 (Δ, 𝑥, 𝑦; 𝜃) + Φ̃2 (Δ, 𝑥, 𝑦; 𝜃) with

Φ2 (Δ, 𝑥, 𝑦; 𝜃) = 1
2

∑︁
1≤𝑖1 ,𝑖2≤𝑑𝑅

∑︁
1≤𝑘≤𝑑𝑅

(
𝑉̂𝑘𝑉

𝑖1
0 (𝑥, 𝜃) + 𝑉̂0𝑉

𝑖1
𝑘
(𝑥, 𝜃)

)
𝑉
𝑖2
𝑘
(𝑥, 𝜎)H(𝑖1 ,𝑖2) (Δ, 𝑥, 𝑦; 𝜃)

+ 1
4

∑︁
1≤𝑖1 ,𝑖2≤𝑑𝑅

∑︁
1≤𝑘1 ,𝑘2≤𝑑𝑅

𝑉̂𝑘1𝑉
𝑖1
𝑘2
(𝑥, 𝜃)𝑉̂𝑘1𝑉

𝑖2
𝑘2
(𝑥, 𝜃)H(𝑖1 ,𝑖2) (Δ, 𝑥, 𝑦; 𝜃)

+
∑︁

1≤𝑖1≤𝑑𝑅
𝑑𝑅+1≤𝑖2≤𝑑

∑︁
1≤𝑘≤𝑑𝑅

(
1
3𝑉̂𝑘𝑉

𝑖1
0 (𝑥, 𝜃) + 1

6𝑉̂0𝑉
𝑖1
𝑘
(𝑥, 𝜃)

)
𝑉̂𝑘𝑉

𝑖2
0 (𝑥, 𝜃)H(𝑖1 ,𝑖2) (Δ, 𝑥, 𝑦; 𝜃)

+ 1
6

∑︁
1≤𝑖1≤𝑑𝑅

𝑑𝑅+1≤𝑖2≤𝑑

∑︁
1≤𝑘≤𝑑𝑅

𝑉
𝑖1
𝑘
(𝑥, 𝜃)

(
𝑉̂0𝑉̂𝑘𝑉

𝑖2
0 (𝑥, 𝜃) + 𝑉̂𝑘𝑉̂0𝑉

𝑖2
0 (𝑥, 𝜃)

)
H(𝑖1 ,𝑖2) (Δ, 𝑥, 𝑦; 𝜃)

+ 1
6

∑︁
1≤𝑖1≤𝑑𝑅

𝑑𝑅+1≤𝑖2≤𝑑

∑︁
1≤𝑘1 ,𝑘2≤𝑑𝑅

𝑉̂𝑘1𝑉
𝑖1
𝑘2
(𝑥, 𝜃)𝑉̂𝑘1𝑉̂𝑘2𝑉

𝑖2
0 (𝑥, 𝜃)H(𝑖1 ,𝑖2) (Δ, 𝑥, 𝑦; 𝜃)
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+
∑︁

𝑑𝑅+1≤𝑖1 ,𝑖2≤𝑑

∑︁
1≤𝑘≤𝑑𝑅

𝑉̂𝑘𝑉
𝑖1
0 (𝑥, 𝜃)

(
1
6𝑉̂0𝑉̂𝑘𝑉

𝑖2
0 (𝑥, 𝜃) + 1

8𝑉̂𝑘𝑉̂0𝑉
𝑖2
0 (𝑥, 𝜃)

)
H(𝑖1 ,𝑖2) (Δ, 𝑥, 𝑦; 𝜃)

+ 1
24

∑︁
𝑑𝑅+1≤𝑖1 ,𝑖2≤𝑑

∑︁
1≤𝑘1 ,𝑘2≤𝑑𝑅

𝑉̂𝑘1𝑉̂𝑘2𝑉
𝑖1
0 (𝑥, 𝜃)𝑉̂𝑘1𝑉̂𝑘2𝑉

𝑖2
0 (𝑥, 𝜃)H(𝑖1 ,𝑖2) (Δ, 𝑥, 𝑦; 𝜃); (26)

Φ̃2 (Δ, 𝑥, 𝑦; 𝜃) involves higher order Hermite polynomials and is given in the form of∑︁
𝑙=4,6

∑︁
𝛼∈{1,...,𝑑 }𝑙

𝑤𝛼 (𝑥, 𝜃) ×H𝛼 (Δ, 𝑥, 𝑦; 𝜃),

where 𝑤𝛼 : R𝑑 ×Θ→ R is of the same structure as the one described above for 𝑣𝛼.

Remark 3.2. The Hermite polynomials have explicit expressions. E.g., for 1 ≤ 𝑖1, 𝑖2 ≤ 𝑑:

H𝑌
(𝑖1) (𝜉; 𝜃) | 𝜉=𝑚

𝑥,𝜃,
√
Δ
(𝑦) =

∑︁
1≤𝑖≤𝑑

Σ−1
𝑖1𝑖
(1, 𝑥; 𝜃)𝑚𝑖

𝑥, 𝜃 ,
√
Δ
(𝑦);

H𝑌
(𝑖1 ,𝑖2) (𝜉; 𝜃) | 𝜉=𝑚

𝑥,𝜃,
√
Δ
(𝑦) =

{
H𝑌

(𝑖1) (𝜉; 𝜃)H𝑌
(𝑖2) (𝜉; 𝜃)

}
| 𝜉=𝑚

𝑥,𝜃,
√
Δ
(𝑦) − Σ−1

𝑖1𝑖2
(1, 𝑥; 𝜃). (27)

Remark 3.3. We compare our small time density expansion (24) with some closed-form density ex-
pansions that have appeared in the literature.

(i) Aït-Sahalia (2002, 2008) provides Hermite series expansions for the density 𝑝𝑋Δ (𝑥, 𝑦; 𝜃) of ellip-
tic diffusions. However, the domains for 𝑥, 𝑦 ∈ R𝑑 should be restricted to a compact set so that the
related remainder term is bounded and convergence to the true density can be justified.

(ii) Li (2013) develops a closed-form expansion formula for 𝑝𝑋Δ (𝑥, 𝑦; 𝜃) in the multivariate elliptic
case using Malliavin-Watanabe calculus that enables one to obtain a remainder term that is uni-
formly bounded without imposing strong restrictions on the domain of 𝑥, 𝑦 ∈ R𝑑 . Our approach
also uses Malliavin-Watanabe calculus to obtain a closed-form expansion for 𝑝𝑋̄

Δ
(𝑥, 𝑦; 𝜃) with

controllable remainder terms in a hypo-elliptic setting.

4. Analytic results for statistical inference

Making use of the small time density expansion in Lemma 3.1, we provide analytic results about sta-
tistical inference procedures under high and low-frequency observation regimes. We do not require all
correction terms Δ𝑙/2Ψ𝑙 (Δ, 𝑥, 𝑦; 𝜃), 𝑙 = 1, . . ., appearing in the density expansion, and aim at obtaining
statistical benefits with use of such terms when necessary. Our results below identify the parts of the
expansion that lead to parameter estimates of improved performance, for each of the two observation
regimes. Interestingly, such parts differ between the two regimes.

4.1. High-frequency observation regime

4.1.1. Contrast estimator

We consider the complete observation regime (2). Such a data setting has been studied in the recent
works focused on hypo-elliptic SDEs of Ditlevsen and Samson (2019), Gloter and Yoshida (2021), and
in numerous earlier studies for the elliptic case, see e.g. Kessler (1997), Uchida and Yoshida (2012).We
introduce the following notation:
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Σ1 (𝑥; 𝜃) := Σ(1, 𝑥; 𝜃), (28)

where recall that Σ is the covariance matrix of local Gaussian scheme defined in (13). We consider the
likelihood of the complete data in (2). We work with the following proxy of −2 × log-likelihood, with
𝜇 = 𝜇(Δ, 𝑥; 𝜃), Σ = Σ(Δ, 𝑥;𝛾, 𝜎), Σ1 = Σ1 (𝑥;𝛾, 𝜎) defined in (22), (13), (28), respectively:

ℓ𝑛,Δ (𝜃) :=
∑︁

1≤𝑚≤𝑛

(
𝑋𝑡𝑚 − 𝜇(Δ, 𝑋𝑡𝑚−1 ; 𝜃)

)⊤
Σ−1 (Δ, 𝑋𝑡𝑚−1 ;𝛾, 𝜎)

(
𝑋𝑡𝑚 − 𝜇(Δ, 𝑋𝑡𝑚−1 ; 𝜃)

)
+

∑︁
1≤𝑚≤𝑛

log |Σ1 (𝑋𝑡𝑚−1 ;𝛾, 𝜎) | − 2Δ
∑︁

1≤𝑚≤𝑛
Φ2 (Δ, 𝑋𝑡𝑚−1 , 𝑋𝑡𝑚 ; 𝜃),

(29)

where Φ2 is given in (26), namely, Φ2 is a term with second order Hermite polynomials appearing
in the expression for Ψ2 in the density expansion (24). We discuss the effect of the correction term
Φ2 in the obtained CLT in Remark 4.4 later in the paper. In the elliptic case, i.e. 𝑑 = 𝑑𝑅, 𝑑𝛾 = 0, the
corresponding contrast function is as in (29) but with functions 𝜇, Σ1, Σ−1, Φ2 replaced by 𝜇𝑅, 𝑎𝑅,
𝑎−1
𝑅 /Δ, Φ𝑒,2, respectively. We define the contrast estimator 𝜃𝑛 := (𝛽𝑛, 𝛾̂𝑛, 𝜎̂𝑛) = arg min𝜃 ∈Θ ℓ𝑛,Δ (𝜃) and

write the estimator as 𝜃𝑒,𝑛 = (𝛽𝑛, 𝜎̂𝑛) in the setting of elliptic diffusions.

Remark 4.1. We state a property of term Φ2 defined in (26). For simplicity, we write Φ2 (Δ, 𝑥, 𝑦; 𝜃) =∑
1≤𝑖1 ,𝑖2≤𝑑 𝐺𝑖1𝑖2 (𝑥; 𝜃) × H(𝑖1 ,𝑖2) (Δ, 𝑥, 𝑦; 𝜃), 𝑥, 𝑦 ∈ R𝑑 for appropriate functions 𝐺𝑖1𝑖2 obtain via (26).

Terms 𝐺𝑖1𝑖2 (𝑥; 𝜃) also arise when considering the covariance of the normalised vector 𝑚(Δ, 𝑥, 𝑦; 𝜃) =
𝑚

𝑥, 𝜃,
√
Δ
(𝑦). That is, one obtains: for 1 ≤ 𝑖1, 𝑖2 ≤ 𝑑,

E𝜃
[
𝑚𝑖1 (Δ, 𝑥, 𝑋 𝑥

Δ
; 𝜃)𝑚𝑖2 (Δ, 𝑥, 𝑋 𝑥

Δ
; 𝜃)

]
= Σ1,𝑖1𝑖2 (𝑥; 𝜃) + 2Δ ×𝐺𝑖1𝑖2 (𝑥; 𝜃) +𝐺𝑖1𝑖2 (Δ2, 𝑥; 𝜃), (30)

for 𝐺𝑖1𝑖2 (·, ·; 𝜃) : [0,∞) × R𝑑 → R such that |𝐺𝑖1𝑖2 (ℎ, 𝑥; 𝜃) | ≤ 𝐶ℎ for some 𝐶 > 0, and 𝐺𝑖1𝑖2 (ℎ, ·; 𝜃) ∈
𝐶∞
𝑏 (R𝑑;R) for all (ℎ, 𝜃) ∈ [0,∞) × Θ under (H1)–(H2). The above connection between Φ2 and the

covariance expression (30) plays a key role to obtain a CLT under the weaker condition Δ𝑛 = 𝑜(𝑛−1/3).

4.1.2. Conditions for high-frequency regime

To state the main result, we introduce the following additional conditions.
(H5) For each 𝑥 ∈ R𝑑 , 𝜃 ↦→ 𝑉 𝑗 (𝑥, 𝜃) is three times differentiable. For any 𝛼 ∈ {1, . . . , 𝑑𝜃 }𝑙 , with
𝑙 ∈ {1,2}, the functions 𝑥 ↦→ 𝜕 𝜃𝛼𝑉

𝑖
𝑗 (𝑥, 𝜃), 0 ≤ 𝑗 ≤ 𝑑𝑅, 1 ≤ 𝑖 ≤ 𝑑, have bounded derivatives of

every order uniformly in 𝜃 ∈ Θ.
(H6) For 1 ≤ 𝑖 ≤ 𝑑𝑆 , there exists a function 𝐵𝑖 ∈ 𝐶∞

𝑏 (R𝑑;R) such that for any 𝑥 ∈ R𝑑 and 𝛾′, 𝛾 ∈ Θ𝛾 ,

|𝑉 𝑖
𝑆,0 (𝑥, 𝛾

′) −𝑉 𝑖
𝑆,0 (𝑥, 𝛾) | ≤ 𝐵

𝑖 (𝑥) |𝛾′ − 𝛾 |.

(H7) The diffusion process {𝑋𝑡 }𝑡≥0 in (1) is ergodic under 𝜃 = 𝜃†, with invariant distribution 𝜈𝜃†
on R𝑑 . Furthermore, all moments of 𝜈𝜃† are finite.

(H8) It holds that for all 𝑝 ≥ 1, sup𝑡>0 E𝜃† [|𝑋𝑡 |𝑝] <∞.
(H9) The true parameters lie in the interior of Θ. If it holds

𝑉𝑅,0 (𝑥, 𝛽) =𝑉𝑅,0 (𝑥, 𝛽†), 𝑉𝑆,0 (𝑥, 𝛾) =𝑉𝑆,0 (𝑥, 𝛾†), 𝑉 (𝑥, 𝜎) =𝑉 (𝑥, 𝜎†),

for 𝑥 in a set of probability 1 under 𝜈𝜃† , then 𝛽 = 𝛽†, 𝛾 = 𝛾†, 𝜎 = 𝜎†.
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4.1.3. Asymptotic properties of the contrast estimator

We can now prove that the estimator 𝜃𝑛 has the following asymptotic properties.

Theorem 4.2 (Consistency). Under conditions (H1)–(H9), it holds that if 𝑛→∞, Δ𝑛 → 0 and 𝑛Δ𝑛 →

∞, then 𝜃𝑛
P
𝜃†−−−→ 𝜃†.

Theorem 4.3 (Asymptotic normality). Under conditions (H1)–(H9), it holds that if 𝑛→∞, Δ𝑛 → 0,
𝑛Δ𝑛 →∞ and Δ𝑛 = 𝑜(𝑛−1/3), then:

(a) if 𝑑 = 𝑑𝑅, i.e. in the setting of elliptic diffusions,[√
𝑛Δ (𝛽𝑛 − 𝛽†)⊤,

√
𝑛 (𝜎̂𝑛 − 𝜎†)⊤

]⊤ L
𝜃†−−−→ N

(
0, 𝐼𝑒 (𝜃†)−1) ,

(b) if 𝑑 > 𝑑𝑅, i.e. in the setting of hypo-elliptic diffusions,[√
𝑛Δ (𝛽𝑛 − 𝛽†)⊤,

√︃
𝑛
Δ
(𝛾̂𝑛 − 𝛾†)⊤,

√
𝑛 (𝜎̂𝑛 − 𝜎†)⊤

]⊤ L
𝜃†−−−→N

(
0, 𝐼 (𝜃†)−1) .

𝐼𝑒 (𝜃†) = diag
[ (
𝐼
𝛽

𝑒,𝑖 𝑗
(𝜃†)

)
1≤𝑖, 𝑗≤𝑑𝛽 ,

(
𝐼 𝜎𝑒,𝑖 𝑗 (𝜃

†)
)
1≤𝑖, 𝑗≤𝑑𝜎

]
is the asymptotic precision matrix with block

matrix elements:

𝐼
𝛽

𝑒,𝑖 𝑗
(𝜃†) =

∫ (
𝜕𝛽𝑖𝑉𝑅,0 (𝑥, 𝛽†)⊤𝑎−1

𝑅 (𝑥, 𝜎†) 𝜕𝛽 𝑗
𝑉𝑅,0 (𝑥, 𝛽†)

)
𝜈𝜃† (𝑑𝑥);

𝐼𝜎𝑒,𝑖 𝑗 (𝜃
†) = 1

2

∫
tr
(
𝜕𝜎𝑖

𝑎𝑅 (𝑥, 𝜎†) 𝑎−1
𝑅 (𝑥, 𝜎†) 𝜕𝜎 𝑗

𝑎𝑅 (𝑥, 𝜎†) 𝑎−1
𝑅 (𝑥, 𝜎†)

)
𝜈𝜃† (𝑑𝑥).

Similarly, the asymptotic precision matrix 𝐼 (𝜃†) has the block-diagonal structure:

𝐼 (𝜃†) = diag
[ (
𝐼
𝛽

𝑖 𝑗
(𝜃†)

)
1≤𝑖, 𝑗≤𝑑𝛽 ,

(
𝐼
𝛾

𝑖 𝑗
(𝜃†)

)
1≤𝑖, 𝑗≤𝑑𝛾 ,

(
𝐼 𝜎𝑖 𝑗 (𝜃

†)
)
1≤𝑖, 𝑗≤𝑑𝜎

]
, (31)

with block matrix elements:

𝐼
𝛽

𝑖 𝑗
(𝜃†) =

∫ (
𝜕𝛽𝑖𝑉𝑅,0 (𝑥, 𝛽†)⊤Σ−1

1,𝑅𝑅 (𝑥;𝜎†) 𝜕𝛽 𝑗
𝑉𝑅,0 (𝑥, 𝛽†)

)
𝜈𝜃† (𝑑𝑥);

𝐼
𝛾

𝑖 𝑗
(𝜃†) = 4

∫ (
𝜕𝛾𝑖𝑉𝑆,0 (𝑥, 𝛾†)⊤ Σ−1

1,𝑆𝑆 (𝑥;𝛾†, 𝜎†) 𝜕𝛾 𝑗
𝑉𝑆,0 (𝑥, 𝛾†)

)
𝜈𝜃† (𝑑𝑥);

𝐼𝜎𝑖 𝑗 (𝜃
†) = 1

2

∫
tr
(
𝜕𝜎𝑖

Σ1 (𝑥;𝛾†, 𝜎†) Σ−1
1 (𝑥;𝛾†, 𝜎†) 𝜕𝜎 𝑗

Σ1 (𝑥;𝛾†, 𝜎†) Σ−1
1 (𝑥;𝛾†, 𝜎†)

)
𝜈𝜃† (𝑑𝑥).

The proofs of Theorems 4.2 and 4.3 are given in Sections B.1 and B.2, respectively, in Supplementary
Material.

Remark 4.4. Gloter and Yoshida (2021) obtain an MLE using the transition density of the local Gaus-
sian scheme in (12), that is 𝜃̃𝑛 = argmin𝜃 ∈Θℓ̃𝑛,Δ (𝜃) where ℓ̃𝑛,Δ (𝜃) is given by (29) without the last term
−2Δ

∑𝑛
𝑚=1 Φ2 (Δ, 𝑋𝑡𝑚−1 , 𝑋𝑡𝑚 ; 𝜃). They prove asymptotic normality for 𝜃̃𝑛 under the conditions 𝑛→∞,

Δ𝑛 → 0, 𝑛Δ𝑛 →∞ and Δ𝑛 = 𝑜(𝑛−1/2). The asymptotic precision they obtain is identical to the one we
find here in (31). Thus, addition of the term −2Δ

∑𝑛
𝑚=1 Φ2 (Δ, 𝑋𝑡𝑚−1 , 𝑋𝑡𝑚 ; 𝜃) allows for a weaker exper-

imental design condition under which a CLT holds, even if it does not alter the asymptotic variance.
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Remark 4.5. We explain that the proposed estimator 𝜃𝑛 contributes to an improvement mainly in the
estimation of diffusion parameter 𝜎 when compared with the existing estimator 𝜃̃𝑛. This is clarified by
observing the role of the weaker condition Δ𝑛 = 𝑜(𝑛−1/3) for the CLT. To prove the CLT, we show:∑︁

1≤𝑚≤𝑛
E𝜃† [𝑠(Δ𝑛, 𝑋𝑡𝑚−1 , 𝑋𝑡𝑚 ; 𝜃†) |F𝑡𝑚−1 ]

P
𝜃†−−−→ 0, (32)

as 𝑛→∞, Δ𝑛 → 0 and 𝑛Δ𝑛 →∞, with the aid of Δ𝑛 = 𝑜(𝑛−1/3), where 𝑠 = 𝑠(·; ·) is determined from
the scaled score function as:[ 1√

𝑛Δ𝑛
𝜕⊤𝛽 ℓ𝑛,Δ (𝜃

†),
√︃

Δ𝑛

𝑛
𝜕⊤𝛾 ℓ𝑛,Δ (𝜃†), 1√

𝑛
𝜕𝜎 ℓ𝑛,Δ (𝜃†)

]⊤ ≡
∑︁

1≤𝑚≤𝑛
𝑠(Δ𝑛, 𝑋𝑡𝑚−1 , 𝑋𝑡𝑚 ; 𝜃†).

Since the contrast function (29) splits into a log-Gaussian part (related to the local Gaussian scheme)
and a correction part (involving Φ2), we write the score function as: 𝑠(Δ𝑛, 𝑋𝑡𝑚−1 , 𝑋𝑡𝑚−1 ; 𝜃†) ≡
𝑠LG (Δ𝑛, 𝑋𝑡𝑚−1 , 𝑋𝑡𝑚−1 ; 𝜃†) + 𝑠Φ2 (Δ𝑛, 𝑋𝑡𝑚−1 , 𝑋𝑡𝑚−1 ; 𝜃†). Then, the expansion formula (30) yields:∑︁
1≤𝑚≤𝑛

E𝜃† [𝑠
𝑖1
LG (Δ𝑛, 𝑋𝑡𝑚−1 , 𝑋𝑡𝑚 ; 𝜃†) |F𝑡𝑚−1 ] = 1

𝑛

∑︁
1≤𝑚≤𝑛

𝑔𝑖1
(√︃
𝑛Δ3

𝑛, 𝑋𝑡𝑚−1 ; 𝜃†
)
, 1 ≤ 𝑖1 ≤ 𝑑𝛽 + 𝑑𝛾 ;

∑︁
1≤𝑚≤𝑛

E𝜃† [𝑠
𝑖2
LG (Δ𝑛, 𝑋𝑡𝑚−1 , 𝑋𝑡𝑚 ; 𝜃†) |F𝑡𝑚−1 ] =

√
𝑛Δ2

𝑛

𝑛

∑︁
1≤𝑚≤𝑛

tr
(
2 ·𝐺 (𝑋𝑡𝑚−1 ; 𝜃†)𝜕𝜃𝑖2Σ

−1
1 (𝑋𝑡𝑚−1 ;𝛾†, 𝜎†)

)
+ 1

𝑛

∑︁
1≤𝑚≤𝑛

𝑔𝑖2
(√︃
𝑛Δ4

𝑛, 𝑋𝑡𝑚−1 ; 𝜃†
)
, 𝑑𝛽 + 𝑑𝛾 + 1 ≤ 𝑖2 ≤ 𝑑𝜃 , (33)

where 𝑔𝑖 (·, ·; 𝜃†) : [0,∞)×R𝑑 → R, 1 ≤ 𝑖 ≤ 𝑑, has the same regularity property as𝐺𝑖1𝑖2 (·, ·; 𝜃†) in (30).
The above two equations correspond to the score functions of the drift parameters (𝛽, 𝛾) ∈ Θ𝛽 × Θ𝛾

and the diffusion parameter 𝜎 ∈ Θ𝜎 , respectively. Also for the correction part, we show that∑︁
1≤𝑚≤𝑛

E𝜃† [𝑠
𝑖1
Φ2

(Δ𝑛, 𝑋𝑡𝑚−1 , 𝑋𝑡𝑚 ; 𝜃†) |F𝑡𝑚−1 ] = 1
𝑛

∑︁
1≤𝑚≤𝑛

𝑔̃𝑖1
(√︃
𝑛Δ3

𝑛, 𝑋𝑡𝑚−1 ; 𝜃†
)
, 1 ≤ 𝑖1 ≤ 𝑑𝛽 + 𝑑𝛾 ;

∑︁
1≤𝑚≤𝑛

E𝜃† [𝑠
𝑖2
Φ2

(Δ𝑛, 𝑋𝑡𝑚−1 , 𝑋𝑡𝑚 ; 𝜃†) |F𝑡𝑚−1 ] = −
√
𝑛Δ2

𝑛

𝑛

∑︁
1≤𝑚≤𝑛

tr
(
2 ·𝐺 (𝑋𝑡𝑚−1 ; 𝜃†)𝜕𝜃𝑖2Σ

−1
1 (𝑋𝑡𝑚−1 ;𝛾†, 𝜎†)

)
+ 1

𝑛

∑︁
1≤𝑚≤𝑛

𝑔̃𝑖2
(√︃
𝑛Δ4

𝑛, 𝑋𝑡𝑚−1 ; 𝜃†
)
, 𝑑𝛽 + 𝑑𝛾 + 1 ≤ 𝑖2 ≤ 𝑑𝜃 ,

where 𝑔̃𝑖 has the same structure as 𝑔𝑖 . Thus, inclusion of the Φ2-term in our contrast function ℓ𝑛,Δ (𝜃) in
(29), results in the cancellation of a quantity corresponding to the 1st term of size O(

√︁
𝑛Δ2

𝑛) on the right
side of (33), and then convergence (32) holds under Δ𝑛 = 𝑜(𝑛−1/3). For details, see the proof of Lemma
B.5 in Section C.3.1 in Supplementary Material. Note that the required condition for Δ𝑛 is weakened for
the score w.r.t. diffusion parameter, while the condition for the score w.r.t. drift parameters remains the
same after inclusion of the correction part (see 𝑔𝑖1 and 𝑔̃𝑖1 ). Thus, it is expected that the new estimator
performs better than the existing estimator 𝜃̃𝑛 in the estimation of diffusion parameter.

4.1.4. Contrast estimator for stochastic damping Hamiltonian systems

We focus on an important sub-class of hypo-elliptic diffusions used in applications, namely the stochas-
tic damping Hamiltonian systems, and write down in detail the form of the proposed contrast function
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for such a family of models. An SDE in the above class can be written as follows:

𝑑𝑋𝑅,𝑡 = −(𝑐𝛽 (𝑋𝑆,𝑡 )𝑋𝑅,𝑡 + 𝑔𝛽 (𝑋𝑆,𝑡 ))𝑑𝑡 + Ξ(𝜎) 𝑑𝐵𝑡 , 𝑋𝑅,0 = 𝑥𝑅,0 ∈ R𝑑;

𝑑𝑋𝑆,𝑡 = 𝑋𝑅,𝑡𝑑𝑡, 𝑋𝑆,0 = 𝑥𝑆,0 ∈ R𝑑 ,
(34)

where 𝑑𝑆 = 𝑑𝑅 = 𝑑 ≥ 1, 𝑔𝛽 : R𝑑 → R𝑑 , 𝑐𝛽 : R𝑑 → R𝑑×𝑑 are smooth functions depending on some
parameter 𝛽 ∈ Θ𝛽 , and Ξ(𝜎) = diag(𝜎) for 𝜎 = (𝜎1, . . . , 𝜎𝑑) ∈ Θ𝜎 with 𝜎𝑗 > 0, 1 ≤ 𝑗 ≤ 𝑑. System (34)
includes many models used in applications, including, e.g., the Langevin equation (Pavliotis, 2014).

For 𝑋𝑡 = [𝑋⊤
𝑅,𝑡 , 𝑋

⊤
𝑆,𝑡 ]

⊤ ∈ R2𝑑 given by (34), the local Gaussian density (21) is specified via the

following mean vector 𝜇(Δ, 𝑥; 𝜃) ∈ R2𝑑 and covariance matrix Σ(Δ, 𝑥; 𝜃) ∈ R2𝑑×2𝑑:

𝜇(Δ, 𝑥; 𝜃) =
[

𝑥𝑅 − (𝑐𝛽 (𝑥𝑆)𝑥𝑅 + 𝑔𝛽 (𝑥𝑆)) · Δ
𝑥𝑆 + 𝑥𝑅 · Δ − (𝑐𝛽 (𝑥𝑆)𝑥𝑅 + 𝑔𝛽 (𝑥𝑆)) · Δ2/2

]
, Σ(Δ, 𝑥; 𝜃) =

[
Δ Δ2/2

Δ2/2 Δ3/3

]
⊗ Ξ(𝜎)Ξ(𝜎)⊤.

The diffusion matrix Ξ is independent of the state 𝑥 ∈ R2𝑑 and the drift function is linear in 𝑋𝑅,𝑡 given
𝑋𝑆,𝑡 . Thus, most of the terms in the definition of Φ2 appearing in the contrast (29) are equal to 0, e.g.,
𝑉̂ 𝑗1𝑉

𝑖1
𝑘1
(𝑥, 𝜃) = 0, 𝑉̂ 𝑗2𝑉̂𝑘2𝑉

𝑖2
0 (𝑥, 𝜃) = 0 for 1 ≤ 𝑖1, 𝑘1, 𝑘2 ≤ 𝑑, 0 ≤ 𝑗1, 𝑗2 ≤ 𝑑, 𝑑 + 1 ≤ 𝑖2 ≤ 2𝑑. Thus, the

correction term Φ2 in the case of system (34) takes up a simple form. For 𝑥 = (𝑥𝑅, 𝑥𝑆), 𝑦 ∈ R2𝑑 ,Δ > 0
and 𝜃 = (𝛽, 𝜎) ∈ Θ, we get:

Φ2 (Δ, 𝑥, 𝑦; 𝜃) = −
∑︁

1≤𝑖1 ,𝑖2≤𝑑
𝑐𝛽,𝑖1𝑖2 (𝑥𝑆) × (𝜎𝑖2 )2 ×

{
1
2H(𝑖1𝑖2) (Δ, 𝑥, 𝑦; 𝜃) + 1

3H(𝑖1𝑖2+𝑑) (Δ, 𝑥, 𝑦; 𝜃)

+ 1
6H(𝑖1+𝑑,𝑖2) (Δ, 𝑥, 𝑦; 𝜃) + 1

8H(𝑖1+𝑑,𝑖2+𝑑) (Δ, 𝑥, 𝑦; 𝜃)
}
, (35)

where H(𝑖1𝑖2) (Δ, 𝑥, 𝑦; 𝜃) is the second order Hermite polynomial defined in (27).

4.2. Low-frequency observation regime

We consider the scenario of low-frequency observations, i.e. the time interval among successive obser-
vations, Δ = 𝑡𝑖 − 𝑡𝑖−1, 1 ≤ 𝑖 ≤ 𝑛, is now assumed fixed, and large enough so that approximation schemes
must be combined with a data augmentation approach. Thus, we move onto a Bayesian inference set-
ting. Let 𝛿 = 𝛿𝑀 := Δ/𝑀, 𝑀 ≥ 1, be the user-induced step-size after imputation of (𝑀 − 1) data points
amongst a pair of observations. Given a transition density scheme, say 𝑝 𝛿 (𝑥, 𝑦; 𝜃), the true (intractable)
transition density is approximated as:

𝑝𝑋Δ (𝑋𝑡𝑖−1 , 𝑋𝑡𝑖 ; 𝜃) ≈
∫
R𝑑×(𝑀−1)

{ ∏
1≤ 𝑗≤𝑀

𝑝 𝛿 (𝑥 𝑗−1, 𝑥 𝑗 ; 𝜃)
}
𝑑𝑥1 · · · 𝑑𝑥𝑀−1, 𝑥0 = 𝑋𝑡𝑖−1 , 𝑥𝑀 = 𝑋𝑡𝑖 .

In the case of elliptic diffusions, i.e., 𝑑𝑆 = 0, 𝑑𝑅 = 𝑑, Gobet and Labart (2008) showed that the bias
induced by the Euler-Maruyama (EM) scheme is of size O(𝑀−1).

In Section 4.2.1, 4.2.2 we develop two-types of explicit transition density schemes achieving local
weak third order convergence via appropriate choice of higher order correction terms in the density
expansion formula (24). We then illustrate in Section 4.2.3 that the discretisation bias of the developed
transition schemes is of size O(𝑀−2), for the class of elliptic SDEs.
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4.2.1. Local weak third order transition density scheme – version I

Making use of the small time expansion of the transition density 𝑦 ↦→ 𝑝𝑋̄Δ (𝑥, 𝑦; 𝜃) in Lemma 3.1, we
obtain the following key result whose proof is given in Section F of Supplementary Material.

Proposition 4.6 (Density expansion for local third order weak approximation). Let 𝑥, 𝑦 ∈ R𝑑 , Δ >
0, 𝜃 ∈ Θ, and assume that conditions (H1)–(H4) hold. Then, for any integer 𝐽 ≥ 4, the transition density
𝑦 ↦→ 𝑝𝑋̄Δ (𝑥, 𝑦; 𝜃), admits the following representation:

𝑝𝑋̄Δ (𝑥, 𝑦; 𝜃) = 𝑝𝑋LG

Δ (𝑥, 𝑦; 𝜃)
{
1 +Ψweak (Δ, 𝑥, 𝑦; 𝜃) + 𝑅𝐽

1 (Δ, 𝑥, 𝑦; 𝜃)
}
+ Δ𝐽/2
√
Δ𝑑𝑅+3𝑑𝑆

𝑅𝐽
2 (𝑥, 𝑦; 𝜃),

with residual terms 𝑅𝐽
1 (Δ, 𝑥, 𝑦; 𝜃) and 𝑅𝐽

2 (𝑥, 𝑦; 𝜃). In particular:

(i) We have the expression:

Ψweak (Δ, 𝑥, 𝑦; 𝜃) =
√
Δ ·Ψweak

1 (Δ, 𝑥, 𝑦; 𝜃) + Δ ·Ψweak
2 (Δ, 𝑥, 𝑦; 𝜃) +

√︁
Δ3 ·Ψweak

3 (Δ, 𝑥, 𝑦; 𝜃), (36)

for the individual terms:

Ψweak
1 (Δ, 𝑥, 𝑦; 𝜃) = 1

2

∑︁
1≤𝑖1 ,𝑖2 ,𝑖3≤𝑑𝑅

∑︁
1≤𝑘1 ,𝑘2≤𝑑𝑅

𝑉̂𝑘1𝑉
𝑖1
𝑘2
(𝑥, 𝜃)𝑉 𝑖2

𝑘1
(𝑥, 𝜃)𝑉 𝑖3

𝑘2
(𝑥, 𝜃) H(𝑖1 ,𝑖2 ,𝑖3) (Δ, 𝑥, 𝑦; 𝜃); (37)

Ψweak
2 (Δ, 𝑥, 𝑦; 𝜃) = 1

2

∑︁
1≤𝑖1 ,𝑖2≤𝑑𝑅

∑︁
1≤𝑘≤𝑑𝑅

(
𝑉̂𝑘𝑉

𝑖1
0 (𝑥, 𝜃) + 𝑉̂0𝑉

𝑖1
𝑘
(𝑥, 𝜃)

)
𝑉
𝑖2
𝑘
(𝑥, 𝜃)H(𝑖1 ,𝑖2) (Δ, 𝑥, 𝑦; 𝜃)

+ 1
4

∑︁
1≤𝑖1 ,𝑖2≤𝑑𝑅

∑︁
1≤𝑘1 ,𝑘2≤𝑑𝑅

𝑉̂𝑘1𝑉
𝑖1
𝑘2
(𝑥, 𝜃)𝑉̂𝑘1𝑉

𝑖2
𝑘2
(𝑥, 𝜃)H(𝑖1 ,𝑖2) (Δ, 𝑥, 𝑦; 𝜃); (38)

Ψweak
3 (Δ, 𝑥, 𝑦; 𝜃) = 1

2

∑︁
1≤𝑖≤𝑑𝑅

𝑉̂0𝑉
𝑖
0 (𝑥, 𝜃)H(𝑖) (Δ, 𝑥, 𝑦; 𝜃). (39)

(ii) For any 𝜑 ∈ 𝐶∞
𝑝 (R𝑑;R), there exist constants 𝐶 > 0, 𝑞 ≥ 1 such that:��� ∫

R𝑑
𝜑(𝑦)𝑝𝑋LG

Δ (𝑥, 𝑦; 𝜃)𝑅𝐽
1 (Δ, 𝑥, 𝑦; 𝜃)𝑑𝑦

��� ≤ 𝐶 (1 + |𝑥 |𝑞)Δ3. (40)

(iii) sup𝑥,𝑦∈R𝑑 , 𝜃 ∈Θ |𝑅𝐽
2 (𝑥, 𝑦; 𝜃) | < 𝐶, for a constant 𝐶 > 0.

(iv)
∫
R𝑑

Ψweak (Δ, 𝑥, 𝑦; 𝜃)𝑝𝑋LG

Δ
(𝑥, 𝑦; 𝜃)𝑑𝑦 = 0.

Thus, from (ii) and (iii) with 𝐽 ≥ 6, we have that for any 𝜑 ∈ 𝐶∞
𝑝 (R𝑑;R) and (Δ, 𝑥, 𝜃) ∈ (0,∞)×R𝑑 ×Θ,

there exist constants 𝐶 > 0, 𝑞 ≥ 1 such that:���E𝜃 [𝜑( 𝑋̄ 𝑥
Δ
)] −

∫
R𝑑
𝜑(𝑦)𝑝𝑋LG

Δ (𝑥, 𝑦; 𝜃)
{
1 +Ψweak (Δ, 𝑥, 𝑦; 𝜃)

}
𝑑𝑦

��� ≤ 𝐶 (1 + |𝑥 |𝑞)Δ3.

Using Proposition 2.3, the above gives immediately that, for any 𝜑 ∈ 𝐶∞
𝑝 (R𝑑;R) and (Δ, 𝑥, 𝜃) ∈

(0,∞) ×R𝑑 ×Θ, there exist constants 𝐶 > 0, 𝑞 ≥ 1 so that:���E𝜃 [𝜑(𝑋 𝑥
Δ
)] −

∫
R𝑑
𝜑(𝑦) 𝑝𝑋LG

Δ (𝑥, 𝑦; 𝜃)
{
1 +Ψweak (Δ, 𝑥, 𝑦; 𝜃)

}
𝑑𝑦

��� ≤ 𝐶 (1 + |𝑥 |𝑞)Δ3.
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In the case of elliptic diffusions (𝑑 = 𝑑𝑅, 𝑑𝑆 = 0), Proposition 4.6 is interpreted as follows:

𝑝𝑋̄𝑒,Δ (𝑥, 𝑦; 𝜃) = 𝑝𝑋EM

𝑒,Δ (𝑥, 𝑦; 𝜃)
{
1 +Ψweak

𝑒 (Δ, 𝑥, 𝑦; 𝜃) + 𝑅𝐽
𝑒,1 (Δ, 𝑥, 𝑦; 𝜃)

}
+ Δ𝐽/2
√
Δ𝑑𝑅

𝑅𝐽
𝑒,2 (𝑥, 𝑦; 𝜃),

where 𝑦 ↦→ 𝑝𝑋
EM

𝑒,Δ (𝑥, 𝑦; 𝜃) denotes the density of the one-step Euler-Maruyama scheme given 𝜃 ∈ Θ and
the start point 𝑥 ∈ R𝑑𝑅 , and terms 𝑅𝐽

𝑒,1 (Δ, 𝑥, 𝑦; 𝜃), 𝑅𝐽
𝑒,2 (𝑥, 𝑦; 𝜃) have the same properties as the corre-

sponding ones in Proposition 4.6. The correction part Ψweak
𝑒 (Δ, 𝑥, 𝑦; 𝜃) corresponds to Ψweak (Δ, 𝑥, 𝑦; 𝜃)

with 𝑑 = 𝑑𝑅 and the Hermite polynomials replaced with H𝑌𝑒
𝛼 (𝜉; 𝜃) |

𝜉=𝑚
𝑥, 𝜃,

√
Δ
(𝑦) whose definition has

been adjusted in an apparent way to conform to the setting 𝑑𝑆 = 0.
In light of Proposition 4.6, we propose the use of the following transition density scheme for the

hypo-elliptic case:

𝑝 I
Δ (𝑥, 𝑦; 𝜃) := 𝑝𝑋

LG

Δ (𝑥, 𝑦; 𝜃)
{
1 +Ψweak (Δ, 𝑥, 𝑦; 𝜃)

}
, (41)

for Ψweak (Δ, 𝑥, 𝑦; 𝜃) as given in (36), with the following corresponding scheme for the elliptic case:

𝑝 I
𝑒,Δ (𝑥, 𝑦; 𝜃) := 𝑝𝑋

EM

𝑒,Δ (𝑥, 𝑦; 𝜃)
{
1 +Ψweak

𝑒 (Δ, 𝑥, 𝑦; 𝜃)
}
. (42)

It is worth mentioning that the quantity 𝑝 I
𝑒,Δ (𝑥, 𝑦; 𝜃) has also appeared in results by Iguchi and Yamada

(2021, 2022), where a weak high order approximation was developed for elliptic SDEs via a different
approach. We also note that 𝑝 I

Δ (𝑥, 𝑦; 𝜃) has the following properties:
(i) The normalising constant is equal to 1, i.e. it holds that∫

R𝑑
𝑝 I
Δ (𝑥, 𝑦; 𝜃)𝑑𝑦 =

∫
R𝑑
𝑝𝑋

LG

Δ (𝑥, 𝑦; 𝜃)
{
1 +Ψweak (Δ, 𝑥, 𝑦; 𝜃)

}
𝑑𝑦 = 1.

(ii) Ψweak (Δ, 𝑥, 𝑦; 𝜃), thus, also, 𝑝 I
Δ (𝑥, 𝑦; 𝜃), can, in general, take negative values, as do other closed-

form expansions proposed by Aït-Sahalia (2008) and Li (2013).

4.2.2. Local weak third order transition density scheme – version II

We construct an alternative transition density scheme that provides a proper, everywhere positive, den-
sity function. See also Stramer, Bognar and Schneider (2010) for a related consideration in the context
of the density expansion for elliptic SDEs put forward by Aït-Sahalia (2002). We consider the truncated
Taylor expansion of log(1 + 𝑧) and introduce, for 𝑧 ∈ R,

𝐾 (𝑧) :=
∑︁

1≤𝑙≤6

(−1)𝑙+1 𝑧𝑙

𝑙
. (43)

For Δ > 0, 𝑥, 𝑦 ∈ R𝑑 , 𝜃 ∈ Θ, we define the unnormalised non-negative approximation:

𝑝 II
Δ (𝑥, 𝑦; 𝜃) := 𝑝𝑋

LG

Δ (𝑥, 𝑦; 𝜃) exp
(
𝐾 (Ψweak (Δ, 𝑥, 𝑦; 𝜃))

)
. (44)

The mapping 𝑦 ↦→ 𝑝 II
Δ (𝑥, 𝑦; 𝜃) is integrable as the highest order term of 𝐾 (𝑧) in (43) is −𝑧6, so

exp(𝐾 (𝑧)) is bounded. Notice that the normalising constant 𝑍̄ (Δ, 𝑥; 𝜃) :=
∫
R𝑑
𝑝 II
Δ
(𝑥, 𝑦; 𝜃)𝑑𝑦 is no longer

1. Nevertheless, the unnormalised non-negative approximation 𝑝 II
Δ (𝑥, 𝑦; 𝜃) delivers a local weak third

order approximation for 𝑋 𝑥
Δ

, in the following sense with its proof provided in Section G of Supplemen-
tary Material.
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Proposition 4.7. For any 𝜑 ∈ 𝐶∞
𝑝 (R𝑑;R) and (Δ, 𝑥, 𝑦) ∈ (0,∞) ×R𝑑 ×Θ, there exist constants 𝐶 > 0,

𝑞 ≥ 1, such that: ��� ∫
R𝑑
𝜑(𝑦)𝑝 I

Δ (𝑥, 𝑦; 𝜃)𝑑𝑦 −
∫
R𝑑
𝜑(𝑦)𝑝 II

Δ (𝑥, 𝑦; 𝜃)𝑑𝑦
��� ≤ 𝐶 (1 + |𝑥 |𝑞)Δ3, (45)

and then, from Proposition 4.6 (iv),���E𝜃 [𝜑(𝑋 𝑥
Δ
)] −

∫
R𝑑
𝜑(𝑦)𝑝 II

Δ (𝑥, 𝑦; 𝜃)𝑑𝑦
��� ≤ 𝐶 (1 + |𝑥 |𝑞)Δ3,

for some constants 𝐶 > 0, 𝑞 ≥ 1.

The transition density scheme 𝑝 II
Δ (𝑥, 𝑦; 𝜃) in (44) has the properties:

(i) It takes non-negative values for all 𝑥, 𝑦 ∈ R𝑑 and 𝜃 ∈ Θ.
(ii) From Proposition 4.7, it provides a local weak third order approximation for the solution of the

SDE (1), for test functions 𝜑 ∈ 𝐶∞
𝑝 (R𝑑;R). The discrepancy between the normalising constant

𝑍̄ (Δ, 𝑥; 𝜃) and 1 is of size O(Δ3), by setting 𝜑(𝑦) = 1 in (45).

4.2.3. Discretisation based upon the transition density schemes

We finally illustrate the discretisation bias induced from the proposed transition density schemes for
elliptic SDEs, i.e., 𝑑𝑆 = 0, 𝑑𝑅 = 𝑑. For the first-type transition density scheme in (42), Iguchi and
Yamada (2021) showed that the discretisation bias is of size O(𝑀−2), i.e., there exist constants𝐶, 𝑐 > 0,
𝑞 ≥ 𝑑𝑅/2 and a non-decreasing ℎ(·) such that for any 𝑥, 𝑦 ∈ R𝑑𝑅 ,��� 𝑝𝑋𝑒,Δ (𝑥, 𝑦; 𝜃) − 𝑝 I, (𝑀)

𝑒,Δ
(𝑥, 𝑦; 𝜃)

��� ≤ 𝐶

𝑀2
ℎ(Δ)
Δ𝑞

𝑒
−𝑐 |𝑦−𝑥 |2

Δ , (46)

Remark 4.8. The bound (46) was derived without reference to unknown SDE parameters, thus are
not uniform in 𝜃. Nevertheless, under compactness of Θ, see (H1), they can be readily adapted to be
uniform also in 𝜃 ∈ Θ.

We have the following estimate for the second-type transition density scheme, which is a main new
result obtained in this section, with a proof given in Section H of Supplementary Material.

Theorem 4.9. Let Δ > 0. Assume 𝑑𝑆 = 0 and that conditions (H1)–(H3) hold. Then, there exist con-
stants 𝐶, 𝑐 > 0, 𝑞 ≥ 𝑑𝑅/2 and a non-decreasing function ℎ(·) such that for any 𝑥, 𝑦 ∈ R𝑑𝑅 , 𝜃 ∈ Θ:��� 𝑝𝑋𝑒,Δ (𝑥, 𝑦; 𝜃) − 𝑝 II, (𝑀)

𝑒,Δ
(𝑥, 𝑦; 𝜃)

��� ≤ 𝐶

𝑀2
ℎ(Δ)
Δ𝑞

𝑒
−𝑐 |𝑦−𝑥 |2

Δ . (47)

5. Numerical experiments

We provide numerical experiments related to the analytic results in Section 4. Note that our software
implementation (https://github.com/matt-graham/simsde) of both the proposed contrast function and
the sampling schemes is fully general. The user is only required to specify functions for evaluating the
drift and diffusion coefficient terms for given a process state and model parameters, with functions for
evaluating the contrast estimator or simulating from the sampling scheme then automatically generated.
This is achieved by symbolically computing the terms in the relevant estimator or sampling scheme
expression using the Python-based computer algebra system SymPy (https://www.sympy.org/). The

https://github.com/matt-graham/simsde
https://www.sympy.org/
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generated functions can also optionally use the numerical primitives defined in the high-performance
numerical computing framework JAX (https://jax.readthedocs.io/); this allows the derivatives of the
generated functions to be computed using JAX’s automatic differentiation support. We exploit the
above to automatically generate efficient functions for computing the gradient of the contrast function
in the optimisation-based simulation study in Section 5.1 and the gradient of the posterior density in
the Bayesian inference numerical experiments in Section 5.2.

5.1. High-frequency observation regime

We consider the stochastic Jansen–Rit neural mass model that describes the evolution of neural pop-
ulation in a local cortical circuit, that is, the interaction of the main pyramidal cells with the excita-
tory and inhibitory interneurons. See Ableidinger, Buckwar and Hinterleitner (2017) for more details
about the model. The model is defined as the following 6-dimensional hypo-elliptic SDE driven by a
3-dimensional Brownian motion (𝑑 = 6, 𝑑𝑆 = 𝑑𝑅 = 3):

𝑑𝑋𝑅,𝑡 =
(
−Γ2

𝜃𝑋𝑆,𝑡 − 2Γ𝜃𝑋𝑅,𝑡 +𝐺 (𝑋𝑆,𝑡 , 𝜃)
)
𝑑𝑡 + Σ𝜃𝑑𝐵𝑡 , 𝑋𝑅,0 = 𝑥𝑅,0 ∈ R3;

𝑑𝑋𝑆,𝑡 = 𝑋𝑅,𝑡𝑑𝑡, 𝑋𝑆,0 = 𝑥𝑆,0 ∈ R3,
(48)

for parameter specified as 𝜃 = (𝛽, 𝜎) with 𝛽 = (𝐴, 𝐵,𝐶, 𝜇, 𝜈0, 𝑎, 𝑏, 𝑟, 𝜈max) ∈ R5 × (0,∞)4, 𝜎 =

(𝜎1, 𝜎2, 𝜎3) ∈ (0,∞)3. We have set Γ𝜃 := diag(𝑎, 𝑎, 𝑏), Σ𝜃 := diag(𝜎1, 𝜎2, 𝜎3) and

𝐺 (𝑥𝑆 , 𝜃) :=
[
𝐴𝑎 ×S𝜃 (𝑥2

𝑆 − 𝑥
3
𝑆
), 𝐴𝑎

(
𝜇 +𝐶1 ×S𝜃 (𝐶𝑥1

𝑆)
)
, 𝐵𝑏𝐶2 ×S𝜃 (𝐶3 𝑥

1
𝑆)
]⊤
, 𝑥𝑆 = (𝑥1

𝑆 , 𝑥
2
𝑆 , 𝑥

3
𝑆
),

where 𝐶1 = 0.8 × 𝐶, 𝐶2 = 𝐶3 = 0.25 × 𝐶 and S𝜃 : R→ [0, 𝜈max] is a sigmoid function defined as
S𝜃 (𝑧) := 𝜈max/{1 + exp(𝑟 (𝜈0 − 𝑧))}, 𝑧 ∈ R. Following the numerical experiment in Buckwar, Tambor-
rino and Tubikanec (2020), we fix a part of the parameter vector 𝜃 to 𝐴 = 3.25, 𝐵 = 22, 𝜈0 = 6, 𝑎 =

100, 𝑏 = 50, 𝜈max = 5, 𝑟 = 0.56, 𝜎1 = 0.01, 𝜎3 = 1. Then, we estimate the parameter (𝐶, 𝜇, 𝜎2) from
observations of all coordinates of model (48) using the new contrast and the local Gaussian estima-
tors. We set the true parameter values to (𝐶†, 𝜇†, 𝜎†

2 ) = (135.0,220.0,2000.0), and generate synthetic
datasets 𝑌JR from the local Gaussian scheme (12) with discretisation step 10−4 on the time interval
[0,100]. Then, we check the performance of the new contrast estimator versus the local Gaussian one
in the following three scenarios for 𝑛 and Δ𝑛 by subsampling from the synthetic datasets 𝑌JR:
JR-1. (𝑛,Δ𝑛) = (1.25 × 104,0.008) with the time interval of observations 𝑇 = 100.
JR-2. (𝑛,Δ𝑛) = (2.5 × 104,0.004) with 𝑇 = 100. JR-3. (𝑛,Δ𝑛) = (5 × 104,0.002) with 𝑇 = 100.
Since model (48) belongs in the class of stochastic damping Hamiltonian system (34) and matrix Γ𝜃 is
diagonal, the correction term Φ2 in the proposed contrast function is given as follows:

Φ2 (Δ, 𝑥, 𝑦; 𝜃) = −
∑︁

1≤𝑖≤3

2Γ𝜃,𝑖𝑖 (𝜎𝑖)2 ×
{

1
2H(𝑖,𝑖) (Δ, 𝑥, 𝑦; 𝜃) + 1

3H(𝑖,𝑖+3) (Δ, 𝑥, 𝑦; 𝜃)

+ 1
6H(𝑖+3,𝑖) (Δ, 𝑥, 𝑦; 𝜃) + 1

8H(𝑖+3,𝑖+3) (Δ, 𝑥, 𝑦; 𝜃)
}
,

with Δ > 0, 𝑥, 𝑦 ∈ R𝑑 , 𝜃 ∈ Θ. As we noted in Section 4.1.4, partial derivatives of the non-linear func-
tion 𝐺 (𝑋𝑆,𝑡 , 𝜃) are not required in the computation of the new contrast function. For the minimisation
of the contrast, we use the Adam optimiser (Kingma and Ba, 2015) with the following algorithmic
specifications: (step-size) = 0.01, (exponential decay rate for the first moment estimates) = 0.9, (expo-
nential decay rate for the second moment estimates) = 0.999, (additive term for numerical stability) =

https://jax.readthedocs.io/
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Table 1. Mean and standard error (in brackets) from 50 replicates of parameter estimates in the Jansen-Rit neural
mass model (48), under scenario JR-3.

Parameter True value Local Gaussian contrast New contrast
𝐶 135.0 134.80 (0.0062) 134.80 (0.0062)
𝜇 220.0 220.84 (0.6167) 220.84 (0.6176)
𝜎2 2000.0 1843.49 (4.3520) 1989.00 (4.750)

Table 2. Mean and standard deviation (in brackets) of (true value of 𝜎2) - (estimator of 𝜎2) from 50 replicates of
three different estimates in the Jansen-Rit neural mass model (48), under scenarios JR-1,2,3.

Scenario Quadratic variation Local Gaussian contrast New contrast
JR-1 460.34 (11.327) 314.99 (8.913) -105.16 (12.419)
JR-2 246.26 (8.677) 266.46 (6.695) 39.46 (7.450)
JR-3 121.42 (6.588) 156.51 (4.352) 11.00 (4.750)

Figure 1: Root mean squared errors (RMSE) for estimators for 𝜎2 (50 replicates) in the Jansen-Rit neural mass
model (48) under scenarios JR-1,2,3.

RM
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1 × 10−8 and (number of iterations) = 20,000. In Table 1, we summarise the mean and standard error
from 50 replicates of parameter estimates under scenario JR-3. The table indicates that both the local
Gaussian and the new contrast estimate accurately the drift parameters (𝐶, 𝜇), but the new contrast
produces better results for the diffusion parameter 𝜎2 as explained in Remark 4.5. Thus, we focus on
the estimation of the diffusion parameter 𝜎2 and compare the proposed contrast estimator with, first,
the local Gaussian estimator and, second, the estimator based on the quadratic variation of 𝑋2

𝑅,𝑡 , i.e.,

𝜎̂
QV
2,𝑛 :=

√︃
1
𝑇

∑
1≤𝑚≤𝑛

(
𝑋2
𝑅,𝑚Δ𝑛

− 𝑋2
𝑅, (𝑚−1)Δ𝑛

)2
. We summarise in Table 2 the mean and standard devi-

ation of (true value of 𝜎2) - (estimator of 𝜎2) from 50 replicates of estimates under scenario JR-1,2,3.
Also, in Figure 1 we plot the root mean squared errors (RMSEs) from 50 replicates of estimates of 𝜎2.
Note that the new contrast estimator for 𝜎2 gives faster convergence to the true value 𝜎†

2 = 2000, in
agreement with a relatively larger Δ𝑛 (as a function of 𝑛) permitted in the CLT for the new contrast
– recall that for the CLT, the new contrast requires Δ𝑛 = 𝑜(𝑛−1/3) versus Δ𝑛 = 𝑜(𝑛−1/2) required by
the local Gaussian contrast. We also observe that the new contrast estimator outperforms 𝜎̂QV

2,𝑛 . This is
arguably not a coincidence for the particular experiment, as the contrast estimator makes use of obser-
vations from all co-ordinates (not only of 𝑋2

𝑅) via a likelihood-based contrast function, and MLEs are
well-understood to possess optimal asymptotic properties, e.g. due to the Cramér-Rao bound.



22

5.2. Low-frequency observation regime

We perform Bayesian inference, in a framework requiring data augmentation, for a susceptible-infected-
recovered (SIR) model with a time-varying contact rate. The model is specified as the following 3-
dimensional SDE:


𝑑𝑆𝑡
𝑑𝐼𝑡
𝑑𝐶𝑡

 =


−𝐶𝑡𝑆𝑡 𝐼𝑡
𝑁

𝐶𝑡𝑆𝑡 𝐼𝑡
𝑁

− 𝜆𝐼𝑡(
𝛼(𝛽 − log𝐶𝑡 ) + 𝜎2

2
)
𝐶𝑡

 𝑑𝑡 +

√︃

𝐶𝑡𝑆𝑡 𝐼𝑡
𝑁

0 0

−
√︃

𝐶𝑡𝑆𝑡 𝐼𝑡
𝑁

√︁
𝜆𝐼𝑡 0

0 0 𝜎



𝑑𝐵1,𝑡
𝑑𝐵2,𝑡
𝑑𝐵3,𝑡

 , (49)

where 𝑆, 𝐼 account for the number of susceptible and infected individuals respectively,𝐶 for the contact
rate, 𝑁 is the population size and 𝜃 = (𝛼, 𝛽, 𝜎,𝜆) the parameter vector. Motivated by an implementation
in Graham, Thiery and Beskos (2022), we consider the following setting:

• Observations𝑌 = {𝑌𝑡 }𝑡=0,...,𝑇 correspond to the number of daily infected individuals over the period
of 14 days, with time interval Δ = 1 (day), and they are assumed to be measured with additive
Gaussian noise, as 𝑌𝑡 = 𝐼𝑡 + 𝜎𝑦 𝜀𝑡 , 0 ≤ 𝑡 ≤ 13, where 𝜀𝑡 ∼ N (0,1) and 𝜎𝑦 > 0 is constant.

• For the parameter vector 𝜃 and the initial condition 𝐶0, priors are determined via 𝜃 = 𝑔𝜃 (𝑢) and
𝐶0 = 𝑔0 (𝑢0), where 𝑢, 𝑢0 are vectors of independent standard normal random variables and 𝑔𝜃 , 𝑔0
are some tractable functions.

• Adopting a Bayesian data augmentation approach, a numerical scheme is called upon to impute
instances of model (49) at times separated by discretisation step 𝛿. The MCMC method is based on
a non-centred imputation approach. That is, latent variables correspond to the Brownian increments
driving the SDE, and they are collected in a vector of (apriori) independent standard normal random
variables 𝑣.

In the above setting, the posterior law of the 𝑑𝑞-dimensional vector 𝑞 = [𝑢⊤, 𝑢⊤0 , 𝑣
⊤]⊤ given the data 𝑌

has a tractable density w.r.t. the Lebesgue measure (for more details, see Section 11 in the Supporting
Material of Graham, Thiery and Beskos (2022)). Thus, one can apply standard Hamiltonian Monte
Carlo (HMC) to sample from the posterior with energy function 𝐻 : R𝑑𝑞 ×R𝑑𝑞 → R given as 𝐻 (𝑞, 𝑝) =
ℓ(𝑞) + 1

2 𝑝
⊤𝑀−1𝑝, where ℓ(𝑞) is the negative log-posterior density and 𝑀 a diagonal mass matrix. We

will run HMC on the posterior induced both by the Euler-Maruyama (EM) scheme and the proposed
weak second order scheme, and we will show (numerically) that the involved bias is smaller in the case
of the new scheme.

The details of the design of the experiment are as follows. We use the observations taken from
Anonymous (1978) as data 𝑌 . We fix 𝑁 = 763, 𝑆0 = 762, 𝐼0 = 0, 𝜎𝑦 = 5. We assign priors log𝛼 ∼
N (0,1), 𝛽 ∼ N (0,1), log𝜎 ∼ N (−3,1), log𝜆 ∼ N (0,1) and log𝐶0 ∼ N (0,1). We do not treat 𝜎𝑦

as unknown here due to the widely varying posterior scales induced by non-constant 𝜎𝑦 reported in
Graham, Thiery and Beskos (2022). The (data-imputing) numerical schemes are applied to the log-
transformation 𝑋𝑡 = [log 𝑆𝑡 , log 𝐼𝑡 , log𝐶𝑡 ]⊤ to ensure positiveness of 𝑆, 𝐼, and 𝐶, and avoid numerical
issues with the square-root terms in the diffusion coefficient. We use a dynamic integration-time HMC
implementation (Betancourt (2017)) with a dual-averaging algorithm (Hoffman et al. (2014)) to adapt
the integrator step-size. For the time-discretisation of the Hamiltonian dynamics we use the leapfrog
integrator with Störmer-Verlet splitting. We set the mass matrix 𝑀 to identity. For each of the following
three choices of numerical schemes, we run four HMC chains of 1,500 iterations with the first 500
iterations used as an adaptive warm-up phase:
SIR-baseline:

(
Numerical scheme, 𝛿𝑀

)
=
(
EM,0.001

)
.

SIR-EM:
(
Numerical scheme, 𝛿𝑀

)
=
(
EM,0.05

)
.
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(a) Euler-Maruyama scheme
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(b) Weak second order scheme

Figure 2: Posterior Estimates for SIR Model. The blue (left panel) and orange (right panel) histograms and
contour plots are obtained by HMC that uses the EM scheme and the weak second order scheme, respectively,
both with the same discretisation step 𝛿𝑀 = 0.05. The black histograms and contour plots superimposed in both
plots show the correct quantities, as obtained from HMC that uses the EM scheme with very small 𝛿𝑀 = 10−3.

SIR-Weak2nd:
(
Numerical scheme, 𝛿𝑀

)
=
(
Weak second order scheme,0.05

)
.

Results from the HMC implementations are summarised in Figure 2 and Table 3. Figure 2 shows
estimated pair-wise and marginal posteriors for parameters 𝛼, 𝛽, 𝜎, 𝜆 and log𝐶0. Results for SIR-
EM and SIR-Weak2nd are shown in separate plots, and each plot superimposes corresponding results
from SIR-baseline, this latter scheme treated as providing the ‘correct’ posterior quantities due to the
use of very small 𝛿𝑀 = 0.001. Table 3 shows summary statistics that monitor the performance of the
HMC algorithm, in particular, bulk effective sample size (ESS), tail ESS and improved 𝑅̂ with rank-
normalisation and folding (see Vehtari et al. (2021) for analytical definitions). These are computed from
the non-warm-up steps of the four HMC chains. Note that for all parameters and choices of numerical
schemes, 𝑅̂ is smaller than 1.01 and ESS is larger than 400, as Vehtari et al. (2021) recommend. One can
thus be reasonably confident that the estimated posteriors shown in Figure 2 are reliable representations
of the true ones. In agreement with the analytical theory in this work, Figure 2 illustrates that for all
parameters the estimated posteriors obtained via the weak second order scheme capture more accurately
the ‘correct’ baseline posteriors than the corresponding ones obtained via the EM scheme.

6. Conclusions

This work begins by putting forward weak second order sampling schemes for elliptic and hypo-elliptic
SDEs. Then, we develop a small time density expansion of the scheme as a proxy for the intractable
SDE transition density. Via appropriate choice of the higher order expansion terms, we have pro-
vided analytical results both: in a high-frequency classical setting, showcasing the advantageous rate of
Δ𝑛 = 𝑜(𝑛−1/3), achieved for hypo-elliptic models; and in a low-frequency Bayesian data augmentation
setting, where we have deduced two local weak third order density schemes (41) and (44) and shown
that the induced bias by the schemes is of size O(𝑀−2) when covering the fixed time interval Δ > 0
with inner time-steps 𝛿 = Δ/𝑀, 𝑀 > 0 specified by user.
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Table 3. Summary statistics of HMC for the SIR model.

Parameter Scenario bulk ESS tail ESS improved 𝑅̂
SIR-baseline 4052.0 2811.0 1.0
SIR-EM 3874.0 3131.0 1.0𝛼

SIR-Weak2nd 3876.0 2813.0 1.0
SIR-baseline 4272.0 2934.0 1.0
SIR-EM 4058.0 2878.0 1.0𝛽

SIR-Weak2nd 3880.0 2969.0 1.0
SIR-baseline 1720.0 2836.0 1.0
SIR-EM 1525.0 2634.0 1.0𝜎

SIR-Weak2nd 1781.0 2513.0 1.0
SIR-baseline 6596.0 2952.0 1.0
SIR-EM 7063.0 3052.0 1.0𝜆

SIR-Weak2nd 7024.0 2941.0 1.0
SIR-baseline 4555.0 2889.0 1.0
SIR-EM 5036.0 3092.0 1.0log𝐶0
SIR-Weak2nd 4695.0 3053.0 1.0

We iterate here that there is the flexibility to apply MCMC methods based only on the sampling
schemes without reference to transition densities, via, e.g., non-centred model parameterisation ap-
proaches (see e.g. Beskos, Dureau and Kalogeropoulos (2015), Papaspiliopoulos, Roberts and Sköld
(2007)), particle-filtering based MCMC methods (Andrieu, Doucet and Holenstein, 2010), and re-
cent manifold-based algorithms for the case of observations without/with noise (Graham, Thiery and
Beskos, 2022). Via the derivation of approximate transition densities, one is still given the option to use
the wealth of data augmentation methods for diffusion models that require such a density expression.
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