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In this paper, we establish a large deviations principle for a multivariate compound process induced by a multi-
variate Hawkes process with random marks. Our proof hinges on showing essential smoothness of the limiting
cumulant of the multivariate compound process, resolving the inherent complication that this cumulant is im-
plicitly characterized through a fixed-point representation. We employ the large deviations principle to derive
logarithmic asymptotic results on the marginal ruin probabilities of the associated multivariate risk process. We
also show how to conduct rare event simulation in this multivariate setting using importance sampling and prove
the asymptotic efficiency of our importance sampling based estimators.
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1. Introduction

Mutually exciting processes, or multivariate Hawkes processes ([22,23]), constitute an important class
of point processes, particularly suitable to describe stochastic dependences among occurrences of
events across time and space. Due to their built-in feedback mechanism, they are a natural contender to
model contagious phenomena where clusters of events occur in both the temporal and spatial dimen-
sions. Over the past decades, Hawkes processes have been increasingly applied across a broad variety of
fields, such as finance ([1,2,4,24]), social interaction ([11]), neuroscience ([37]), seismology ([25,35]),
and many others.

The key property of a Hawkes process is that it exhibits ‘self-exciting’ behavior: informally, any
event instantaneously increases the likelihood of, hence potentially triggers, additional future events.
A crucial element in its definition is the so-called decay function that quantifies how quickly the effect
of an initial event on future events vanishes. Choosing this function to be exponential renders the
model Markovian, which facilitates the explicit evaluation of various relevant risk and performance
metrics (e.g., transient and stationary moments). In practical applications, however, it can be more
natural to allow for other, i.e., not necessarily exponential, decay functions admitting non-Markovian,
and long-memory, properties but making the analysis substantially more challenging; see, e.g., [16,31]
who indicate the relevance of non-Markovian models in describing contagious phenomena.

In applied probability and mathematical risk theory, Hawkes processes have been used to model the
claim arrival process, and, likewise, compound Hawkes processes to model the associated cumulative
claim process that an insurance firm is facing; see the related literature discussed in detail below. In
collective risk theory, multivariate Hawkes processes provide an appealing candidate for modeling, for
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example, the claim arrival process associated with technological risks.1 Bearing in mind that ruin and
exceedance probabilities ought to be kept small, a primary research goal concerns their analysis in the
asymptotic regime in which the initial reserve level of the insurer or the time horizon of aggregation
grows large, such that the event of interest becomes increasingly rare. This explains the interest in
deriving large deviations principles for (compound) Hawkes processes, providing a formal tool to assess
their rare event behavior, and facilitating in particular the identification of the asymptotics of ruin and
exceedance probabilities. At the same time, it is noted, however, that large deviations results usually
yield rough, logarithmic asymptotics only, in that they focus on identifying the associated decay rate. To
remedy this, one could attempt to develop ‘large deviations informed’ simulation techniques by which
rare events can be evaluated fast and accurately. This is particularly useful when the probabilities of rare
events are too small to be estimated with reasonable accuracy using regular Monte Carlo simulations.

Whereas large deviations for univariate Hawkes processes are well understood, their multivariate
counterpart is to a large extent unexplored. In this context, we mention [42], which focuses on the
broad class of 𝑑-dimensional affine processes of Markovian type, covering the special case of the
multivariate Hawkes process with an exponential decay function. Importantly, however, [42] presents
large deviations results pertaining to the sum of the 𝑑 components, rendering the result essentially
single-dimensional; see also the refinements in [19]. In addition, a moderate deviations result has been
derived in [41]. To the best of our knowledge, multi-dimensional large deviations principles for multi-
variate compound Hawkes processes allowing for general decay functions have not been established,
and in addition, no rare event simulation techniques have been developed in this setting. These are the
main subjects of this paper.

In the univariate case, large deviations results for compound Hawkes processes with general decay
function have been derived in [39] building on [7]. The underlying argumentation relies on the cluster
representation of the driving Hawkes process, as developed in the seminal work [23], from which it
is concluded that the cluster size follows a so-called Borel distribution. A crucial element in proving
the large deviations principle lies in showing that the limiting cumulant of the random object under
study is steep, entailing that its derivative grows to infinity when approaching the boundary of its do-
main, such that the Gärtner-Ellis Theorem can be invoked. In the univariate (compound) Hawkes case
considered in [39], steepness could be established by using the explicit expression for the cluster size
distribution. When studying large deviations for multivariate (compound) Hawkes processes, however,
a main technical difficulty that arises is that the cluster size distribution of the process is not known in
closed form. In the multivariate setting, all one has is a vector-valued fixed-point representation for the
limiting cumulant of the (multivariate) cluster size, as was derived in [29]. Importantly, this relation
does not allow the closed-form identification of the limiting cumulant (let alone that one can find the
distribution itself), entailing that one cannot explicitly characterize the boundary of its domain.

In light of the gaps in the literature described above, the contributions of this paper are the following:
◦ First, we establish a large deviations principle for multivariate compound Hawkes processes allow-

ing for general decay functions. We also allow the Hawkes process to be marked, such that the intensity
process experiences jumps of random size constituting another potential source of rare, atypical be-
havior. We have succeeded in establishing steepness based on an implicit fixed-point representation
for the limiting cumulant of the joint cluster size distribution. Specifically, without having an explicit
expression for the limiting cumulant, and without having an explicit characterization of its domain, we
prove that the derivative of the limiting cumulant grows to infinity when approaching the boundary of
its domain. This steepness property facilitates the use of the Gärtner-Ellis Theorem, so as to establish
the desired large deviations principle. The mathematical details of the required multivariate analysis
are involved.

1See, e.g., [5] who apply the contagion model of [1] to model cyber attacks and also [6].
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◦ Based on these results, we characterize the asymptotic behavior of the ruin probability for the
marginal ruin processes in the regime that the initial reserve level grows large. We prove that this
ruin probability decays essentially exponentially, with the corresponding decay rate being equal to the
unique zero of the limiting cumulant pertaining to that marginal. The proof exploits the discrete-time
results of [34]; see also [10,15].
◦ Finally, we develop an importance sampling algorithm for estimating rare event probabilities in

our multivariate setting. More precisely, we first derive the parameters of the exponentially twisted
multivariate Hawkes process. The identification of the exponential change of measure is non-trivial,
as some of the relevant functions pertaining to the model under the original measure are only known
as solutions of a vector-valued fixed-point representation, and of potential independent interest. The
twisted marginal ruin process has positive drift, yielding ruin with probability one under the new mea-
sure, but with the likelihood ratio being bounded by a function that decays exponentially in the initial
reserve, thus leading to a considerable speedup in importance sampling relative to regular Monte Carlo
simulation. We prove that this estimator is, in fact, asymptotically efficient in the sense of Siegmund
([38]), in passing also establishing a Lundberg-type upper bound on the ruin probability. In addition,
we devise an asymptotically efficient importance sampling algorithm for estimating the probability
of the multivariate compound Hawkes process (at a given point in time, that is) attaining a rare large
value. The attainable speedup, relative to regular Monte Carlo simulation, is quantified through a series
of simulation experiments.

Without attempting to provide an exhaustive overview, we now review a few important related papers,
all of which focus on the univariate setting. We already mentioned [39], which analyzes the asymptotic
behavior of ruin probabilities, under the assumption of light-tailed claims, drawing upon earlier large
deviations results derived in [7] for more general Poisson cluster processes. Furthermore, in [39], an
importance sampling based algorithm is proposed that is capable of efficiently generating estimates of
the rare event probabilities of interest. In [28], the limiting cumulant of the cluster size distribution is
implicitly characterized for the setting with random marks using a fixed-point argument, while proving
a large deviations principle using the Gärtner-Ellis theorem for the upper bound and an exponential
tilting method for the lower bound. Where the contributions above focus primarily on the case of light-
tailed claims, subexponentially distributed claims are studied in [43], in the context of a non-stationary
version of the Hawkes process. For (non-compound) Hawkes processes (i.e., not involving claims),
‘precise’ large deviations results, providing asymptotics beyond the leading order term, are obtained
in [20]. The setting of a large initial intensity is studied in [17] and [18]. For the more general class
of non-linear Hawkes processes, [44] proves the process-level large deviations, and [45] derives large
deviations in the Markovian setting. The present paper can be viewed as belonging to the broader
stream of papers in which one attempts to replace the usual Poissonian arrivals assumption by more
realistic assumptions; see also e.g., [13,36] on shot-noise driven arrival rates, and [8] on models with a
fluctuating client population.

The rest of this paper is organized as follows. In Section 2, we introduce the relevant processes
and discuss some basic properties that are used throughout the paper. Section 3 derives results on
the transform of the joint cluster size distribution, and provides an implicit characterization of the
domain of the limiting cumulant. Section 4 establishes the large deviations principle for the multivariate
compound Hawkes process with general decay function and random marks. In Section 5, we exploit the
large deviations principle to develop importance sampling algorithms to efficiently estimate rare event
probabilities; this includes an analysis of the decay rate of the marginal ruin probability. Concluding
remarks are in Section 6. Some proofs and all simulation experiments, which numerically demonstrate
the performance of our importance sampling based estimators, are relegated to the Appendix provided
as supplementary material ([30]).
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2. Multivariate compound Hawkes processes

In this section, we first provide the definitions of multivariate Hawkes and compound Hawkes pro-
cesses, and next introduce some objects and discuss some properties that are relevant in the context
of this paper. Throughout, we use the boldface notation 𝒙 = (𝑥1, . . . , 𝑥𝑑)⊤ to denote a 𝑑-dimensional
vector, for a given dimension 𝑑 ∈ N. Inequalities between vectors are understood componentwise, e.g.,
𝒙 > 𝒚 means 𝑥𝑖 > 𝑦𝑖 for all 𝑖 = 1, . . . , 𝑑.

Consider a 𝑑-dimensional càdlàg counting process 𝑵(·) ≡ (𝑵(𝑡))𝑡∈R+ , where each increment 𝑁𝑖 (𝑡) −
𝑁𝑖 (𝑠) records the number of points in component 𝑖 ∈ [𝑑] := {1, . . . , 𝑑} in the time interval (𝑠, 𝑡], with
𝑠 < 𝑡. We label the points by considering, for each 𝑗 ∈ [𝑑], a sequence of a.s. increasing positive random
variables 𝑻 𝑗 = {𝑇 𝑗 ,𝑟 }𝑟∈N = {𝑇 𝑗 ,1,𝑇 𝑗 ,2, . . . } representing event times. We associate to this sequence the
one-dimensional counting process 𝑁 𝑗 (·) by setting

𝑁 𝑗 (𝑡) := 𝑁𝑻 𝑗
(0, 𝑡] =

∞∑︁
𝑟=1

1{𝑇𝑗,𝑟 ≤𝑡 } .

The process 𝑵(·) = (𝑁1 (·), . . . , 𝑁𝑑 (·))⊤ is then the 𝑑-dimensional counting process associated with
the sequences of event times in all components, 𝑻1, . . . ,𝑻𝑑 , compactly denoted by 𝑵(𝑡) = 𝑵𝑻 (0, 𝑡].
Throughout, the points will be referred to as events and the terms point process and counting process
are used interchangeably for 𝑵(·). We assume that the point process starts empty, i.e., 𝑵(0) = 0 =

(0, . . . , 0)⊤.
In the original work [22], the Hawkes process is defined by relying on the concept of the conditional

intensity function. An alternative, equivalent definition, known as the cluster process representation,
can be given by representing the Hawkes process as a Poisson cluster process; it was first described
in [23] in the setting of the conventional univariate Hawkes process, see also [12, Example 6.3(c)]
and [32, Ch. IV]. The cluster process representation distinguishes between two types of events: first,
there are immigrant events generated according to a homogeneous Poisson process with a given rate;
and second, there are offspring events generated by an inhomogeneous Poisson process with rates that
account for self-excitation and, in the multivariate context also, cross-excitation. In the following, we
introduce the relevant terminology and provide the formal definitions of the process.

For 𝑗 ∈ [𝑑], we consider base rates 𝜆 𝑗 ⩾ 0, with at least one of the base rates being strictly pos-
itive. For each combination 𝑖, 𝑗 ∈ [𝑑], we let the decay function 𝑔𝑖 𝑗 (·) : R+ → R+ be non-negative
and integrable. Also, for 𝑗 ∈ [𝑑], we define the random marks through the generic non-negative,
non-degenerate random vector 𝑩 𝑗 = (𝐵1 𝑗 , . . . , 𝐵𝑑 𝑗 ), asserting that the sequence of random marks
{𝑩 𝑗 ,𝑟 }𝑟∈N consists of i.i.d. random vectors that are distributed as 𝑩 𝑗 . We allow the random vari-
ables 𝐵𝑖 𝑗 ,𝑟 to be dependent for fixed 𝑗 and 𝑟. Finally, we let 𝐾𝑖 𝑗 (·) be an inhomogeneous Poisson
process with intensity 𝐵𝑖 𝑗 ,𝑟 𝑔𝑖 𝑗 (·), given the value of 𝐵𝑖 𝑗 ,𝑟 . With these elements in place, we provide
the following two equivalent definitions of a multivariate Hawkes process.

Definition 1 (conditional intensity function). A multivariate Hawkes process is a 𝑑-dimensional
point process 𝑵(·) of which the components satisfy

P(𝑁 𝑗 (𝑡 + Δ) − 𝑁 𝑗 (𝑡) = 0 | F𝑡 ) = 1 − 𝜆 𝑗 (𝑡)Δ + 𝑜(Δ),
P(𝑁 𝑗 (𝑡 + Δ) − 𝑁 𝑗 (𝑡) = 1 | F𝑡 ) = 𝜆 𝑗 (𝑡)Δ + 𝑜(Δ),
P(𝑁 𝑗 (𝑡 + Δ) − 𝑁 𝑗 (𝑡) > 1 | F𝑡 ) = 𝑜(Δ),

(1)
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for 𝑗 ∈ [𝑑] as Δ ↓ 0, where F𝑡 = 𝜎(𝑵(𝑠) : 𝑠⩽ 𝑡) is the natural filtration generated by 𝑵(·),

𝜆𝑖 (𝑡) = 𝜆𝑖 +
𝑑∑︁
𝑗=1

∫ 𝑡

0
𝐵𝑖 𝑗 (𝑠) 𝑔𝑖 𝑗 (𝑡 − 𝑠) d𝑁 𝑗 (𝑠), (2)

for 𝑖 ∈ [𝑑], 𝑵(0) = 0 and the integral in (2) is understood as
∫
(0,𝑡 ) , i.e., excluding 𝑡.

The conditional intensity function 𝝀(·) is taken left-continuous and is predictable; see also [12, Ex-
ample 7.2(b) and Ch. 14] for further details.

Definition 2 (cluster process representation). Define a 𝑑-dimensional point process 𝑵(·) compo-
nentwise by 𝑁 𝑗 (𝑡) = 𝑁𝑻 𝑗

(0, 𝑡] for 𝑗 ∈ [𝑑] and 𝑡 > 0, where the sequences of event times 𝑻1, . . . ,𝑻𝑑 are
generated as follows:

(i) First, for each 𝑗 ∈ [𝑑], let there be a sequence of immigrant event times {𝑇 (0)
𝑗 ,𝑟
}𝑟∈N on the interval

(0,∞) generated by a homogeneous Poisson process 𝐼 𝑗 (·) with rate 𝜆 𝑗 .
(ii) Second, let each immigrant event independently generate a 𝑑-dimensional cluster 𝑪 𝑗 ≡ 𝑪

𝑇
(0)
𝑗,𝑟

,

consisting of event times associated with generations of events:
(a) The immigrant with event time 𝑇 (0)

𝑗 ,𝑟
is labeled to be of generation 0 and into each compo-

nent 𝑚 ∈ [𝑑], it generates a sequence of first-generation event times {𝑇 (1)𝑚,𝑟 }𝑟∈N on the interval
(𝑇 (0)

𝑗 ,𝑟
,∞), according to 𝐾𝑚𝑗 (· −𝑇 (0)𝑗 ,𝑟

) with 𝐵𝑚𝑗,𝑟 the random mark associated to 𝑇 (0)
𝑗 ,𝑟

.

(b) Iterating (a) above, with 𝑇 (𝑛−1)
𝑚,𝑟 designating the 𝑟-th event time of generation 𝑛 − 1 in compo-

nent 𝑚 ∈ [𝑑], yields generation 𝑛 event times {𝑇 (𝑛)
𝑙,𝑟
}𝑟∈N in component 𝑙 ∈ [𝑑] on the interval

(𝑇 (𝑛−1)
𝑚,𝑟 ,∞), generated according to 𝐾𝑙𝑚 (· −𝑇 (𝑛−1)

𝑚,𝑟 ).

Upon taking the union over all generations, we obtain, for each component 𝑗 ∈ [𝑑],

𝑻 𝑗 = {𝑇 𝑗 ,𝑟 }𝑟∈N =
∞⋃
𝑛=0

{𝑇 (𝑛)
𝑗 ,𝑟
}𝑟∈N.

The process 𝑵(·) defined above for 𝑡 > 0 and with 𝑵(0) = 0 constitutes a multivariate Hawkes process.

To ensure that the clusters described in part (ii) of Definition 2 are a.s. finite, we assume that a stability
condition applies throughout this paper. It is shown in [22] that this stability condition guarantees non-
explosiveness of 𝑵(·), see also [12, Example 8.3(c)].

Assumption 1. Assume that the matrix 𝑯 := (ℎ𝑚𝑗 )𝑚, 𝑗∈[𝑑 ] with elements

ℎ𝑚𝑗 := E[𝐵𝑚𝑗 ]𝑐𝑚𝑗 , (3)

with 𝑐𝑚𝑗 =
∫ ∞

0 𝑔𝑚𝑗 (𝑣) d𝑣, has spectral radius strictly smaller than 1.

We next define the multivariate compound Hawkes process as follows. Let 𝑑★ ∈ N be fixed and note
that we allow 𝑑 ≠ 𝑑★. For each 𝑗 ∈ [𝑑], let {𝑼 𝑗 ,𝑟 }𝑟∈N = {(𝑈1 𝑗 ,𝑟 , . . . ,𝑈𝑑★ 𝑗 ,𝑟 )⊤}𝑟∈N be a sequence of
non-negative, non-degenerate i.i.d. random vectors of length 𝑑★. We allow the random variables 𝑈𝑖 𝑗 ,𝑟

to be dependent for fixed 𝑗 and 𝑟.
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Definition 3 (multivariate compound Hawkes process). Define 𝒁(·) := (𝑍1 (·), . . . , 𝑍𝑑★ (·))⊤ for
each component 𝑍𝑖 (·) with 𝑖 ∈ [𝑑★] by

𝑍𝑖 (𝑡) :=
𝑑∑︁
𝑗=1

𝑁 𝑗 (𝑡 )∑︁
𝑟=1

𝑈𝑖 𝑗 ,𝑟 , 𝑡 > 0, (4)

where 𝑼 𝑗 ,𝑟 = (𝑈1 𝑗 ,𝑟 , . . . ,𝑈𝑑★ 𝑗 ,𝑟 )⊤ is drawn independently for every event in 𝑁 𝑗 (𝑡), with 𝑗 ∈ [𝑑]. The
process 𝒁(·) defined above for any 𝑡 > 0 constitutes a multivariate compound Hawkes process.

If we define the random matrix 𝑼 ∈ R𝑑★×𝑑+ as

𝑼 ≡
[
𝑼1, . . . ,𝑼𝑑

]
:=


𝑈11 𝑈12 . . . 𝑈1𝑑
𝑈21 𝑈22 . . . 𝑈2𝑑
...

...
. . .

...

𝑈𝑑★1 𝑈𝑑★2 · · · 𝑈𝑑★𝑑


, (5)

we can represent Eqn. (4) in vector-matrix form by

𝒁(𝑡) = 𝑵(𝑡) ★𝑼 :=
𝑑∑︁
𝑗=1

𝑁 𝑗 (𝑡 )∑︁
𝑟=1

𝑼 𝑗 ,𝑟 , (6)

where ★ denotes the compound sum operation.
We proceed with a brief discussion of the dimensionality of the objects appearing in Definition 3.

The Hawkes process 𝑵(·) is of dimension 𝑑 and the random vectors 𝑼 𝑗 are of dimension 𝑑★, which
results in the compound Hawkes process 𝒁(·) being also of dimension 𝑑★. This reflects that the random
variables of the type 𝑈𝑖 𝑗 , with 𝑖 ∈ [𝑑★] and 𝑗 ∈ [𝑑], can be interpreted as the effect that an event in
the 𝑗-th component of the Hawkes process 𝑵(·) has on the 𝑖-the component of the compound Hawkes
process 𝒁(·). As stated before, we allow 𝑑 ≠ 𝑑★. Intuitively, for instance, in the context of insurance,
this means that the number of risk drivers may be larger (𝑑 > 𝑑★) or smaller (𝑑 < 𝑑★) than the number
of insurance product categories.

We now introduce some objects related to the cluster process representation that are relevant for
later analysis. Recall that for each immigrant in component 𝑗 ∈ [𝑑], the 𝑑-dimensional cluster 𝑪 𝑗 from
Definition 2 contains the sequences of event times in each component that have the immigrant with
event time 𝑇 (0)

𝑗 ,𝑟
as oldest ancestor. We associate to 𝑪 𝑗 the 𝑑-dimensional cluster point process 𝑺 𝑗 (·),

by setting

𝑺 𝑗 (𝑢) := 𝑺𝑪 𝑗
(0, 𝑢], (7)

such that it counts the number of events of 𝑪 𝑗 on the interval (0, 𝑢], where 𝑢 = 𝑡 − 𝑇 (0)
𝑗 ,𝑟

> 0 is the
remaining time after the arrival of the immigrant event. Concretely, we have

𝑺 𝑗 (𝑢) :=


𝑆1← 𝑗 (𝑢)

...

𝑆𝑑← 𝑗 (𝑢)

 , (8)

where each entry 𝑆𝑖← 𝑗 (𝑢) records the number of events generated into component 𝑖 ∈ [𝑑] in the cluster
𝑪 𝑗 , its oldest ancestor being the immigrant event in component 𝑗 that generated the cluster. To avoid
double counts, we let the immigrant itself be included in the cluster (only) when 𝑖 = 𝑗 .
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If we let 𝑢 tend to infinity, the entries of the random vector 𝑺 𝑗 (𝑢) ultimately count the total number
of events within the cluster 𝑪 𝑗 generated into each component 𝑖 ∈ [𝑑]. Observe that 𝑢 ↦→ 𝑺 𝑗 (𝑢) is in-
creasing componentwise and sup𝑢∈R+ ∥𝑺 𝑗 (𝑢)∥R𝑑 <∞ with probability 1 due to Assumption 1. Hence,
we can define a random vector that counts the total number of events in all components, or simply
cluster size, by setting 𝑺 𝑗 := lim𝑢→∞ 𝑺 𝑗 (𝑢), where convergence is understood in the a.s. sense.

One can interpret these clusters in terms of 𝑑-type Galton-Watson processes, where the total progeny
equals the sum of all generations of offspring that descend from one individual ([27]). Suppose the
Galton-Watson process starts with an individual of type 𝑗 ∈ [𝑑], and let 𝑺 (𝑘 )

𝑗
denote the 𝑘-th generation

of descendants. Then one can write

𝑺 𝑗 =

∞∑︁
𝑘=0

𝑺 (𝑘 )
𝑗
, (9)

where 𝑺 (0)
𝑗

= 𝒆 𝑗 , the unit vector (i.e., with 𝑗-th entry equal to 1, and other entries equal to 0). In [27],
the total progeny, i.e. cluster size, of such a process is analyzed in the one-dimensional setting and
shown to have a so-called Borel distribution. For higher-dimensional Hawkes processes, by using [9,
Theorem 1.2], it is, in principle, also possible to derive a representation of the multivariate cluster size
distribution. However, the resulting expression is neither explicit nor workable for the goal at hand
due to (highly) convoluted sums that arise in the derivation. More specifically, the multiplicity of the
different possible sample paths to generate a certain number of events in each component yields a
complex combinatorial problem.

We conclude this section by stating two convergence results that will be needed later in this paper.
Under the stability condition, we have that the Hawkes process 𝑵(·) satisfies the following strong law
of large numbers, as shown in [4]: as 𝑡→∞, we have

𝑵(𝑡)
𝑡
→ (𝑰 − 𝑯)−1𝝀, (10)

a.s., where 𝝀 = (𝜆1, . . . , 𝜆𝑑)⊤. This result naturally extends to the corresponding compound Hawkes
process 𝒁(·) (see [21, Theorem 1]): as 𝑡→∞, a.s.,

𝒁(𝑡)
𝑡
→ E[𝑼] (𝑰 − 𝑯)−1𝝀. (11)

3. Transform analysis

In this section, we discuss probability generating functions and moment generating functions pertaining
to the processes introduced in the previous section, viz. the multivariate Hawkes and compound Hawkes
processes. These functions will play a pivotal role when deriving large deviations results later in this
paper.

It is directly seen from the definition of 𝒁(𝑡) that, for fixed 𝑡 > 0, its moment generating function
satisfies the following composite expression in terms of the probability generating function of 𝑵(𝑡):

𝑚𝒁 (𝑡 ) (𝜽) ≡ E
[
𝑒𝜽
⊤𝒁 (𝑡 ) ] = E[ 𝑑∏

𝑙=1

(
𝑚𝑼𝑙
(𝜽)

)𝑁𝑙 (𝑡 )
]
, (12)
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where

𝑚𝑼𝑙
(𝜽) ≡ E[𝑒𝜽⊤𝑼𝑙 ] = E

[ 𝑑★∏
𝑖=1

𝑒𝜃𝑖𝑈𝑖𝑙

]
.

For now, we assume 𝜽 ∈ R𝑑★ is chosen such that (12) exists—we will further discuss the domain of
convergence below. We are interested in the limiting cumulant of 𝒁(𝑡) as 𝑡→∞, that is, we wish to
analyze

lim
𝑡→∞

1
𝑡

log𝑚𝒁 (𝑡 ) (𝜽). (13)

To derive an expression for (13), we use a characterization of the probability generating function of
𝑵(𝑡) in terms of the cluster point processes 𝑺 𝑗 (𝑢), obtained in [29, Theorem 1]:

E
[ 𝑑∏
𝑙=1

𝑧
𝑁𝑙 (𝑡 )
𝑙

]
=

𝑑∏
𝑗=1

exp
(
𝜆 𝑗

∫ 𝑡

0

(
E
[ 𝑑∏
𝑙=1

𝑧
𝑆𝑙← 𝑗 (𝑢)
𝑙

]
− 1

)
d𝑢

)
, (14)

where, for each 𝑗 ∈ [𝑑], the probability generating function of 𝑺 𝑗 (𝑢) appearing on the right-hand side
of (14) satisfies the fixed-point representation

𝑓 𝑗 (𝒛, 𝑢) := E
[ 𝑑∏
𝑙=1

𝑧
𝑆𝑙← 𝑗 (𝑢)
𝑙

]
= 𝑧 𝑗E

[
exp

( 𝑑∑︁
𝑚=1

𝐵𝑚𝑗

∫ 𝑢

0
𝑔𝑚𝑗 (𝑣)

(
𝑓𝑚 (𝒛, 𝑢 − 𝑣) − 1

)
d𝑣

)]
; (15)

see [29, Theorem 2].
In order to exploit this characterization to establish our large deviations result in the multivariate

compound Hawkes setting, we need to analyze the domain of 𝒛 = (𝑧1, . . . , 𝑧𝑑)⊤ for which Eqns. (14)
and (15) are valid, i.e., where the probability generating functions of 𝑺 𝑗 (𝑢) exist. More precisely, since
we focus on the regime 𝑡→∞ in (13), we need to consider the probability generating function of the
total cluster size 𝑺 𝑗 instead of 𝑺 𝑗 (𝑢), which in the sequel is denoted by

𝑓 𝑗 (𝒛) := lim
𝑢→∞

𝑓 𝑗 (𝒛, 𝑢) = E
[ 𝑑∏
𝑙=1

𝑧
𝑆𝑙← 𝑗

𝑙

]
, (16)

and uncover its domain. Let 𝒇 : R𝑑+ → R
𝑑

be given by 𝒇 (𝒛) = ( 𝑓1 (𝒛), . . . , 𝑓𝑑 (𝒛))⊤ and denote its ef-
fective domain by D 𝑓 := {𝒛 ∈ R𝑑+ : ∥ 𝒇 (𝒛)∥R𝑑 <∞}. For the set D 𝑓 , denote the interior by D◦

𝑓
and the

boundary by 𝜕D 𝑓 .
Observe that the right-hand side of Eqn. (15) is expressed in terms of the moment generating function

of the random vector 𝑩 𝑗 . We assume the following to hold throughout the paper.

Assumption 2. Assume that for some 𝝑 ∈ R𝑑+ ,

𝑚𝑩 𝑗
(𝝑) = E

[
exp

( 𝑑∑︁
𝑚=1

𝐵𝑚𝑗𝜗𝑚

)]
<∞, (17)

for all 𝑗 ∈ [𝑑].
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The following result gives an implicit characterization of 𝒇 (·) and its domain D 𝑓 in terms of a fixed-
point representation. Its proof is lengthy and involved.

Proposition 1. The vector-valued function 𝒇 (𝒛) is the unique increasing function that satisfies

𝑓 𝑗 (𝒛) = 𝑧 𝑗 E
[

exp
( 𝑑∑︁
𝑚=1

𝐵𝑚𝑗𝑐𝑚𝑗 ( 𝑓𝑚 (𝒛) − 1)
)]
, (18)

for 𝒛 ∈ R𝑑+ such that 𝒛 ⩽ �̂�𝒓 ≡ �̂�. Here, for an arbitrarily given positive vector 𝒓 ∈ R𝑑+ , �̂� = ( �̂�1, . . . , �̂�𝑑)⊤
is given for each 𝑗 ∈ [𝑑] by

�̂� 𝑗 = 𝑟 𝑗

(
𝑑∑︁

𝑘=1

𝑟𝑘E
[
𝐵𝑘 𝑗𝑐𝑘 𝑗 exp

( 𝑑∑︁
𝑚=1

𝐵𝑚𝑗𝑐𝑚𝑗 (�̂�𝑚 − 1)
)] )−1

, (19)

where �̂� = (�̂�1, . . . , �̂�𝑑)⊤ is the solution of

𝑥 𝑗

(
𝑑∑︁

𝑘=1

𝑟𝑘E
[
𝐵𝑘 𝑗𝑐𝑘 𝑗 exp

( 𝑑∑︁
𝑚=1

𝐵𝑚𝑗𝑐𝑚𝑗 (𝑥𝑚 − 1)
)] )

= 𝑟 𝑗E
[

exp
( 𝑑∑︁
𝑚=1

𝐵𝑚𝑗𝑐𝑚𝑗 (𝑥𝑚 − 1)
)]
. (20)

Proof of Proposition 1. The proof consists of three parts: (i) identifying the limit of 𝑓 𝑗 (𝒛, 𝑢) as 𝑢→
∞; (ii) implicit characterization of the domain D 𝑓 ; (iii) proving uniqueness of 𝒇 (·).

— Proof of (i). We show that for 𝒛 ∈ D 𝑓 , we have that 𝑓 𝑗 (𝒛, 𝑢) → 𝑓 𝑗 (𝒛) for all 𝑗 ∈ [𝑑]. At this
point, we do not yet know the precise domain D 𝑓 , but we do know it is a convex subset of R𝑑+ and we
implicitly derive it later in the proof.

When 𝒛 = 1, we have 𝒇 (1, 𝑢) ≡ 1 ≡ 𝒇 (1) and convergence follows trivially. Observe that when 0 ⩽
𝒛 < 1, 𝑓 𝑗 (𝒛, 𝑢) is decreasing in 𝑢 and 0 ⩽ 𝑓 𝑗 (𝒛, 𝑢) < 1, hence, 𝑓 𝑗 (𝒛, 𝑢) converges by the monotone
convergence theorem to a finite limit as 𝑢→∞, satisfying the limit of (15). When 𝒛 > 1, 𝑓 𝑗 (𝒛, 𝑢) is
increasing in 𝑢 and either diverges to∞ or converges to a finite limit, satisfying the limit of (15). In the
intermediate case, where for some 𝑘,𝑚 ∈ [𝑑] one has 𝑧𝑘 ⩽ 1 and 𝑧𝑚 > 1, we proceed as follows. Recall
that for each 𝑗 ∈ [𝑑], the map 𝑢 ↦→ 𝑺 𝑗 (𝑢) is a.s. increasing in all components. We obtain the following
upper bound:

lim sup
𝑢→∞

𝑓 𝑗 (𝒛, 𝑢) = lim sup
𝑢→∞

E
[ 𝑑∏
𝑖=1

𝑧
𝑆𝑖← 𝑗 (𝑢)
𝑖

]
= lim sup

𝑢→∞
E
[ ∏
𝑘:𝑧𝑘⩽1

𝑧
𝑆𝑘← 𝑗 (𝑢)
𝑘

∏
𝑚:𝑧𝑚>1

𝑧
𝑆𝑚← 𝑗 (𝑢)
𝑚

]
⩽ lim sup

𝑢→∞
E
[ ∏
𝑘:𝑧𝑘⩽1

𝑧
𝑆𝑘← 𝑗 (𝑢)
𝑘

∏
𝑚:𝑧𝑚>1

𝑧
𝑆𝑚← 𝑗

𝑚

]
(∗)
= E

[ 𝑑∏
𝑖=1

𝑧
𝑆𝑖← 𝑗

𝑖

]
= 𝑓 𝑗 (𝒛),
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if the limit is finite, where in (∗) we have used the monotone convergence on the product over 𝑘 , as this
product is decreasing. Similarly, we obtain the lower bound

lim inf
𝑢→∞

𝑓 𝑗 (𝒛, 𝑢) ⩾ lim inf
𝑢→∞

E
[ ∏
𝑘:𝑧𝑘⩽1

𝑧
𝑆𝑘← 𝑗

𝑘

∏
𝑚:𝑧𝑚>1

𝑧
𝑆𝑚← 𝑗 (𝑢)
𝑚

]
(∗)
= E

[ 𝑑∏
𝑖=1

𝑧
𝑆𝑖← 𝑗

𝑖

]
= 𝑓 𝑗 (𝒛),

which implies that the lim inf and lim sup coincide, and so 𝑓 𝑗 (𝒛, 𝑢) → 𝑓 𝑗 (𝒛) for all 𝑗 ∈ [𝑑]. Provided all
components converge, we have convergence of the vector 𝒇 (𝒛, 𝑢) → 𝒇 (𝒛). Hence, from (15) we obtain
for each 𝑗 ∈ [𝑑] and with 𝒛 ∈D 𝑓 that

𝑓 𝑗 (𝒛) = 𝑧 𝑗 E
[

exp
( 𝑑∑︁
𝑚=1

𝐵𝑚𝑗𝑐𝑚𝑗 ( 𝑓𝑚 (𝒛) − 1)
)]
, (21)

yielding a vector-valued fixed-point representation for 𝒇 (𝒛).
— Proof of (ii). We now implicitly characterize the domain D 𝑓 . To that end, consider the function

𝑮 : R𝑑 ×R𝑑→ R𝑑 , where each entry 𝐺 𝑗 : R𝑑 ×R𝑑→ R, with 𝑗 ∈ [𝑑], is given by

𝐺 𝑗 (𝒛, 𝒙) = 𝑧 𝑗 E
[

exp
( 𝑑∑︁
𝑚=1

𝐵𝑚𝑗𝑐𝑚𝑗 (𝑥𝑚 − 1)
)]
− 𝑥 𝑗 . (22)

Note that 𝑮 (·) is continuously differentiable for all 𝒛 ∈ R𝑑 and 𝒙 ∈ R𝑑 for which the respective moment
generating functions of 𝑩 𝑗 are defined. To obtain a characterization of D 𝑓 , we need to find the set of 𝒛
on the boundary of D 𝑓 , for which 𝒇 (𝒛) exists and satisfies (18). Since Eqn. (18) is analogous to solving
𝑮 (𝒛, 𝒇 (𝒛)) = 0, we can find the domain of 𝒇 (·) by investigating the set 𝑮−1 (0) = {(𝒛, 𝒙) : 𝑮 (𝒛, 𝒙) = 0}.
Since the preimage 𝑮−1 (0) can be a complicated set, we resort to the preimage theorem, a variation of
the implicit function theorem also known as the regular level set theorem, see e.g., [40, Theorem 9.9],
which states two results. First, the preimage has codimension equal to the dimension of the image, and
second, the tangent space at a point of the preimage coincides with the kernel of the Jacobian at that
point, provided that the Jacobian is of full-rank.

We proceed by providing a specification of the preimage theorem in our setting. The first part of
the preimage theorem states that 𝑮−1 (0) is a 𝑑-dimensional space. Note that in the univariate (𝑑 = 1)
setting, 𝑮−1 (0) would be a curve embedded in R × R, and the tangent space would be a line. In our
multivariate (𝑑 > 1) setting, 𝑮−1 (0) is a 𝑑-dimensional manifold embedded in R𝑑×R𝑑 , and the tangent
space is again 𝑑-dimensional. The second part concerns tangent spaces, defined as follows: for any
(𝒛, 𝒙) ∈ 𝑮−1 (0), the tangent space 𝑇𝒛,𝒙 (𝑮−1 (0)) consists of the set of vectors (𝒒, 𝒓) ∈ R𝑑+ × R𝑑+ for
which there exists a curve 𝛾 ⊆ 𝑮−1 (0) with 𝛾(0) = (𝒛, 𝒙) and 𝛾′ (0) = (𝒒, 𝒓). The second part of the
preimage theorem then states

Ker
(
𝑱𝑮 (𝒛, 𝒙)

)
= 𝑇𝒛,𝒙 (𝑮−1 (0)), (23)

with 𝑱𝑮 (𝒛, 𝒙) ∈ R𝑑×𝑑 denoting the full Jacobian of 𝑮 evaluated at (𝒛, 𝒙). We compute the 𝑑 × 𝑑-
dimensional Jacobian matrices of partial derivatives of 𝑮 w.r.t. 𝒛 and 𝒙 separately by

𝑱𝑮,𝒛 :=
[
𝜕𝐺 𝑗

𝜕𝑧𝑘
(𝒛, 𝒙)

]
𝑗 ,𝑘∈[𝑑 ]

=

[
1{ 𝑗=𝑘}E

[
exp

( 𝑑∑︁
𝑚=1

𝐵𝑚𝑗𝑐𝑚𝑗 (𝑥𝑚 − 1)
)] ]

𝑗 ,𝑘∈[𝑑 ]
,
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and

𝑱𝑮,𝒙 :=
[
𝜕𝐺 𝑗

𝜕𝑥𝑘
(𝒛, 𝒙)

]
𝑗 ,𝑘∈[𝑑 ]

=

[
𝑧 𝑗E

[
𝐵𝑘 𝑗𝑐𝑘 𝑗 exp

( 𝑑∑︁
𝑚=1

𝐵𝑚𝑗𝑐𝑚𝑗 (𝑥𝑚 − 1)
)]
− 1{ 𝑗=𝑘}

]
𝑗 ,𝑘∈[𝑑 ]

,

such that 𝑱𝑮 = (𝑱𝑮,𝒛 | 𝑱𝑮,𝒙). To utilize Eqn. (23), we need to look for vectors (𝒒, 𝒓) ∈ R𝑑+ × R𝑑+ such
that 𝑱𝑮 · (𝒒, 𝒓) = 𝑱𝑮,𝒛 · 𝒒 + 𝑱𝑮,𝒙 · 𝒓 = 0, where we denote 𝑱𝑮 ≡ 𝑱𝑮 (𝒛, 𝒙) for brevity. Note that 𝑱𝑮,𝒛 is a
diagonal matrix with positive entries, such that 𝑱𝑮,𝒛 · 𝒒 = 0 only if 𝒒 = 0; so we can focus on 𝒓. Observe
that the set of points where the determinant of the Jacobian 𝑱𝑮,𝒙 has the same sign is a connected set,
due to strict convexity in each entry of the functions 𝐺 𝑗 (𝒛, 𝒙), with 𝑗 ∈ [𝑑], and by continuity of the
determinant and partial derivatives. For a fixed vector 𝒓 ∈ R𝑑+ , we can establish systems of equations
for 𝒛 and 𝒙 such that 𝑱𝑮,𝒙 · 𝒓 = 0. As will become clear later in the proof, convexity will play a crucial
role in determining uniqueness of these solutions.

With the objective of substantiating the claim in (23), we compute the solution to the systems of
equations 𝑮 (𝒛, 𝒙) = 0 and 𝑱𝑮,𝒙 · 𝒓 = 0 by using the expression for 𝑱𝑮,𝒙 and solving for 𝒛 and 𝒙. This
yields the solutions �̂� = ( �̂�1, . . . , �̂�𝑑) and �̂� = (�̂�1, . . . �̂�𝑑) given in Eqns. (19) and (20), with (̂𝒛, �̂�) ≡
(̂𝒛𝒓 , �̂�𝒓 ) parameterized by vectors 𝒓 ∈ R𝑑+ , such that 𝑮 (̂𝒛, �̂�) = 0 and 𝑱𝑮,𝒙 (̂𝒛, �̂�) · 𝒓 = 0. Moreover, for
any given 𝒓 ∈ R𝑑+ , we show that the associated pair (̂𝒛𝒓 , �̂�𝒓 ) is unique. The condition 𝑱𝑮,𝒙 (̂𝒛𝒓 , �̂�𝒓 ) · 𝒓 = 0
stated for each row yields ∇𝒙𝐺 𝑗 (̂𝒛𝒓 , �̂�𝒓 ) · 𝒓 = 0 for all 𝑗 ∈ [𝑑], with ∇𝑥𝐺 𝑗 (·) the 𝑗-th row of the
Jacobian. Note that each 𝐺 𝑗 (·) only depends on 𝑧 𝑗 and 𝒙. Due to strict convexity of 𝐺 𝑗 (𝒛, 𝒙) in each
entry, we have that the sub-level set 𝐺−1

𝑗
(⩽ 0) := {(𝒛, 𝒙) : 𝐺 𝑗 (𝒛, 𝒙) ⩽ 0} is a strictly convex set, and

the level set 𝐺−1
𝑗
(0) is the boundary of 𝐺−1

𝑗
(⩽ 0). This implies that

𝑮−1 (0) = {(𝒛, 𝒙) :𝐺 𝑗 (𝒛, 𝒙) = 0,∀ 𝑗 ∈ [𝑑]} =
𝑑⋂
𝑗=1

𝐺−1
𝑗 (0),

is the boundary of a strictly convex set, namely 𝑮−1 (⩽ 0), as the latter is the intersection of strictly
convex sets. Since 𝑱𝑮,𝒙 (̂𝒛𝒓 , �̂�𝒓 ) · 𝒓 = 0 means 𝒓 ∈ 𝑇𝒛𝒓 , �̂�𝒓 (𝑮

−1 (0)) by Eqn. (23), and since 𝑮−1 (0) is
the boundary of a strictly convex set, we have that 𝒓 uniquely determines the point (̂𝒛𝒓 , �̂�𝒓 ).

The next step amounts to relating what we found so far to the domain D 𝑓 . A given value of 𝒛 ∈ R𝑑+
determines whether one can find 𝒙 ∈ R𝑑+ for which 𝑮 (𝒛, 𝒙) = 0, such that (𝒛, 𝒙) ∈ 𝑮−1 (0). Observe that
the set 𝑅𝑧 := {𝒛 ∈ R𝑑+ : 𝒛 = �̂�𝒓 , 𝒓 ∈ R𝑑+ } divides the positive quadrant R𝑑+ into two disjoint sets. The first
set is the inner (convex) region, defined as the set of 𝒛 ∈ R𝑑+ enclosed by the origin, the 𝒛 axes and the
set 𝑅𝑧 , with 𝑅𝑧 included; denote this set byZ. The second set is the outer region, denoted byZ𝑐, and
it is the complement of Z, such that Z ∪Z𝑐 = R𝑑+ . Note that when 𝒛 ∈ Z𝑐, then 𝑮 (𝒛, 𝒙) ≠ 0 for any
𝒙 ∈ R𝑑+ , since Z𝑐 × R𝑑+ does not intersect 𝑮−1 (0). This yields 𝑮−1 (0) = {(𝒛, 𝒙) : 𝒛 ∈ Z,𝑮 (𝒛, 𝒙) = 0},
and using that 𝑮 (𝒛, 𝒇 (𝒛)) = 0 for all 𝒛 ∈ D 𝑓 , we find D 𝑓 ⊆ Z, which proves (ii). However, for 𝒛 ∈ Z,
we may have multiple 𝒙 ∈ R𝑑+ such that 𝑮 (𝒛, 𝒙) = 0, so we investigate this further.

— Proof of (iii). We are left with proving uniqueness of 𝒇 (·). We prove this by considering points
(𝒛, 𝒙) ∈ 𝑮−1 (0) and relating them to 𝒇 (·). From the preimage theorem, we know that 𝑮−1 (0) is 𝑑-
dimensional, so we need only 𝑑 parameters to describe this set. We can use the implicit function theo-
rem to describe the 𝒙 coordinate of (𝒛, 𝒙) ∈ 𝑮−1 (0) in terms of an implicit function of 𝒛. We consider
a particular point in this set and then show how the argument extends to other points.

Consider the point (𝒛, 𝒙) = (1,1) ∈ 𝑮−1 (0) since it satisfies 𝑮 (1,1) = 0, where we use Assumption 2
to ensure existence of the moment generating functions of 𝑩 𝑗 around this point. Evaluated at the point
(1,1), the Jacobian of 𝑮 with respect to 𝒙 is given by

𝑱𝑮,𝒙 (1,1) = 𝑯⊤ − 𝑰, (24)
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which is invertible due to Assumption 1. Then by the implicit function theorem, there exist open sets
𝑉,𝑊 ⊆ R𝑑+ both containing 1, and a unique continuously differentiable function �̃� : 𝑉 →𝑊 such that
�̃� (1) = 1 and 𝑮 (𝒛, �̃� (𝒛)) = 0 for all 𝒛 ∈ 𝑉 . Note that this implies 𝑉 ⊆ Z and that �̃� (·) satisfies the
fixed-point equation in (18). Moreover, since �̃� (·) is unique, we have �̃� (·) = 𝒇 (·) on 𝑉 and 𝑉 ⊆ D◦

𝑓
,

provided that �̃� (·) is increasing in all entries, as by definition 𝒇 (·) is increasing in all entries.
The point (1,1) is not particularly special; if we take another point (𝒛0, 𝒙0) ∈ 𝑮−1 (0), we find that the

Jacobian 𝑱𝑮,𝒙 (𝒛0, 𝒙0) is invertible provided (𝒛0, 𝒙0) ≠ (̂𝒛, �̂�). We can then apply the implicit function
theorem to obtain open sets 𝒛0 ∈ 𝑉0 ⊆ R𝑑+ , 𝒙0 ∈𝑊0 ⊆ R𝑑+ and a unique map �̃� 0 :𝑉0→𝑊0 that satisfies
𝑮 (𝒛, �̃� 0 (𝒛)) = 0 for all 𝒛 ∈ 𝑉0, again with 𝑉0 ⊆ Z. As before, we obtain �̃� (·) = 𝒇 (·) on 𝑉0 and 𝑉0 ⊆ D◦

𝑓
,

due to uniqueness of �̃� 0, provided �̃� 0 (·) is increasing in all entries. Since we can do this for arbitrary
points, we obtain uniqueness of 𝒇 (·) on all of Z, such that Z ⊆ D◦

𝑓
. Finally, for any pair of solutions

(̂𝒛, �̂�) to Eqns. (19) and (20), we have by monotonicity of 𝒇 (·) that lim𝒛↗�̂� 𝒇 (𝒛) = �̂�, which yields the
characterizationZ = D 𝑓 .

We remark that taking 𝑑 = 1 in Proposition 1 yields agreement with the results obtained in [28, The-
orem 3.1.1], where our condition that the implicit function is increasing, is equivalent to the condition
in [28] where they take the minimal solution of the equation 𝐺 (𝑧, 𝑥) = 0 for fixed 𝑧 < �̂�, with 𝐺 (·, ·)
defined in (22). Next, we focus on the limiting cumulant of 𝒁(·) given in (13). Note that the moment
generating function of 𝒁(𝑡) in (12), and hence also in (13), is expressed in terms of the moment gen-
erating functions of the random vectors 𝑼1, . . . ,𝑼𝑑 . Denote 𝒎𝑼 (𝜽) = (𝑚𝑼1 (𝜽), . . . , 𝑚𝑼𝑑

(𝜽))⊤ as the
vector of moment generating functions of 𝑼1, . . . ,𝑼𝑑 . We impose the following condition, assumed to
hold throughout the paper.

Assumption 3. Assume that for any �̂� in (19), there exists a vector �̂� ∈ R𝑑★ such that

𝒎𝑼 (�̂�) = �̂�. (25)

Define the function Λ : R𝑑
★→ R by

Λ(𝜽) =
𝑑∑︁
𝑗=1

𝜆 𝑗

(
𝑓 𝑗 (𝒎𝑼 (𝜽)) − 1

)
. (26)

Also define the domain of convergence DΛ := {𝜽 ∈ R𝑑★ : Λ(𝜽) < ∞}, denote its interior by D◦
Λ

and
denote by 𝜕DΛ its boundary. We note that the dimension of elements in DΛ is 𝑑★, whereas that of
elements in D 𝑓 is 𝑑. We now characterize the limiting cumulant of 𝒁(·) in (13).

Lemma 1. We have 0 ∈D◦
Λ

, and for 𝜽 ∈ R𝑑★ such that 𝜽 ⩽ �̂� , where 𝒎𝑼 (�̂�) = �̂� and with �̂� the solution
to (19), we have

lim
𝑡→∞

1
𝑡

log𝑚𝒁 (𝑡 ) (𝜽) = Λ(𝜽). (27)

Proof of Lemma 1. We showed that 1 ∈ D◦
𝑓

in the proof of Proposition 1. We then immediately have
by Assumption 3 that the vector of moment generating functions 𝒎𝑼 (·) is defined in a neighborhood
of the origin. Taking 𝜽 = 0, we have 𝒎𝑼 (0) = 1, which implies 0 ∈D◦

Λ
.
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We now prove that Eqn. (27) holds. Combining Eqns. (12) and (14), we obtain

𝑚𝒁 (𝑡 ) (𝜽) =
𝑑∏
𝑗=1

exp
(
𝜆 𝑗

∫ 𝑡

0

(
E
[ 𝑑∏
𝑙=1

𝑚𝑼𝑙
(𝜽)𝑆𝑙← 𝑗 (𝑢)

]
− 1

)
d𝑢

)
,

or, equivalently,

1
𝑡

log𝑚𝒁 (𝑡 ) (𝜽) =
𝑑∑︁
𝑗=1

𝜆 𝑗

∫ 1

0

(
E
[ 𝑑∏
𝑙=1

𝑚𝑼𝑙
(𝜽)𝑆𝑙← 𝑗 (𝑣𝑡 )

]
− 1

)
d𝑣, (28)

performing an elementary change of variables. We want to take limits 𝑡→∞ in Eqn. (28); to that end
we first focus on the expectation in the integrand. By mimicking Part (𝑖) of the proof of Proposition 1,
we can apply the monotone convergence theorem on the integrand to find

lim
𝑡→∞
E
[ 𝑑∏
𝑙=1

𝑚𝑼𝑙
(𝜽)𝑆𝑙← 𝑗 (𝑣𝑡 )

]
= E

[ 𝑑∏
𝑙=1

𝑚𝑼𝑙
(𝜽)𝑆𝑙← 𝑗

]
,

provided 𝜽 ∈DΛ. Now since we took 𝜽 ∈DΛ, we have by Assumption 3 that there exists �̂� ∈ R𝑑★ such
that 𝜽 ⩽ �̂� and 𝒎𝑼 (�̂�) = �̂�. Using again a similar argument as in Part (𝑖) in the proof of Proposition 1,
distinguishing between indices 𝑘, 𝑛 ∈ [𝑑] for which 𝑚𝑼𝑘

(𝜽) ⩽ 1 and 𝑚𝑼𝑛
(𝜽) > 1, we can apply the

dominated convergence theorem to obtain

lim
𝑡→∞

𝑑∑︁
𝑗=1

𝜆 𝑗

∫ 1

0

(
E
[ 𝑑∏
𝑙=1

𝑚𝑼𝑙
(𝜽)𝑆𝑙← 𝑗 (𝑣𝑡 )

]
− 1

)
d𝑣

=

𝑑∑︁
𝑗=1

𝜆 𝑗

∫ 1

0
lim
𝑡→∞

(
E
[ 𝑑∏
𝑙=1

𝑚𝑼𝑙
(𝜽)𝑆𝑙← 𝑗 (𝑣𝑡 )

]
− 1

)
d𝑣

=

𝑑∑︁
𝑗=1

𝜆 𝑗

(
𝑓 𝑗 (𝒎𝑼 (𝜽)) − 1

)
,

which proves Eqn. (27).

4. Large deviations

In this section, we show that the multivariate compound Hawkes process satisfies a large deviations
principle (LDP). The proof proceeds by establishing the required conditions on the limiting cumulant
Λ(𝜽)—essential smoothness, most notably—such that the Gärtner-Ellis theorem (see e.g., [14, Theo-
rem 2.3.6]) can be invoked.

First recall the definition of an LDP for R𝑑-valued random vectors; see [14, Section 1.2] for more
background. Let B(R𝑑) be the Borel 𝜎-field on R𝑑 . Consider a family of random vectors {𝑿 𝜖 }𝜖 ∈R+
taking values in (R𝑑 ,B(R𝑑)). We say that {𝑿 𝜖 }𝜖 ∈R+ satisfies the LDP with rate function 𝐼 (·) if 𝐼 :
R𝑑→ [0,∞] is a lower semicontinuous mapping, and if for every Borel set 𝐴 ∈ B(R𝑑),

− inf
𝒙∈𝐴◦

𝐼 (𝒙) ⩽ lim inf
𝜖→0

𝜖 logP(𝑿 𝜖 ∈ 𝐴) ⩽ lim sup
𝜖→0

𝜖 logP(𝑿 𝜖 ∈ 𝐴) ⩽ − inf
𝒙∈𝐴

𝐼 (𝒙), (29)
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where 𝐴◦ and 𝐴 denote the interior and closure of 𝐴. Also, recall that 𝐼 (·) is lower semicontinuous if,
for all 𝛼⩾ 0, the level sets {𝒙 ∈ R𝑑 : 𝐼 (𝒙) ⩽ 𝛼} are closed; we call 𝐼 (·) a good rate function if the level
sets are compact.

We proceed by establish that (𝒁(𝑡)/𝑡)𝑡∈R+ satisfies an LDP on (R𝑑★ ,B(R𝑑★)), as stated in the fol-
lowing theorem. A distinguishing feature of our proof is that, due to the fact that the distribution of 𝑺 𝑗

is not explicitly known, we prove steepness—a key step in proving essential smoothness—implicitly,
i.e., through the fixed-point representation (18) that the probability generating functions 𝑓 𝑗 (·) satisfy.
In particular, we cannot mimic the proof that was developed in [39] for the univariate case, as that proof
heavily rests on explicit expressions for the univariate cluster size distribution.

Our steepness proof, as given below, may be somewhat obscured by the involved notation and com-
plex objects needed due to the fact that we work in a multivariate setting. To remedy this, we have also
included in Appendix A a separate proof for the univariate setting that is based on the same reasoning,
but is considerably more transparent.

Theorem 1. The process (𝒁(𝑡)/𝑡)𝑡∈R+ satisfies on (R𝑑★ ,B(R𝑑★)) the LDP with good rate function

Λ∗ (𝒙) = sup
𝜽∈R𝑑★

(𝜽⊤𝒙 −Λ(𝜽)). (30)

Proof of Theorem 1. The proof relies on an application of the Gärtner-Ellis theorem, for which we
need to show that the limiting cumulant Λ(𝜽) is an essentially smooth, lower semicontinuous func-
tion. For essential smoothness, we need to show that D◦

Λ
is non-empty and that 0 ∈ D◦

Λ
, that Λ(·) is

differentiable on D◦
Λ

, and finally that Λ(·) is steep; see [14, Section 2.3] for further details.
Lemma 1 shows that D◦

Λ
is non-empty and 0 ∈D◦

Λ
. To show that Λ(·) is differentiable on D◦

Λ
, recall

from the proof of Proposition 1 that 𝒇 (·) is continuously differentiable on D◦
𝑓
, exploiting Assump-

tions 1 and 2. Using this property, in combination with the fact that the moment generating functions
𝑚𝑼𝑙
(𝜽) are differentiable for 𝜽 ∈ D◦

Λ
by invoking Assumption 3, we conclude differentiability of Λ(·)

on D◦
Λ

.
Next, we prove that Λ(·) is steep, i.e., for any �̄� ∈ 𝜕D◦

Λ
and a sequence 𝜽𝑛↗ �̄� as 𝑛→∞, we have

that lim𝑛→∞∥∇Λ(𝜽𝑛)∥R𝑑★ =∞. For any 𝑖 ∈ [𝑑★], we first observe that

𝜕

𝜕𝜃𝑖
Λ(𝜽) =

𝑑∑︁
𝑗=1

𝜆 𝑗
𝜕

𝜕𝜃𝑖
𝑓 𝑗 (𝒎𝑼 (𝜽))

=

𝑑∑︁
𝑗=1

𝜆 𝑗

𝑑∑︁
𝑘=1

( 𝜕
𝜕𝜃𝑖

𝑚𝑼𝑘
(𝜽)

)
E
[
𝑆𝑘← 𝑗

𝑑∏
𝑙=1

𝑚𝑼𝑙
(𝜽)𝑆𝑙← 𝑗−1{𝑘=𝑙}

]
.

(31)

This identity entails that entries of ∇Λ(·) are given in terms of the partial derivatives of the probability
generating function of 𝑺 𝑗 , for all 𝑗 ∈ [𝑑].

To establish steepness of Λ(·), it suffices to show that the partial derivatives of 𝑓 𝑗 (·) diverge on the
boundary of D◦

Λ
. Recall that the input for the probability generating function 𝒇 (·) in Eqn. (26) is the

vector 𝒎𝑼 (𝜽) ∈ R𝑑+ . In the remainder of the proof, we first derive steepness of 𝒇 (·) at a specific 𝒛 ∈ R𝑑+ ,
after which we consider the setting in which 𝒇 (·) is evaluated in the vector 𝒎𝑼 (𝜽).

Define the matrix �̂�(𝒛) = (𝐵𝑚𝑗 (𝒛))𝑚, 𝑗∈[𝑑 ] by

𝐵𝑚𝑗 (𝒛) := 𝑧 𝑗E
[
𝐵𝑚𝑗𝑐𝑚𝑗 exp

( 𝑑∑︁
𝑖=1

𝐵𝑖 𝑗𝑐𝑖 𝑗 ( 𝑓𝑖 (𝒛) − 1)
)]
. (32)
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Taking the partial derivative of the fixed-point representation (18) with respect to 𝑧𝑘 , for 𝑘 ∈ [𝑑], yields

𝜕 𝑓 𝑗 (𝒛)
𝜕𝑧𝑘

= E
[

exp
( 𝑑∑︁
𝑚=1

𝐵𝑚𝑗𝑐𝑚𝑗 ( 𝑓𝑚 (𝒛) − 1)
)]

1{𝑘= 𝑗 } +
𝑑∑︁

𝑚=1

𝜕 𝑓𝑚 (𝒛)
𝜕𝑧𝑘

𝐵𝑚𝑗 (𝒛)

=
𝑓 𝑗 (𝒛)
𝑧 𝑗

1{𝑘= 𝑗 } +
𝑑∑︁

𝑚=1

𝜕 𝑓𝑚 (𝒛)
𝜕𝑧𝑘

𝐵𝑚𝑗 (𝒛),

(33)

where the second equality is due to the fixed-point representation (18) itself. We can write (33) com-
pactly in matrix-vector form by considering the Jacobian 𝑱 𝒇 of 𝒇 (·), which yields

𝑱 𝒇 (𝒛) = (𝑰 − �̂�(𝒛)⊤)−1diag( 𝒇 (𝒛)/𝒛), (34)

where the division 𝒇 (𝒛)/𝒛 is to be understood componentwise, provided the inverse exists. We now
explore for which values of 𝒛 the inverse appearing in (34) fails to exist, i.e., when the associated
determinant equals 0. Consider an element �̂� on the boundary of D 𝑓 . Recall from Eqn. (19) that this �̂�
is parametrized by some positive vector 𝒓 ∈ R𝑑+ . Moreover, in this point we have 𝒇 (̂𝒛) = �̂�, with �̂� the
solution to (20), and hence

𝐵𝑚𝑗 (̂𝒛) = �̂� 𝑗E
[
𝐵𝑚𝑗𝑐𝑚𝑗 exp

( 𝑑∑︁
𝑖=1

𝐵𝑖 𝑗𝑐𝑖 𝑗 (�̂�𝑖 − 1)
)]
. (35)

Combining this with Eqns. (19) and (20), we obtain

�̂� (̂𝒛) · 𝒓 = 𝒓 ⇐⇒ (𝑰 − �̂� (̂𝒛)) · 𝒓 = 0, (36)

implying that 𝒓 is in the kernel of 𝑰 − �̂� (̂𝒛). Since 𝒓 is a positive (non-zero) vector, we obtain that
𝑰 − �̂� (̂𝒛) is not invertible and so

det(𝑰 − �̂� (̂𝒛)⊤) = 0. (37)

Then by Eqn. (34), we find that the directional derivative into the positive quadrant diverges, i.e., for
any 𝒒 ∈ R𝑑+ and sequence {𝒛𝑛} ⊆ D◦

𝑓
such that 𝒛𝑛↗ �̂� , we have

lim
𝒛𝑛↗�̂�
∥𝑱 𝒇 (𝒛𝑛) · 𝒒∥R𝑑 =∞,

since each element of diag( 𝒇 (̂𝒛)/̂𝒛) = diag(�̂�/̂𝒛) is positive and bounded. This proves that 𝒇 (·) is steep
in each argument.

We now use the above observations to prove steepness of Λ(·). By Assumption 3, there exists �̂�
on the boundary of DΛ such that 𝒎𝑼 (�̂�) = �̂�. With the same argument as above, we find det(𝑰 −
�̂�(𝒎𝑼 (�̂�))⊤) = 0, such that 𝑰 − �̂�(𝒎𝑼 (�̂�))⊤ is not invertible at the boundary of DΛ. Hence, for any
positive vector 𝒒 ∈ R𝑑 and a sequence {𝜽𝑛} ⊆ D◦

Λ
such that 𝜽𝑛↗ �̂� , we have

lim inf
𝜽𝑛↗�̂�

∥𝑱 𝒇 (𝒎𝑼 (𝜽𝑛)) · 𝒒∥R𝑑 =∞. (38)
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If we denote the entries of 𝑱 𝒇 by 𝑱
( 𝑗𝑘 )
𝒇

= 𝜕 𝑓 𝑗/𝜕𝑧𝑘 , then from Eqn. (31), we have

lim inf
𝜽𝑛↗�̂�

∥∇Λ(𝜽𝑛)∥R𝑑★ = lim inf
𝜽𝑛↗�̂�

( 𝜕

𝜕𝜃1
Λ(𝜽𝑛), . . . ,

𝜕

𝜕𝜃𝑑★
Λ(𝜽𝑛)

)
R𝑑

★

=

( 𝑑∑︁
𝑗=1

𝜆 𝑗

𝑑∑︁
𝑘=1

lim inf
𝜽𝑛↗�̂�

𝜕

𝜕𝜃1
𝑚𝑼𝑘
(𝜽𝑛)E

[
𝑆𝑘← 𝑗

𝑑∏
𝑙=1

𝑚𝑼𝑙
(𝜽𝑛)𝑆𝑙← 𝑗−1{𝑘=𝑙}

]
,

. . . ,

𝑑∑︁
𝑗=1

𝜆 𝑗

𝑑∑︁
𝑘=1

lim inf
𝜽𝑛↗�̂�

𝜕

𝜕𝜃𝑑★
𝑚𝑼𝑘
(𝜽𝑛)E

[
𝑆𝑘← 𝑗

𝑑∏
𝑙=1

𝑚𝑼𝑙
(𝜽𝑛)𝑆𝑙← 𝑗−1{𝑘=𝑙}

] )
R𝑑

★

⩾
( 𝑑∑︁

𝑗=1

𝜆 𝑗

𝑑∑︁
𝑘=1

𝜕

𝜕𝜃1
𝑚𝑼𝑘
(�̂�)E

[
lim inf
𝜽𝑛↗�̂�

𝑆𝑘← 𝑗

𝑑∏
𝑙=1

𝑚𝑼𝑙
(𝜽𝑛)𝑆𝑙← 𝑗−1{𝑘=𝑙}

]
, (39)

. . . ,

𝑑∑︁
𝑗=1

𝜆 𝑗

𝑑∑︁
𝑘=1

𝜕

𝜕𝜃𝑑★
𝑚𝑼𝑘
(�̂�)E

[
lim inf
𝜽𝑛↗�̂�

𝑆𝑘← 𝑗

𝑑∏
𝑙=1

𝑚𝑼𝑙
(𝜽𝑛)𝑆𝑙← 𝑗−1{𝑘=𝑙}

] )
R𝑑

★

=

( 𝑑∑︁
𝑗=1

𝜆 𝑗

𝑑∑︁
𝑘=1

𝜕

𝜕𝜃1
𝑚𝑼𝑘
(�̂�)𝑱 𝑗𝑘

𝒇
(𝒎𝑼 (�̂�)), . . . ,

𝑑∑︁
𝑗=1

𝜆 𝑗

𝑑∑︁
𝑘=1

𝜕

𝜕𝜃𝑑★
𝑚𝑼𝑘
(�̂�)𝑱 𝑗𝑘

𝒇
(𝒎𝑼 (�̂�))

)
R𝑑

★

=∞,

where the inequality is an application of Fatou’s lemma and the last equality is a consequence of (38).
We finally prove lower semicontinuity of Λ(·). Since we consider a metric space R𝑑

★
, it suffices

to show lower semicontinuity through sequences. Consider 𝜽𝑛↗ 𝜽 ∈ D◦
Λ

and observe that by Fatou’s
lemma, we have

lim inf
𝜽𝑛↗𝜽

E
[ 𝑑∏
𝑙=1

𝑚𝑼𝑙
(𝜽𝑛)𝑆𝑙← 𝑗

]
⩾ E

[ 𝑑∏
𝑙=1

lim inf
𝜽𝑛↗𝜽

𝑚𝑼𝑙
(𝜽𝑛)𝑆𝑙← 𝑗

]
, (40)

for any 𝑗 ∈ [𝑑]. Furthermore, it is easily shown that, for any integer 𝑘 ∈ N, another application of
Fatou’s lemma yields

lim inf
𝜽𝑛↗𝜽

𝑚𝑼𝑙
(𝜽𝑛)𝑘 = lim inf

𝜽𝑛↗𝜽
E
[
exp(𝜽⊤𝑛𝑼𝑙)

] 𝑘
⩾ E

[
exp(𝜽⊤𝑼𝑙)

] 𝑘
. (41)

Since the random variables 𝑆𝑙← 𝑗 are non-negative, we obtain

lim inf
𝜽𝑛↗𝜽

Λ(𝜽𝑛) = lim inf
𝜽𝑛↗𝜽

𝑑∑︁
𝑗=1

𝜆 𝑗

(
E
[ 𝑑∏
𝑙=1

𝑚𝑼𝑙
(𝜽𝑛)𝑆𝑙← 𝑗

]
− 1

)
⩾

𝑑∑︁
𝑗=1

𝜆 𝑗

(
E
[

lim inf
𝜽𝑛↗𝜽

𝑑∏
𝑙=1

𝑚𝑼𝑙
(𝜽𝑛)𝑆𝑙← 𝑗

]
− 1

)
⩾Λ(𝜽).

(42)

We have now verified that the limiting cumulant Λ(·) satisfies all conditions for the Gärtner-Ellis the-
orem [14, Theorem 2.3.6] to apply. This concludes the proof of the LDP.
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The consequence of this LDP is that, for any Borel set 𝐴 ∈ B(R𝑑★), we have that the measure 𝜈𝑡 :
B(R𝑑★) → [0,1] defined by 𝜈𝑡 (𝐴) := P(𝒁(𝑡)/𝑡 ∈ 𝐴) satisfies

− inf
𝒙∈𝐴◦

Λ∗ (𝒙) ⩽ lim inf
𝑡→∞

1
𝑡

log 𝜈𝑡 (𝐴) ⩽ lim sup
𝑡→∞

1
𝑡

log 𝜈𝑡 (𝐴) ⩽ − inf
𝒙∈𝐴

Λ∗ (𝒙). (43)

We note that when substituting the limiting value of 𝒁(𝑡)/𝑡 (as 𝑡→∞), given by (11), into Λ∗ (·), one
obtains 0, as should be. This is verified by taking the partial derivatives of Λ(·) w.r.t. 𝜽 and evaluating
the resulting expressions at 𝜽 = 0, using (31)–(33), which indeed yields the limiting value of 𝒁(𝑡)/𝑡.

5. Rare event simulation
In this section, we show how to use importance sampling to efficiently estimate rare event probabil-
ities. This is accomplished by first exponentially twisting the underlying probability measure P. In
Section 5.1, as a contribution of potential independent interest, we describe how to identify the model
primitives under this new measure, which we throughout refer to as Q. In the two subsequent subsec-
tions, we specifically consider the probability of ruin in component 𝑖 ∈ [𝑑] (of which the logarithmic
asymptotics are derived in Proposition 2), and the probability of the multivariate compound Hawkes
process attaining rare values (of which the logarithmic asymptotics have been established in Theo-
rem 1). An assessment of the performance of the rare event simulation procedures is in Appendix E.

5.1. Identification of the alternative distribution

In this subsection, we describe how to construct the exponentially twisted version of the multivariate
compound Hawkes process, which we associate with the probability measureQ, without having explicit
expressions for the moment and probability generating functions of the original process. More specifi-
cally, we identify a stochastic process of which the limiting cumulant equals, for a vector 𝜽★ ∈ R𝑑★ ,

ΨQ (𝜽) := Ψ(𝜽 + 𝜽★) −Ψ(𝜽★),

with Ψ(𝜽) = Λ(𝜽) − 𝒓⊤𝜽 , and, by virtue of Lemma 1,

Λ(𝜽) =
𝑑∑︁
𝑗=1

𝜆 𝑗

(
𝑓 𝑗 (𝒎𝑼 (𝜽)) − 1

)
. (44)

To this end, it is first verified that

Λ(𝜽 + 𝜽★) −Λ(𝜽★) =
𝑑∑︁
𝑗=1

𝜆 𝑗 𝑓 𝑗 (𝒎𝑼 (𝜽★))
(
𝑓 𝑗 (𝒎𝑼 (𝜽 + 𝜽★))
𝑓 𝑗 (𝒎𝑼 (𝜽★))

− 1
)
.

Next, for 𝑗 ∈ [𝑑],

𝑓 𝑗 (𝒎𝑼 (𝜽 + 𝜽★))
𝑓 𝑗 (𝒎𝑼 (𝜽★))

=
1

𝑓 𝑗 (𝒎𝑼 (𝜽★))
∑︁
𝒏∈N𝑑

0

P(𝑺 𝑗 = 𝒏)
𝑑∏
𝑙=1

(𝑚𝑼𝑙
(𝜽 + 𝜽★))𝑛𝑙

=
∑︁
𝒏∈N𝑑

0

P(𝑺 𝑗 = 𝒏)
𝑓 𝑗 (𝒎𝑼 (𝜽★))

𝑑∏
𝑙=1

(𝑚𝑼𝑙
(𝜽★))𝑛𝑙

(
𝑚𝑼𝑙
(𝜽 + 𝜽★)

𝑚𝑼𝑙
(𝜽★)

)𝑛𝑙
.
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Now define, for 𝑗 ∈ [𝑑],

Q(𝑺 𝑗 = 𝒏) :=
P(𝑺 𝑗 = 𝒏)
𝑓 𝑗 (𝒎𝑼 (𝜽★))

𝑑∏
𝑙=1

(𝑚𝑼𝑙
(𝜽★))𝑛𝑙 ,

which induces a probability distribution (i.e., non-negative and summing to 1) by its very construction.
Define by 𝑓

Q
𝑗
(𝒛) the corresponding probability generating function, which is the counterpart of 𝑓 𝑗 (𝒛)

under Q: for 𝑗 ∈ [𝑑],

𝑓
Q
𝑗
(𝒛) =

∑︁
𝒏∈N𝑑

0

Q(𝑺 𝑗 = 𝒏)
𝑑∏
𝑙=1

𝑧
𝑛𝑙
𝑙
=
𝑓 𝑗 (𝑚𝑼1 (𝜽★)𝑧1, . . . , 𝑚𝑼𝑑

(𝜽★)𝑧𝑑)
𝑓 𝑗 (𝒎𝑼 (𝜽★))

. (45)

In addition, define, for 𝑙 ∈ [𝑑],

Q(𝑈1𝑙 ∈ d𝑥1, . . . ,𝑈𝑑★𝑙 ∈ d𝑥𝑑★) :=
P(𝑈1𝑙 ∈ d𝑥1, . . . ,𝑈𝑑★𝑙 ∈ d𝑥𝑑★)

𝑚𝑼𝑙
(𝜽★)

𝑑★∏
𝑘=1

𝑒𝜃
★
𝑘
𝑥𝑘 , (46)

which generates a probability distribution (i.e., non-negative and integrating to 1); let 𝑚Q𝑼𝑙
(𝜽) be the

associated moment generating function, given by

𝑚
Q
𝑼𝑙
(𝜽) =

𝑚𝑼𝑙
(𝜽 + 𝜽★)

𝑚𝑼𝑙
(𝜽★)

.

We finally define the base rates under Q via

𝜆
Q
𝑗 := 𝜆 𝑗 𝑓 𝑗 (𝒎𝑼 (𝜽★)), (47)

for 𝑗 ∈ [𝑑].
Upon combining the objects defined above, it now requires an elementary verification to conclude

that

Λ(𝜽 + 𝜽★) −Λ(𝜽★) =
𝑑∑︁
𝑗=1

𝜆
Q
𝑗

(
𝑓
Q
𝑗
(𝒎Q𝑼 (𝜽)) − 1

)
,

as desired; cf. (44). This means that we have uniquely characterized the joint distribution of the cluster
sizes 𝑺 𝑗 (for 𝑗 ∈ [𝑑]), the joint distribution of the claim sizes 𝑼𝑙 (for 𝑙 ∈ [𝑑]), and the base rates under
the alternative measure Q.

The only question left is: How does one sample a cluster size 𝑺 𝑗 under Q? More concretely: What is
the distribution of the marks 𝐵𝑙 𝑗 under the alternative measure Q, and how should the corresponding
decay functions 𝑔𝑙 𝑗 (·) be adapted? To this end, we revisit (18), which we rewrite to

𝑓 𝑗 (𝒛) = 𝑧 𝑗 𝑚𝑩 𝑗
(𝑐1 𝑗 ( 𝑓1 (𝒛) − 1), . . . , 𝑐𝑑 𝑗 ( 𝑓𝑑 (𝒛) − 1)), (48)

using the self-evident notation

𝑚𝑩 𝑗
(𝜽) := E exp

(
𝑑∑︁

𝑚=1

𝜃𝑚𝐵𝑚𝑗

)
.
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Introduce the compact notation 𝒚𝜽★ (𝒛) := (𝑚𝑼1 (𝜽★)𝑧1, . . . , 𝑚𝑼𝑑
(𝜽★)𝑧𝑑)⊤. Hence, as an immediate

consequence of (45), we obtain

𝑓
Q
𝑗
(𝒛) =

𝑓 𝑗 (𝒚𝜽★ (𝒛))
𝑓 𝑗 (𝒚𝜽★ (1))

.

Upon combining the two previous displays, we conclude that we can rewrite 𝑓 Q
𝑗
(𝒛) as

𝑓
Q
𝑗
(𝒛) =

𝑚𝑼 𝑗
(𝜽★)𝑧 𝑗 ·𝑚𝑩 𝑗

(𝑐1 𝑗 ( 𝑓1 (𝒚𝜽★ (𝒛)) − 1), . . . , 𝑐𝑑 𝑗 ( 𝑓𝑑 (𝒚𝜽★ (𝒛)) − 1))
𝑚𝑼 𝑗
(𝜽★) ·𝑚𝑩 𝑗

(𝑐1 𝑗 ( 𝑓1 (𝒚𝜽★ (1)) − 1), . . . , 𝑐𝑑 𝑗 ( 𝑓𝑑 (𝒚𝜽★ (1)) − 1))

= 𝑧 𝑗
𝑚𝑩 𝑗
(𝑐1 𝑗 ( 𝑓1 (𝒚𝜽★ (𝒛)) − 1), . . . , 𝑐𝑑 𝑗 ( 𝑓𝑑 (𝒚𝜽★ (𝒛)) − 1))

𝑚𝑩 𝑗
(𝑐1 𝑗 ( 𝑓1 (𝒚𝜽★ (1)) − 1), . . . , 𝑐𝑑 𝑗 ( 𝑓𝑑 (𝒚𝜽★ (1)) − 1)) .

To simplify this further, we write

𝑐
Q
𝑙 𝑗
= 𝑐𝑙 𝑗 𝑓𝑙 (𝒚𝜽★ (1)), 𝑐

Q
𝑙 𝑗

:= 𝑐Q
𝑙 𝑗
− 𝑐𝑙 𝑗 , (49)

such that

𝑓
Q
𝑗
(𝒛) = 𝑧 𝑗

𝑚𝑩 𝑗

(
𝑐
Q
1 𝑗

(
𝑓1 (𝒚𝜽★ (𝒛))
𝑓1 (𝒚𝜽★ (1))

− 1
)
+ 𝑐Q1 𝑗 , . . . , 𝑐

Q
𝑑 𝑗

(
𝑓𝑑 (𝒚𝜽★ (𝒛))
𝑓𝑑 (𝒚𝜽★ (1))

− 1
)
+ 𝑐Q

𝑑 𝑗

)
𝑚𝑩 𝑗
(𝑐Q1 𝑗 , . . . , 𝑐

Q
𝑑 𝑗
)

.

We now focus on the distribution of the marks under the alternative measure Q. Denoting �̄�Q
𝑗
=

(𝑐Q1 𝑗 , . . . , 𝑐
Q
𝑑 𝑗
)⊤, we define

Q(𝐵1 𝑗 ∈ d𝑥1, . . . , 𝐵𝑑 𝑗 ∈ d𝑥𝑑) :=
P(𝐵1 𝑗 ∈ d𝑥1, . . . , 𝐵𝑑 𝑗 ∈ d𝑥𝑑)

𝑚𝑩 𝑗
( �̄�Q

𝑗
)

𝑑∏
𝑙=1

𝑒
�̄�
Q
𝑙 𝑗
𝑥𝑙 , (50)

so that

𝑚
Q
𝑩 𝑗
(𝜽) =

𝑚𝑩 𝑗
(𝜽 + �̄�Q

𝑗
)

𝑚𝑩 𝑗
( �̄�Q

𝑗
)
.

Combining the above relations, we thus conclude that

𝑓
Q
𝑗
(𝒛) = 𝑧 𝑗 𝑚Q𝑩 𝑗

(
𝑐
Q
1 𝑗 ( 𝑓

Q
1 (𝒛) − 1), . . . , 𝑐Q

𝑑 𝑗
( 𝑓 Q

𝑑
(𝒛) − 1)

)
,

which has, appealing to Eqn. (48), the right structure. This means that we have identified the distribu-
tion of the marks and the decay functions under Q.

The following summarizes the above findings. Most importantly, the exponentially twisted version
of the multivariate compound Hawkes process is again a multivariate compound Hawkes process, but
(evidently) with different model primitives. Specifically, the 𝜽★-twisted version of the multivariate
compound Hawkes process can be constructed as follows:

◦ the base rate 𝜆 𝑗 is replaced by 𝜆
Q
𝑗 = 𝜆 𝑗 𝑓 𝑗 (𝒎𝑼 (𝜽★)); cf. (47).

◦ the density of 𝑼𝑙 is replaced by Q(𝑈1𝑙 ∈ d𝑥1, . . . ,𝑈𝑑★𝑙 ∈ d𝑥𝑑★), as given by (46);
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◦ the density of 𝑩 𝑗 is replaced by Q(𝐵1 𝑗 ∈ d𝑥1, . . . , 𝐵𝑑 𝑗 ∈ d𝑥𝑑), as given by (50);
◦ the decay function 𝑔𝑙 𝑗 (·) is replaced by 𝑔Q

𝑙 𝑗
(·) := 𝑔𝑙 𝑗 (·) 𝑓𝑙 (𝒚𝜽★ (1)) = 𝑔𝑙 𝑗 (·) 𝑓𝑙 (𝒎𝑼 (𝜽★)); cf. (49).

This exponentially twisting mechanism generalizes the one identified for the univariate compound
Hawkes process with unit marks, featuring in the statement of [39, Theorem 2.2].

5.2. Ruin probabilities

In this subsection, we consider, for a given 𝑖 ∈ [𝑑★], the following net cumulative claim process (or:
risk process):

𝑌𝑖 (𝑡) := 𝑍𝑖 (𝑡) − 𝑟𝑡, (51)

in which claims are generated by a multivariate compound Hawkes process 𝒁(𝑡) and 𝑟 > 0 is a constant
premium rate per unit of time. Our first objective is to find the asymptotics of the associated ruin
probability, i.e., the probability that this net cumulative process ever exceeds level 𝑢, for some 𝑢 > 0.

From the LLN result for 𝒁(𝑡)/𝑡 given in Eqn. (11), we have that

𝑍𝑖 (𝑡)
𝑡
→ E[𝑼 (𝑖) ] (𝑰 − 𝑯)−1𝝀, (52)

a.s., with E[𝑼 (𝑖) ] = (E[𝑈𝑖1], . . . ,E[𝑈𝑖𝑑]). To make sure that ruin is rare, we impose throughout the net
profit condition:

𝑟 > E[𝑼 (𝑖) ] (𝑰 − 𝑯)−1𝝀, (53)

such that the process 𝑌𝑖 (𝑡) drifts towards −∞. For some initial capital 𝑢 > 0, the time of ruin is defined
as

𝜏𝑢 := inf{𝑡 > 0 : 𝑢 + 𝑟𝑡 − 𝑍𝑖 (𝑡) < 0} = inf{𝑡 > 0 : 𝑌𝑖 (𝑡) > 𝑢},

and the associated infinite horizon ruin probability is defined as

𝑝(𝑢) := P(𝜏𝑢 <∞). (54)

We study the behavior of 𝑝(𝑢) for 𝑢 large.
From Lemma 1, it immediately follows that the limiting cumulant function of 𝑌𝑖 (·) satisfies

Ψ𝑖 (𝜃) := lim
𝑡→∞

1
𝑡

logE
[
𝑒𝜃𝑌𝑖 (𝑡 )

]
= Λ𝑖 (𝜃) − 𝑟𝜃, (55)

with

Λ𝑖 (𝜃) := lim
𝑡→∞

1
𝑡

logE[𝑒𝜃𝑍𝑖 (𝑡 ) ] = Λ(0, . . . , 𝜃, . . . ,0).

By [14, Lemma 2.3.9], we know that Λ𝑖 (·) is a convex function, which implies that Ψ𝑖 (·) is also convex.
We assume throughout the paper that we are in the light-tailed regime, in the sense that there exists
𝜃★ > 0 such that

Ψ𝑖 (𝜃★) = 0. (56)

We prove that 𝑝(𝑢) decays essentially exponentially as 𝑢 increases, as made precise in the following
proposition, the proof of which is in Appendix B.
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Proposition 2. For fixed 𝑖 ∈ [𝑑★], the ruin probability 𝑝(𝑢) associated to the risk process 𝑌𝑖 (·) has
logarithmic decay rate −𝜃★, i.e.,

lim
𝑢→∞

1
𝑢

log 𝑝(𝑢) = −𝜃★, (57)

where 𝜃★ is the unique positive solution of (56).

We emphasize that although we consider just one out of the 𝑑★ net cumulative claim processes, the
setting is still intrinsically multi-dimensional, as it involves the multivariate compound Hawkes process
(of which the components cannot be described in isolation).

In our importance sampling algorithm presented in what follows, we will twist 𝒀 (𝑡) by 𝜽★ =

(0, . . . , 0, 𝜃★,0, . . . ,0)⊤, with the 𝜃★ corresponding to the 𝑖-th entry and solving Ψ𝑖 (𝜃★) = 0. We show
that this leads to an estimator that is asymptotically efficient (also sometimes referred to as logarithmi-
cally efficient, or asymptotically optimal); in the remainder of this subsection, we refer to the alternative
measure induced by this specific twist for fixed and given 𝑖 by Q. For more background on optimal-
ity notions of importance sampling procedures, such as asymptotic efficiency, we refer to [3, Section
VI.1]. Our proof is given in Appendix C. In principle, it follows the same structure as the one given in
[39, Section 4]; therefore, we focus on the main innovations in this general, multivariate setting with
random marks.

Recall that 𝑝(𝑢) = P(𝜏𝑢 <∞), with 𝜏𝑢 the first time that 𝑌𝑖 (·) exceeds level 𝑢. First note that 𝑝(𝑢) =
EQ [𝐿𝜏𝑢 𝐼], where 𝐼 is the indicator function of the event {𝜏𝑢 <∞} and 𝐿𝜏𝑢 is the appropriate likelihood
ratio, which quantifies the likelihood of the sampled path under P relative to Q. More precisely, 𝐿𝜏𝑢

is the Radon-Nikodym derivative of the sampled path under the measure P relative to the measure Q,
evaluated at the ruin time 𝜏𝑢. As in [39, Lemma 4.3], it can be concluded that—essentially due to the
fact that we changed the drift of the risk process from a negative value (under P) into a positive value
(under Q)—under Q eventually any positive value is reached by the process 𝑌𝑖 (·). Thus, 𝐼 ≡ 1 with
Q-probability 1, and hence 𝑝(𝑢) = EQ [𝐿𝜏𝑢 ].

Following the reasoning in [39] (i.e., effectively relying on a general result in [26]), we can express
the likelihood ratio in terms of the various quantities pertaining to the original measure P and their
counterparts under Q. Indeed, the likelihood ratio at time 𝑡 equals

dP
dQ

���
F𝑡

= 𝐿𝑡 = exp ©«−
𝑑∑︁
𝑗=1

∫ 𝑡

0
(𝜆 𝑗 (𝑠) − 𝜆Q𝑗 (𝑠)) d𝑠

ª®¬ exp ©«
𝑑∑︁
𝑗=1

∫ 𝑡

0
log

𝜆 𝑗 (𝑠)
𝜆
Q
𝑗
(𝑠)

d𝑁 𝑗 (𝑠)
ª®¬

× exp ©«
𝑑∑︁
𝑗=1

𝑁 𝑗 (𝑡 )∑︁
𝑟=1

log ℓ 𝑗
(
𝑩 𝑗 ,𝑟 )

ª®¬
𝑑∏
𝑗=1

𝑚𝑼 𝑗
(𝜽★)𝑁 𝑗 (𝑡 )

𝑒
𝜃★
𝑗
𝑍 𝑗 (𝑡 )

,

(58)

where

𝜆 𝑗 (𝑠) = 𝜆 𝑗 +
𝑑∑︁
𝑙=1

𝑁𝑙 (𝑠)∑︁
𝑟=1

𝐵 𝑗𝑙,𝑟 𝑔 𝑗𝑙 (𝑠 −𝑇𝑙,𝑟 ), 𝜆
Q
𝑗
(𝑠) = 𝜆Q𝑗 +

𝑑∑︁
𝑙=1

𝑁𝑙 (𝑠)∑︁
𝑟=1

𝐵 𝑗𝑙,𝑟 𝑔
Q
𝑗𝑙
(𝑠 −𝑇𝑙,𝑟 ), (59)

with 𝜆
Q
𝑗 and 𝑔Q

𝑗𝑙
(·) as defined in Section 5.1 and all random objects sampled under Q, and with ℓ 𝑗 (𝒙)

denoting the ratio of the density of the random marks 𝑩 𝑗 under P and its counterpart under Q evaluated
in the argument 𝒙. It is directly seen, from the construction of the measure Q, that

𝜆
Q
𝑗
(𝑠) = 𝜆 𝑗 (𝑠) 𝑓 𝑗 (𝒎𝑼 (𝜽★)) > 𝜆 𝑗 (𝑠).
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Note that the relation between 𝜆Q
𝑗
(𝑠) and 𝜆 𝑗 (𝑠), and the fact that 𝜽★ is non-zero in the 𝑖-th entry, allows

us to express the likelihood ratio as

𝐿𝑡 = exp ©«−
𝑑∑︁
𝑗=1

(
1 − 𝑓 𝑗 (𝒎𝑼 (𝜽★))

) ∫ 𝑡

0
𝜆 𝑗 (𝑠)d𝑠ª®¬ 𝑒−𝜃★𝑍𝑖 (𝑡 )

× exp ©«
𝑑∑︁
𝑗=1

𝑁 𝑗 (𝑡 )∑︁
𝑟=1

log ℓ 𝑗
(
𝑩 𝑗 ,𝑟

)ª®¬
𝑑∏
𝑗=1

(
𝑚𝑼 𝑗
(𝜽★)

𝑓 𝑗 (𝒎𝑼 (𝜽★))

)𝑁 𝑗 (𝑡 )

.

(60)

We now introduce the importance sampling estimator and establish its efficiency. With 𝑛 ∈ N, we
define the importance sampling estimator of 𝑝(𝑢) by

𝑝𝑛 (𝑢) :=
1
𝑛

𝑛∑︁
𝑚=1

𝐿
(𝑚)
𝜏𝑢 , (61)

where 𝐿 (𝑚)𝜏𝑢 (for 𝑚 = 1, . . . , 𝑛) are independent replications of 𝐿𝜏𝑢 , sampled under Q. In our context,
asymptotic efficiency is to be understood as

lim
𝑢→∞

1
𝑢

log
√︁
VarQ𝐿𝜏𝑢 ⩽ lim

𝑢→∞
1
𝑢

log 𝑝(𝑢),

that is, the measure Q is asymptotically efficient for simulations; see Siegmund’s criterion [38].

Theorem 2. The importance sampling estimator 𝑝𝑛 (𝑢) in (61), which relies on the alternative measure
Q that corresponds to the exponential twist 𝜽★ = (0, . . . ,0, 𝜃★,0, . . . ,0)⊤, is asymptotically efficient.

Remark 1. In the final part of the proof of Theorem 2, contained in Appendix C, we have in passing
derived a Lundberg-type inequality for this non-standard ruin model. Indeed, we have that the ruin
probability 𝑝(𝑢), corresponding to the net cumulative claim process 𝑌𝑖 (·), satisfies the upper bound

𝑝(𝑢) ⩽ 𝑒−𝜃
★𝑢, (62)

uniformly in 𝑢 > 0.

The immediate consequence of the above theorem, which substantially generalizes [39, Theorem
4.5], is the following. Suppose that we wish to obtain an estimate with a certain precision, defined
as the ratio of the confidence interval’s half-width (which is proportional to the standard deviation
of the estimate) and the estimate itself. Using simulation under the actual measure P, the number of
runs required to obtain a given precision is inversely proportional to the probability to be estimated.
In our specific case, this means that under P, due to Proposition 2, this number grows exponentially
in 𝑢 (roughly like 𝑒𝜃

★𝑢, that is). Under the alternative measure Q, however, Theorem 2 entails that the
number of runs to achieve this precision grows subexponentially, thus yielding a substantial variance
reduction. This means that, despite the fact that the ruin probability decays very rapidly as 𝑢 grows, the
simulation effort required to estimate it grows at a relatively modest pace.
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5.3. Exceedance probabilities

In this subsection, we consider the estimation of multivariate exceedance probabilities of the type

𝑞𝑡 (𝒂) := P
(
𝑍1 (𝑡)
𝑡

⩾ 𝑎1, . . . ,
𝑍𝑑★ (𝑡)
𝑡

⩾ 𝑎𝑑★

)
,

where the set 𝐴 := [𝑎1,∞) × · · · × [𝑎𝑑★ ,∞) does not contain the vector 𝝁, with, as before

𝜇𝑖 = E[𝑼 (𝑖) ] (𝑰 − 𝑯)−1𝝀,

the asymptotic value of the process 𝑍𝑖 (𝑡)/𝑡. We consider the regime that 𝑡 grows large, in which the
event of interest becomes increasingly rare by Theorem 1. We show that the associated importance
sampling estimator is asymptotically efficient.

Let 𝐼 ≡ 𝐼𝒂 be the indicator for the rare event, i.e., set 𝐼𝒂 := {𝑍1 (𝑡) ⩾ 𝑎1𝑡, . . . , 𝑍𝑑★ (𝑡) ⩾ 𝑎𝑑★𝑡} for any
given 𝑡 > 0. We define the importance sampling estimator for the probability of this event by

𝑞𝑡 ,𝑛 (𝒂) :=
1
𝑛

𝑛∑︁
𝑚=1

𝐿
(𝑚)
𝑡 𝐼

(𝑚)
𝒂 , (63)

where 𝐿 (𝑚)𝑡 are independent replications of 𝐿𝑡 , sampled under Q with a twist parameter depending
on 𝒂. Here, 𝐼 (𝑚)𝒂 are the associated indicators. We state the following theorem, the proof of which is
contained in Appendix D.

Theorem 3. The importance sampling estimator 𝑞𝑡 ,𝑛 (𝒂) in (63), when using the alternative measure
Q that corresponds to the exponential twist

𝜽 (𝒂★) = arg sup
𝜽
(𝜽⊤𝒂★ −Λ(𝜽)),

with 𝒂★ := arg inf𝒙∈𝐴Λ★(𝒙), is asymptotically efficient.

The analysis becomes significantly more complicated when considering rare event sets that are unions
rather than intersections, e.g., {𝑍1 (𝑡) ⩾ 𝑎1𝑡} ∪ {𝑍2 (𝑡) ⩾ 𝑎2𝑡}, in which we do not have a uniform
bound on the likelihood ratio 𝐿𝑡 𝐼𝒂 (as opposed to the case of an intersection of events; see the proof of
Theorem 3). There are various ways to deal with this inherent complication; see e.g., the discussions
on this issue in [33].

6. Concluding remarks

This paper has established a large deviations principle for multivariate compound Hawkes processes,
with the underlying Hawkes processes admitting general decay functions and random marks. In order
to prove the LDP, the main technical hurdle concerned proving that the limiting cumulant is steep.
Our steepness proof is methodologically novel, in that we manage to show that the derivative of the
cumulant grows to infinity when approaching the boundary of its domain, but, remarkably, without
having an explicit characterization of this domain. Using the LDP, the logarithmic asymptotics of the
corresponding ruin probability are identified. The final contribution concerns the development of rare
event simulation procedures, based on importance sampling, and proven to be asymptotically efficient.
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An interesting topic for future research is to consider other types of deviations for multivariate com-
pound Hawkes processes, such as precise or process-level large deviations. Furthermore, recalling that
the steepness proof does not require knowledge of the boundary of the domain, it could also be ex-
plored whether our approach carries over to a broader class of processes with an underlying branching
structure.
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