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Deep Gaussian processes have recently been proposed as natural objects
to fit, similarly to deep neural networks, possibly complex features present in
modern data samples, such as compositional structures. Adopting a Bayesian
nonparametric approach, it is natural to use deep Gaussian processes as prior
distributions, and use the corresponding posterior distributions for statisti-
cal inference. We introduce the deep Horseshoe Gaussian process Deep–
HGP, a new simple prior based on deep Gaussian processes with a squared-
exponential kernel, that in particular enables data-driven choices of the key
lengthscale parameters. For nonparametric regression with random design,
we show that the associated posterior distribution recovers the unknown true
regression curve optimally in terms of quadratic loss, up to a logarithmic fac-
tor, in an adaptive way. The convergence rates are simultaneously adaptive to
both the smoothness of the regression function and to its structure in terms
of compositions. The dependence of the rates in terms of dimension are ex-
plicit, allowing in particular for input spaces of dimension increasing with the
number of observations.

1. Introduction. Gaussian processes (henceforth GPs) are among the most used ma-
chine learning methods, with applications ranging from inference in regression models to
classification, see e.g. [33] for an overview. Due to their flexibility, in recent years GPs have
been used as tools for geometric inference and deep learning. Before turning to deep Gaus-
sian processes, and since our results are also relevant for standard GPs, we start with a brief
overview of recent results for Gaussian processes.

A particularly natural field of application where there now exists at least partial theory to
explain and validate practical successes of GPs is that of Bayesian nonparametrics: the pos-
terior distribution corresponding to taking a GP as prior distribution on functions can be used
for function estimation as well as for the practically essential task of uncertainty quantifica-
tion. In a regression setting, when putting a GP prior distribution on the unknown regression
function, the corresponding posterior distribution can often be efficiently implemented [33]
and comes with theoretical convergence guarantees: the works [46, 48, 8] indeed show that
the posterior contraction rate in terms of relevant loss functions (e.g. L2–loss for regression)
is completely determined (both upper and lower bounds) by the behaviour of its concentra-
tion function. Shortly thereafter, van der Vaart and van Zanten also showed that statistical
adaptation to smoothness was possible with GPs with optimal minimax contraction rates by
simply drawing at random its scaling parameter [49] in fixed design regression; see [32, 47]
for extensions to random design regression and [42] to inverse problems. Results on uncer-
tainty quantification include [40], [50] in nonparametric models and [9, 13] in semiparametric
settings.

Let us mention a few applications of posterior distributions arising from GPs that illustrate
their flexibility and are related to the setting considered below.
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GPs flexibility: geometric settings. In modern statistical models, it is frequent that data
naturally sit on a geometric object such as a compact manifold (one can think of a sphere, a
swissroll etc.). It is tempting to use GPs in this setting as well, although some care is needed
in their construction. For instance, the celebrated GP with squared–exponential kernel (there-
after SqExp) has no immediate analog in a manifold setting, as replacing the euclidian metric
in the exponential defining SqExp with the geodesic distance does not form a covariance
kernel. This can be remediated by using a kernel coming from heat equation solutions on
the manifold [11], and this kernel can be shown to be a natural geometric analog of SqExp.
Alternatively, one may put a prior directly on the ambient space equipped with the standard
euclidean metric: the authors in [51] obtain a posterior rate that under some (smoothness)
conditions adapts to the unknown dimension of the manifold with a rescaled SqExp expo-
nential GP, when the loss function is the quadratic loss but restricted to sit on the manifold;
this is further refined in the recent work [41].

GPs flexibility: adaptation to anisotropy and variable selection. By drawing independent
lengthscale parameters along different dimensions, [5] shows that posteriors arising from Sq-
Exp GPs contract at near-optimal minimax anisotropic rates. A related problem is that of
variable selection in (possibly high-dimensional) regression. The unknown regression func-
tion may indeed depend only on a few coordinates (although these are not known in advance).
By considering variable selection type priors and then drawing lengthscale parameters of Sq-
Exp GPs, [52] and [24] provide theory for this setting and respectively investigate optimal
rates and variable selection properties for the corresponding posterior distributions.

Recent years have seen a number of remarkable applications of deep learning methods,
where ‘deep’ typically refers to a certain (often compositional) structure in terms of a number
of layers. For instance, deep neural networks are now routinely trained for image or speech
processing, giving excellent empirical performance. Theoretical understanding in terms of
convergence of statistical procedures is recent and includes [25, 39] for results on empir-
ical risk minimisers for classes of deep neural networks with ReLU activation function in
regression settings. A Bayesian counterpart of the results in [39] with theoretical guarantees
is considered in [34], where spike-and-slab priors are placed on network coefficients. Sam-
pling directly from the corresponding posterior can be costly due to the combinatorial nature
of the search of nonzero network coefficients; the works [4, 15] consider theory and imple-
mentation for mean-field variational Bayes versions thereof; the work [10] considers rescaled
heavy-tailed priors on weights. Among similarities between GPs and neural networks, it has
been shown in [30, 23, 17] that both deep and shallow Bayesian neural networks with random
parameters (appropriately rescaled to avoid degeneracy) and with all layers of width growing
to infinity asymptotically behave like GPs, with covariance kernel depending on the network
structure. The Bayesian approach we describe in the next paragraphs avoids the use of large
networks using activation functions by modelling layers directly through independent Gaus-
sian processes.

Deep Gaussian processes [16] (henceforth DeepGPs) correspond to iterated compositions
of Gaussian processes and broadly speaking can be seen as a possible Bayesian analogue of
deep neural networks. Figure 1 depicts the sample path of a simple DeepGP obtained from
two independent GPs with squared-exponential kernels. The random paths resulting from
DeepGPs have greater modelling flexibility compared to single Gaussian processes, enabling
for instance to capture different spatial behaviours; [22] shows that single GPs cannot reach
optimal rates for compositional structures, see also [1]. While the infinite-width limits of
deep Bayesian neural networks behave like GPs, forcing instead some layers of the network
to be of fixed width while letting others grow leads to a deepGP (see Section 7 of [19]). One
then indeed obtains in the limit the composition of the limiting GPs in-between the fixed
layers. There is a lot of recent activity for providing efficient sampling methods for deepGPs
[18, 35, 36]. Yet, theory is just starting to emerge.
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FIGURE 1. Composition of two Gaussian processes with SqExp covariance kernel Kps, tq “ e´ps´tq
2

.

The recent seminal work by Finocchio and Schmidt–Hieber [19] on deepGPs shows that
using a model selection prior to select active variables in the successive Gaussian processes,
and conditioning individual GP sample paths to verify certain smoothness constraints, the
induced posterior distributions contract nearly optimally and adaptively in quadratic loss for
compositional structures in regression, for a variety of kernel choices. Focusing on compo-
sitions of constrained GPs (with bounded sample paths and derivatives), the paper [3] uses
an adapted concentration function for deepGPs and derives near-optimal contraction rates in
density estimation and classification. In [29], using a recursive representation, the authors
derive convergence rates for the posterior mean of deepGPs in a regression setting both in a
noiseless case and with noisy data. In [1], the authors investigate the use of deepGPs for a
class of nonlinear inverse problems.

This work follows the footsteps of [19] and aims at answering the following two questions.
The first concerns the possibility to obtain theory and optimality results for a deepGP con-
struction as simple as possible that comes closer to current implementations of deepGPs in
practice. The second concerns the possibility to allow for a high-dimensional ambient space
as well as a smaller intrinsic dimension.

1. Can deepGP priors avoid an explicit model selection step?
While the deepGP prior construction in [19] is completely natural and ‘canonical’ from
the theoretical perspective, both the conditioning step (to match smoothness constraints)
and the model selection prior (for which the posterior on submodels is often expensive to
compute) make posterior sampling more challenging in view of practical implementation.
One main objective here is to try to simplify the construction of the prior as much as
possible while keeping optimality properties, and thereby come closer to the practically
used deepGPs, for which lengthscale parameters are often kept free and then adjusted in an
empirical Bayes [16] or hierarchical Bayes [38] fashion. In view of this last observation,
we propose a prior with a ‘soft’ model selection based on a prior on lengthscales instead
of the previous ‘hard’ model selection prior.

2. How do deepGPs scale with respect to ‘dimension’?
Below we shall allow in some results the input space dimension d to grow with n. Even
though any method must then face a ‘curse of dimensionality’, if the effective ‘intrinsic’
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dimension of the problem remains fixed or very slowly grows with n, it is conceivable that
rates of convergence can still be obtained. While recent work on deep methods has shown
that convergence rates only depending on intrinsic dimension(s) can be derived [39], most
results are quite generous in the dependence on dimension of the constant factor in the
rate. In particular, we are not aware of works allowing for input and ‘intrinsic’ dimensions
to possibly grow with n ([31] considers an example of Bayesian deep ReLU network with
growing d but fixed intrinsic dimension). We demonstrate below that our construction can
adapt to the intrinsic dimension even for a high-dimensional ambient space (with d sub-
linear in n). This requires a careful tracking of the dependence on dimension, in particular
revisiting earlier results in the GP literature to make the dependence on d precise.

The main contributions of the paper are as follows:

1. we introduce a new idea of freezing–of–paths for multi-bandwidth Gaussian processes.
The benefit of random lengthscales of a stationary kernel for adaptation to smoothness
has been established for a while [49, 47, 5, 32]. Such an adaptation to the regularity of
the underlying truth is made possible by letting the lengthscales grow polynomially with
n in a suitable way with sufficient probability under the prior. In the present paper, we
show that letting lengthscales appropriately vanish (instead of diverge) enables adaptation
to structure (instead of smoothness) or in other words to adapt to sparsity in the covari-
ates dependence, by ‘freezing’ irrelevant dimensions through the corresponding posterior
distributions. Intuitively, sample paths become almost constant in the directions with van-
ishing lengthscales, performing effectively a form of ‘soft’ model selection.

2. we show that the previous two effects of lengthscale parameters, namely adaptation to
smoothness and to structure (by using respectively diverging and vanishing lengthscales),
can be obtained using a single prior for lengthscales: the horseshoe distribution [7], that
both puts a lot of mass near zero and at the tails, is shown to lead to optimal contraction
rates with near-optimal scaling in terms of dimension. Our results also include exponential
prior distributions on lengthscales as in earlier contributions on Gaussian processes (e.g.
[49]), although dependence on dimension may not be optimal in ‘large d’ regimes.

3. we study a high-dimensional setting where the input space has growing dimension com-
bined with a compositional structure and functions in the composition having few active
coordinates; in particular we allow the input dimension to grow polynomially with n and
the number of actually relevant variables in the input layer to grow slowly with n. A main
technical contribution of the paper consists in deriving dimension-dependent analogues of
the inequalities that are at the heart of GP regression theory with a squared-exponential
kernel. Namely, we give precise dependence on ambient and intrinsic dimensions of the
metric entropy of the unit ball of the RKHS of the covariance kernel, of the small ball
probability of the GP and on quantities measuring approximation properties of this RKHS.

We note that the results are not only relevant for deep learning applications, but also already
for shallow (standard) Gaussian processes, for which the freezing-of-paths effect described
above is shown to lead to effective ‘variable selection’ in that the achieved convergence rate
only depends on the number of truly present variables. Also, from the technical perspective,
in order to leverage the smaller intrinsic dimensionality of the problem, a key new ingredient
in the proofs consists in replacing the prior by a ‘low-dimensional’ oracle GP defined on
the relevant coordinates. Finally in this paper for technical convenience we mostly focus on
tempered posterior distributions, for which the likelihood in Bayes formula is raised to a fixed
power ρ smaller than 1; we do however also obtain results for the standard posterior (ρ“ 1)
when the nonparametric prior is coupled with an appropriate prior on the noise variance.

The paper is organised as follows: Section 2 introduces the statistical model and deep
Gaussian process priors. We recall the main elements of the frequentist theoretical analysis
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of GP regression in Section 2.2. Our main results are split into two parts. Section 3 considers
a setting without compositions, and Theorem 2 therein shows that under mild conditions
multibandwidth GPs effectively achieve a form of variable selection through a freezing-of-
paths effect. Section 4 considers adaptation to compositional structures: Theorems 3 and
4 therein demonstrate that deep horseshoe GPs lead to near-minimax optimal contraction
rates both in fixed dimensions and in the high-dimensional case, while Section 4.2 explains
how results for tempered posteriors can be transferred to standard posteriors. A discussion
follows in Section 5. Proofs are provided in Section 6. A key result underlying the proofs and
bounding the GPs’ concentration function is presented in Section 7. Auxiliary lemmas and
their proofs can be found in the appendix [12].

Notation. For two real numbers a, b, we let a ^ b “ minpa, bq, a _ b “ maxpa, bq. We
denote by φ the density of a standard normal random variable. The ε-covering number
N pε,S,Dq of a semimetric space S equipped with a semimetric D is the minimal number
of balls of radius ε needed to cover S. For a vector A“ pA1, . . . ,Adq PRd`, denote

Ā :“ max
i“1,...,d

Ai, |A| “
ÿ

i

Ai,

and AI “ pAiqiPI for I Ă rr1, nss, the set of all integers between 1 and n. Also, for any
vector x P Rd, we note |x|8 :“ maxi |xi| its supnorm. For f integrable on Rd, let f̂ptq “
ş

Rd
e´ixt,syfpsqds denote its Fourier transform, with x¨, ¨y the euclidean inner product. In the

following, C,C1, c1,C2, c2, . . . denote absolute constants whose values may change from
line to line.

2. The deep horseshoe GP prior. Consider a nonparametric regression model with ran-
dom design, where one observes pX,Y q :“ pXi, Yiq1ďiďn, with X1, . . . ,Xn independent
identically distributed design points sampled from a probability measure µ on Id for I an
interval of R chosen for simplicity to be r´1,1s in the sequel and

(1) Yi “ f0pXiq ` εi,

for f0 : IdÑR an unknown regression function and εi independent N p0, σ20q errors, with σ0
assumed known for simplicity. We consider estimation of f0 with respect to the integrated
quadratic loss

‖f0 ´ f‖2L2pµq “

ż

pf0 ´ fq
2dµ.

For a given regression function f , let Pf denote the distribution of one observation pXi, Yiq
under model (1), which has density

pf px, yq “
`

2πσ20
˘´1{2

e´py´fpxqq
2{p2σ2

0q

with respect to µb λ, for λ the Lebesgue measure on R.

For a real β ą 0, tβu the largest integer strictly smaller than β and r an integer, let
Cβr´1,1sr denote the classical Hölder space equipped with the norm ‖ ¨‖β,8. It consists
of functions f : r´1,1srÑR whose norm defined as

(2) ‖f‖β,8 “max

˜

max
|α|ďtβu

‖Bαf‖8 , max
α:|α|“tβu

sup
x,yPr´1,1sr, x‰y

|Bαfpxq ´ Bαfpyq|

|x´ y|β´tβu
8

¸

is finite, with the multi-index notation α“ pα1, . . . , αdq PNd and Bα “ Bα1 . . .Bαd . We note
that functions with finite Hölder norm are bounded, for any β ą 0.
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2.1. Structural assumptions for multivariate regression. In order to assess the perfor-
mance of machine learning methods, a popular benchmark is the regression setting (1)
equipped with some ‘structural’ assumptions. In the unconstrained case where only a smooth-
ness condition is assumed on f0, rates for β–Hölder smooth functions are typically of the
form n´β{p2β`dq, and so are prone to the curse of dimensionality (the rate becomes ex-
tremely slow for large d). A common approach is to assume that the multivariate regression
function f0 admits a certain unknown ‘structure’, of ‘effective dimension d˚’ possibly much
smaller than d. For instance, in the simplest setting considered below, f0 may only depend
on a small but unknown number of coordinates. The goal is then to find algorithms that are
able to achieve optimal risk bounds that adapt to the unknown underlying structure, and that
therefore scale with d˚ instead of d.

A first basic setting: effective variable selection. Let us first consider the simple setting
where f0 : r´1,1sd “ IdÑR only depends on d˚ variables, that is

(3) f0px1, . . . , xdq “ gpxi1 , . . . , xid˚ q,

for some g P CβpId˚q and β ą 0. The subset of indices i1, . . . , id˚ is unknown to the statis-
tician and the target convergence rate in quadratic loss is n´β{p2β`d

˚q. We call this setting
effective variable selection, where by this we mean that one aims at achieving the same per-
formance as if the indices of the truly present variables were known. We note that we do not
consider here the problem of actual variable selection, where the goal would be to recover
this set of indices, and which would require some further conditions; we refer to [24] for
more details on this task.

Define, for K,β ą 0 and d˚ ď d two integers, and recalling that I “ r´1,1s,

FV SpK,β,d, d˚q “
!

f0 : IdÑR such that (3) holds for some g P CβpId˚q,(4)

‖g‖8 ď 1 and }g}β,8 ďK
)

.

As in recent works in deep learning and similar to [19], we assume that an upper-bound M0

is known for the true function f0 and without loss of generality we assume M0 “ 1.

Compositional structure. Following [39], suppose that f can be written as a composition

(5) f “ hq ˝ ¨ ¨ ¨ ˝ h0,

with hi : Idi Ñ Idi`1 , for pdiq a sequence of integers such that d0 “ d and dq`1 “ 1. Since
hi takes values in Rdi`1 , one may write hi “ phijq, where hij for j “ 1, . . . , di`1 are its
univariate coordinate functions.

The compositional class Fdeeppλ,β,Kq. Let us further assume that hij’s as above only
depend on a subset Sij of at most ti ď di variables, and hij restricted to the variables Sij
belongs to CβipItiq. For λ“ pq, d1, . . . , dq, t0, . . . , tqq, β “ pβ0, . . . , βqq and K ą 0, let

Fdeeppλ,β,Kq “
!

hq ˝ ¨ ¨ ¨ ˝ h0 : IdÑ I, hi : IdiÑ Idi`1 , hij PFV SpK,βi, di, tiq
)

.(6)

These compositional classes encompass several well-studied structural models in the lit-
erature. For instance, in an additive model with a fixed number D ą 0 of covariates, the
regression function can be expressed as

(7) f0px1, . . . , xDq “
D
ÿ

i“1

gipxiq “ h1 ˝ h0pxq,
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where h0pxq “ pg1px1q, . . . , gdpxDqq and h1pyq “
řD
i“1 yi. The original function f0 is then

the composition of two functions: one where each component is univariate and depends on
a single variable (h0) so that d1 “ t0 “ 1, and another that depends on all variables but
is infinitely smooth (h1), so t1 “ D. Therefore, further assuming gi P CβpIq, ‖gi‖8 ď 1
and ‖gi‖β,8 ď K and , we have f0 P Fdeeppp1,1,1,Dq, pβ,β

1q,maxpD,Kqq for arbitrarily
large β1 (taking M0 “ D in this case). We refer the reader to Section 4 of [39] for more
examples highlighting the link between compositional classes and usual structural constraints
in nonparametric regression.

Minimax optimal rate. The minimax rate of estimation in quadratic loss over this class

pr˚nq
2 “ inf

T
sup

fPFdeeppλ,β,Kq
Ef }T ´ f}

2
2,

for T ranging over the set of estimators of f , is, up to logarithmic factors,

(8) r˚n — max
i“0,...,q

n
´

βiαi
2βiαi`ti , where αi :“

q
ź

l“i`1

pβl ^ 1q,

under the mild condition ti ďminpd0, . . . , di´1q, see [39]. For example, in the above addi-
tive model, for β1 ě 1 _Dβ, the rate becomes, up to a multiplicative constant depending
polynomially on D,

n´
β

2β`1 _ n´
β1

2β1`D “ n´
β

2β`1 .

These fast rates are attainable because for both functions in the composition (7), fast rates
can be achieved without suffering from the curse of dimensionality (D will still feature as a
multiplicative constant in the rate, but importantly not in the exponent of 1{n).

2.2. Key ingredients. Posterior distributions and frequentist analysis. Given a prior dis-
tribution Π on regression functions, the posterior mass ΠrB |X,Y s of a measurable set B is
given by Bayes’ formula: this is the next display for ρ“ 1. More generally, one may set, for
any ρ P p0,1s,

ΠρrB |X,Y s “

ş

B

ś

1ďiďn pf pXi, Yiq
ρdΠpfq

ş
ś

1ďiďn pf pXi, YiqρdΠpfq
.

When ρ “ 1 this is the usual conditional probability that f belongs to B given the data. If
0 ă ρ ă 1, this quantity is called ρ–posterior (or tempered posterior). Its use is very much
widespread in machine learning, in particular in PAC–Bayesian settings [14, 54]. We use the
tempered posterior in our main results, and also provide results for the standard posterior
ρ “ 1 and an augmented prior in Section 4.2. Links with the case ρ “ 1 are also further
discussed in Section 5.

Gaussian process (ρ–) posteriors: theory. For any centered Gaussian process W on the
Banach space of continuous functions on Id equipped with the ‖ ¨‖8 norm, the probability
measure of any ball tf : ‖f ´ g‖8 ă εu is lower bounded by a quantity depending on the
mass of the centered ball of radius ε and on how well g can be approximated by elements of
the RKHS pH,‖ ¨‖Hq of the covariance kernel of the process. More precisely, according to
Proposition 11.19 of [21], for any εą 0,

P r‖W ´ g‖8 ă εs ě e
´ϕgpε{2q,

ϕgpεq “ inf
hPH: ‖h´g‖

8
ďε

1

2
‖h‖2H ´ logP r‖W‖8 ă εs .(9)
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The function ϕg in (9) is called the concentration function of the Gaussian process W and
plays a key role for contraction rates of GPs [48, 8]. It is the sum of two terms: the first term
with the infimum is the approximation term whereas the second term is called the small ball
term (the probability within the log is the small ball probability of the process W ).

In nonparametric regression with fixed design, [49] proved that posterior contraction rates
that are adaptive to the unknown smoothness of the regression function are achievable for
stationary Gaussian process priors, with a dilatation parameter of the sample paths distributed
as a Gamma variable. As a particular case, consider the squared exponential process SqExp
defined as the zero-mean Gaussian process with covariance kernelKps, tq “ expp´‖t´ s‖2q
(and ‖ ¨‖ the euclidean norm) on r´1,1sd. Next, for k, θ ą 0, one sets

Ad „Gamma pk, θq

f
ˇ

ˇ A„
!

WAt : t P r´1,1sd
)

.

This construction induces a prior on the Banach space of continuous functions for which the
posterior concentrates in the empirical L2´norm at rate εn — n´β{p2β`dq (up to a log factor)
whenever f0 has β-Hölder regularity, β ą 0.

Although this rate coincides with the minimax estimation rate over a ball in Cβr´1,1sd, it
becomes very slow for large d. When the regression function f0 depends on a small number
of variables d˚ only, a special case of the add-GP prior from [52] gives optimal posterior
contraction rates n´β{p2β`d

˚q without the need to estimate d˚. This is achieved by the intro-
duction of an additional layer in the prior, drawing via Bernoulli random variables in which
direction the Gaussian sample paths have to be dilated (the sample paths being constant in
the other directions). From a practical point-of-view, this ‘hard’ selection of variables adds
a combinatorial complexity to posterior sampling. Similarly, if the design points are located
on a d˚-dimensional Riemannian manifold, d˚ ă d, of the ambient space r´1,1sd, we expect
the faster rate n´β{p2β`d

˚q to be attainable. The work [51] achieves it with a dilated Gaussian
process as well, the dilatation factor A being distributed as Ad

˚

„ Gamma pk, θq. One may
note that this approach requires an estimate of d˚ to be applied and that posterior contraction
rates are obtained for local distances on the manifold (such as the empirical L2-norm) only,
but not on the ambient space.

Technically, in the works above, adaptation to smoothness is achieved using that the dis-
tribution on Ad in the last display selects large values for the dilatation parameters with large
enough probability, together with a study of the dependence of the concentration function (9)
on the lengthscale parameter. In particular, [49] (isotropic case) and [5] (anisotropic case) de-
velop a theory of approximation of (Hölder–)smooth functions in Rd by elements of RKHS
from such Gaussian processes, in the caseAÑ8. In our results below on ‘effective’ variable
selection, the regime AÑ 0 corresponding to small lengthscale will be particularly relevant,
see Section 3 for more on this. We note also that our results on posterior contraction will
be expressed in the natural global L2 loss (in contrast to a loss e.g. restricted only on active
directions).

2.3. Deep Horseshoe Gaussian Process prior. We introduce a Gaussian process prior
with independent inverse–lengthscales distributed following a half-horseshoe distribution.
This distribution possesses two interesting properties for our goals. Its density has a pole
at 0, which allows to ‘freeze’ irrelevant dimensions, drawing small inverse lengthscales with
high probability. It also has heavy tails, so that it performs an adequate scaling on the ambient
dimensions with sufficiently large probability.

The single-layer case. In the following, we use the real map

Ψ: x ÞÑ px^ 1q _ p´1q.
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For π a density function on R`, consider the following prior Π on regression functions f

Aj
i.i.d.
„ π(10)

f | pA1, . . . ,Adq „ΨpWAq,

where

WA “

!

WpA1s1,...,Adsdq : s“ ps1, . . . , sdq P r´1,1sd
)

,

for W the squared exponential process SqExp. For a given value of A, we call WA a multi-
bandwidth Gaussian process.

Although the theory below can be applied to arbitrary scaling distributions π, we consider
two main examples in the sequel: an exponential and a horseshoe distribution. Let us define
πτ , τ ą 0, as the (half-) horseshoe density (introduced in [7]) i.e. the density of a random
variable Xτ distributed as

ξ „C`p0,1q

Xτ | ξ „N`p0, τ2ξ2q,

with C`p0,1q a standard half-Cauchy distribution and N`pµ,σ2q the half-normal distribu-
tion of |X|, X „N pµ,σ2q. We refer to [44] for posterior contraction results in the case of
estimation of sparse vectors, with priors based on πτ and discussions on the influence of τ .

When π “ πτ the horseshoe density on R` in (10), we call the above hierarchical prior
the Horseshoe Gaussian Process prior and denote it HGPpτq.

The multi-layer case. In order to perform inference in more complex models, we introduce
a deepGP-type prior, mixing ideas from [19] and the just introduced prior (10).

We first place discrete priors Πq on the number of layers q and Πdrd1, . . . , dq|qs on
the successive ambient dimensions in the composition (5). We assume that Πqrqs ą 0 and
Πdrd1, . . . , dq|qs ą 0 for any integers q ě 0 and di ě 1.

Given q, d1, . . . , dq , we define a random regression function f “Wq ˝ ¨ ¨ ¨ ˝W0 where, for
i “ 0, . . . , q, the map Wi : I

di Ñ Rdi`1 is a multivariate Gaussian process indexed by Idi

and to which Ψ is applied element-wise. We assume that for j “ 1, . . . , di`1, the coordinates
pWiqj are independently (accross i and j) and identically (across j) distributed as a prior of
the form (10). Constraining the sample paths between ´1 and 1 ensures that the composition
is well-defined.

The Deep Horseshoe Gaussian Process Deep–HGP is a special case of this construction
where the prior on lengthscales is a horseshoe prior: it is defined as the hierarchical prior

q „Πq

d1, . . . , dq | q „Πdr¨|qs

gij | pq, d1, . . . , dqq
ind.
„ HGPpτiq

f | pq, d1, . . . , dq, gijq “ gq ˝ ¨ ¨ ¨ ˝ g0

(11)

for τi ą 0, i“ 0, . . . , q. In the above, gi “ pgijqj with gij : IdiÑ I , 1ď j ď di`1. At the j–th
level of the composition, there are dj`1 coordinate functions pgijq distributed as the HGP
process, each of these functions depending on dj parameters (and setting dq`1 “ 1 the output
dimension). Note that on each layer j, all dj variables are present simultaneously as input
to each Gaussian process component, although the scalings (distributed as horseshoe random
variables) calibrate the ‘strength’ (or ‘importance’) of these variables.
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In the construction (11), the depth q and dimensions di are given prior distributions, which
is perhaps the most natural Bayesian way to model these unknown quantities. However, sim-
ulating from the posterior distributions of q and d may be expensive, so it is common practice
in this setting to take these parameters to be fixed ‘large enough’ values, say q “ qmax and
di “ dmax for all iď q. This leads to the following simpler prior Deep–HGPpqmax, dmaxq

gij
ind.
„ HGPpτiq

f | pgijq “ gq ˝ ¨ ¨ ¨ ˝ g0
(12)

for τi ą 0, i “ 0, . . . , qmax and now gi “ pgijqj with gij : Idmax Ñ I , for 1 ď j ď dmax
and i ą 0. Our main result on deep Gaussian processes in fixed dimensions, Theorem 3
below, shows that both constructions of Deep–HGP, with either random or fixed q, d, lead
to near-optimal and adaptive rates for compositions, with the only restriction for Deep–
HGPpqmax, dmaxq being that the ‘true’ dimensions are indeed smaller than qmax, dmax.

In the following, we use q, di to denote both the parameters of the class Fdeeppλ,β,Kq in
(6) and the hyperparameters of the prior (11), as the context will make it clear what we are
referring to.

3. Main results I: shallow case and “freezing of paths". To gain intuition on our pro-
posed procedure, we now build up progressively the results, starting from a standard smooth-
ness condition in regression (no composition) where the regression function depends on an
effective number of coordinates possibly smaller than the input dimension d. Section 3.1
presents a simple oracle result while Section 3.2 considers more precise results allowing for
adaptation and growing dimension. The ‘deep’ case of compositional structures is considered
in Section 4. Recall that σ20 is the variance of the noise in (1) and set

(13) ξ :“ 2σ20{
b

1` 4σ20.

For simplicity, in Sections 3 and 4 we mostly focus on ρ–posteriors for given ρ ă 1 (e.g.
ρ “ 1{2) and assume that σ20 is known. We refer to Section 4.2 below for results on the
standard posterior and possibly unknown noise variance.

3.1. “Freezing of paths" for effective variable selection: a new property of scalings of
Gaussian processes. The first result assumes that the true regression function depends on a
number d˚ of coordinates only, and that for now the indices of the active variables are known.

THEOREM 1 (freezing of paths). Let dě 2 be a fixed integer and for K ě 1, β ą 0, set
FpKq :“FV SpK,β,d, d˚q. Fix ρ P p0,1q, let f0 PFpKq and suppose

f0px1, . . . , xdq “ g0pxi1 , . . . , xid˚ q,

with S0 :“ ti1, . . . , id˚u Ă t1, . . . , nu and some 1ď d˚ ď d. Let Π be a multibandwidth prior

fpxq „ΨpWpa1x1,...,adxdqq

with W a d–dimensional SqExp Gaussian process with deterministic scaling parameters

(14) ai “

#

n
1

2β`d˚ , if i P S0
1{
?
n, if i R S0

.

Then, there exists M ą 0 such that the ρ–posterior Πρr¨ |X,Y s verifies

sup
f0PFpKq

Ef0Πρ

”

f : ‖f ´ f0‖L2pµq ěM log1`d
˚

pnq n´
β

2β`d˚ |X,Y
ı

Ñ 0.
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Theorem 1 shows that by taking GP lengthscale parameters that are very small, of order
1{
?
n, for the coordinates j such that f0 in fact does not depend on xj , and taking length-

scales equal to the ‘standard nonparametric cut-off’ n1{p2β`d
˚q (for estimating β–smooth

functions in dimension d˚) on the other coordinates, leads to an optimal minimax contraction
rate n´β{p2β`d

˚q for the integrated squared loss up to a logarithmic factor for the ρ–posterior
distribution (the power in the log factor is improved in the next result). Inspection of the
proof shows that for i R S0, one may take ai to be any value smaller than C{

?
n for some

fixed C ą 0.
The intuition behind the result is that taking a small lengthscale for coordinate i ‘freezes’

the GP path along this coordinate, making it almost constant in that coordinate, which corre-
sponds to the limiting case ai “ 0. Note that Theorem 1 is an ‘oracle’ result in that it assumes
both β and d˚ (and even the indices ij) to be known. Adaptive versions are considered below.
While the result is somewhat expected if one sets ai “ 0 for i R S0 (this would correspond
to a ‘hard’ variable selection), the fact that the rate remains optimal for small but non-zero
values of ai suggests that there may be room for a ‘soft’ variable selection procedure that
would allow for small ai in a data-driven way: this is the purpose of our next Theorem.

3.2. Single layer setting: horseshoe GP. The next statement is our main result on ef-
fective variable selection for (non-deep) Gaussian processes – recall that by this we mean
achieving the same rates as if active coordinates were known (not recovering the truly active
ones) –. It is a non-asymptotic result that allows for dimensions varying with n. It is stated
for an arbitrary prior π on lengthscales. We then particularise it over the next paragraphs by
stating simpler asymptotic versions and giving examples of lengthscale priors that satisfy the
conditions. We consider both fixed dimensions and the case where both d˚, d vary with n.

THEOREM 2 (Single layer, generic result). Let 1ď d˚ ď d be two integers and for K ě

1, β ą 0, set FpKq :“ FV SpK,β,d, d˚q. Let ξ be as in (13) and fix 0 ă ρ ă 1. Let Π be a
multibandwidth prior (10) with density π on scaling parameters that satisfies

(15)

˜

ż ξ

8d
?
ρn

0
πpaqda

¸d´d˚˜
ż 2a˚

a˚
πpaqda

¸d˚

ě 2 expp´nρε2n{2q,

where a˚ “ a˚n and εn verify a˚ ě 1, that 1{
?
nď εn ď 1, and

(16) 64ξ´2 ě ε2n ě tB1a
˚´2βu _ tB2a

˚d˚ log1`d
˚

pnq{nu,

where B1 “ c1K
2cd

˚

2 and B2 “K
2pc3d

˚c4qd
˚

, with c1, . . . , c4 ě 1 constants depending only
on β, ξ and ρ. Then, there exists M “Mpρ, ξq ą 0 such that, for ně 3,

sup
f0PFpKq

Ef0Πρrf : ‖f ´ f0‖L2pµq ěMεn |X,Y s ď
1

nε2n
` e´ρnε

2
n .

Theorem 2 gives a contraction of the ρ–posterior distribution at rate εn around the true f0,
provided nε2n is suitably large. A more explicit expression of εn is given in the next Corollary.

COROLLARY 1 (Optimal a˚ and posterior rate). Optimising a˚ in (16), leads to setting

(17) pa˚q2β`d
˚

“ pB1nq{pB2 log1`d
˚

pnqq _ 1.

Condition (16) then becomes, for a˚ as in (17),

64ξ´2 ě ε2n ě

„

B3plognq
2βp1`d˚q

2β`d˚ n´
2β

2β`d˚



_

”

B2 log1`d
˚

pnq{n
ı

,(18)
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where B3 “ K2cd
˚

5 pd
˚qc6d

˚{p2β`d˚q, recalling B2 “ K2pc3d
˚c4qd

˚

, and c3, . . . , c6 ě 1 are
constants only depending on β, ξ, ρ. If additionally (15) holds (conditions for this are given
below), then the ρ–posterior rate can be taken as the right-hand side of (18).

In the asymptotic regime nÑ 8, for εn taken equal to the right hand-side of (18), it
follows that εnÑ 0 and nε2nÑ8, so that provided (15) holds, the posterior mass in the last
display of Theorem 2 goes to 0, and the posterior contracts to f0 at rate εn asymptotically. For
reasonable (i.e. fixed or growing slowly with n) values of d˚, the first term in (18) dominates
and, again under (15), the resulting rate εn goes to 0 with n. Next we investigate a few
examples of priors for which (15) holds with a resulting εn given by (18).

The proof of Theorem 2 is based on considering an oracle process defined on the d˚ rel-
evant dimensions. The rates can then carry over to the full prior thanks to Condition (15),
which ensures that the lengthscale prior π tunes down irrelevant dimensions, so that the
difference between the processes is small with high probability. These deviations are con-
trolled via new dimension–dependent estimates of characteristics of the squared-exponential
Gaussian process (via its RKHS), see Theorem 5 and Lemmas A.2–A.4 [12], coupled with
concentration of measures tools. This theorem is a main theoretical novelty of the paper: a
lengthscale prior which puts large mass on small values allows to ‘freeze’ irrelevant direc-
tions, so that the overall prior behaves like a smaller-dimensional one.

The case AÑ 0 corresponding to a freezing-of-paths effect has not been studied so far to
the best of our knowledge; although it is conceivable that a study of the RKHS of the SqExp
process in the small A regime (similar to the case AÑ8 discussed in Section 2.2) would
also lead to a proof of Theorem 2, the caseAÑ 0 proves to be quite challenging: for instance,
one may note that constant functions do not belong to the RKHS of the squared-exponential
process; one should then find the best possible rate of approximation of constants by elements
of the RKHS. This is why, in the present work, we have followed a different route by directly
comparing to an oracle process, as explained in the previous paragraph.

Fixed dimensions. Let us now examine the case where the dimensions d, d˚ are fixed,
independent of n. We derive conditions on two natural priors: an exponential prior, as used
e.g. in [48] for adaptation to smoothness, and a horseshoe prior.

EXAMPLE 1 (Exponential prior with fixed scaling λ). Consider πpaq “ λe´λa1laą0 an
exponential prior of parameter λ ą 0. A simple calculation, see Lemma G.16 [12], shows
that (15) is verified if

(19) nε2n ě p2{ρq

„

d log

ˆ

16d
?
ρn

ξλ

˙

` 2λd˚a˚ ` log 2



,

as long as λ P r1{a˚,8d
?
ρn{ξs. As a particular case, for fixed d, d˚,K,λ, and a˚ as in (17),

this condition is automatically satisfied for large enough n if (18) holds.

EXAMPLE 2 (Horseshoe prior with fixed parameter τ ). Consider π “ πτ a horseshoe
prior of parameter τ ą 0. Then (15) is verified if, setting e0 “ 2{p2πq3{2,

(20) nε2n ě p2{ρq

„

d log

ˆ

8d
?
ρn

ξe0τ

˙

` d˚ logp10a˚{τq ` log 2



,

as long as τ P rξ{p8d
?
ρnq, a˚s, see Lemma G.17 [12]. In particular, for fixed d, d˚,K, τ , and

a˚ as in (17), this condition is automatically satisfied for large enough n if (18) holds.
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To obtain (20), one simply uses that the horseshoe density is bounded from below by a
constant on the integration interval; this is sensible for a fixed τ but can be significantly
improved for small τ , as seen in Corollary 3. Corollary 2 is a direct consequence of above
examples and Corollary 1.

COROLLARY 2 (Fixed dimensions). In the setting of Theorem 2, suppose the input di-
mension d is fixed (independent of n). Let π be either the exponential prior or the horseshoe
prior with fixed (independent of n) respective parameters λ and τ . Then for large enough
M ą 0 (depending on β,d˚ only), as nÑ8,

sup
f0PFpKq

Ef0Πρrf : ‖f ´ f0‖L2pµq ěMεn |X,Y s Ñ 0,

where εn is given by εn “ plognq
2βp1`d˚q

2β`d˚ n´
2β

2β`d˚ . In particular, the posterior distribution
achieves the minimax convergence rate up to a logarithmic factor.

An important consequence of Corollary 2 is that it is possible to derive a (near-)optimal
rate adapting to the unknown number d˚ and coordinates of the active variables with con-
tinuous priors, that is, even without setting the scaling exactly to zero on certain coordinates
(i.e. without performing a ‘hard model selection’). Even more surprisingly at first, such ‘soft
model selection’ is possible (at least with tempered posteriors) using a prior not putting a
particularly large amount of mass near 0, such as an exponential prior. In particular, simple
priors on scalings such as exponentials or gamma distributions considered in [48] have prior
mass permitting for ‘enough’ variable selection in order for their (tempered)–posterior distri-
bution to contract at near optimal rate, without using oracle knowledge of which coordinates
are active or not.

At this point it may seem as if effective variable selection can be achieved at no cost with
just simple random scalings on coordinates. This is not (completely) so, the reason being that
the dependence on the input dimension d in the convergence rate that arises from e.g. putting
exponential priors on scalings is far from optimal. This can be seen from (19), or similarly
(20) for πτ with fixed τ , as follows. Recall that (19)–(20) are non-asymptotic conditions, so
one may let d, d˚ depend on n. Suppose for instance d“ nδ for some δ ą 0 and d˚ is fixed,
say d˚ “ 1 to fix ideas. Then (19) cannot hold with εn the lower bound in (18): indeed, the
latter is up to a log-factor of order n1{p2β`1q, so is a opnδq as soon as δ ą 1{p2β ` 1q, which
shows that in this setting the rate is suboptimal for large enough β’s.

The previous comments naturally make one wonder if effective variable selection is still
feasible with a better dependence on dimensions with continuous scaling. The next section
investigates this, in a setting where d can go to 8 with n.

High-dimensional variable selection. Let us now study the problem of inference for a
small number of truly active covariates if d is possibly allowed to depend on n. In the high-
dimensional sparsity adaptation problem as in the first setting of Section 2.1, the work [52]
derives up to constants the minimax rate of estimation for the squared ‖ ¨‖L2pµq loss which is
up to a constant factor depending on K , β and d˚,

pε˚nq
2 — n´

2β

2β`d˚ `
d˚

n
logpd{d˚q.

The first term corresponds to the rate of estimation of a low-dimensional function g P
Cβr´1,1sd

˚

and the second is the rate for the variable selection problem. Under Condition
(21) below, the first term dominates. Note however that, as the dependence of the constants
in d˚ is not explicit in the last display, this result allows for dÑ8 and a fixed d˚ but not
both d˚, d going to infinity.
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Let us consider the sparse high-dimensional setting where d can go to infinity; we also
allow the effective dimension d˚ to slowly grow with n: more precisely for some δ ă 1{2
and C1,C2 ą 0 suppose

(21) 1ď d˚ ď plognq1{2´δ, 1ď d˚ ď dďC1n
C2 .

One may hope to obtain a convergence rate that depends on the effective dimension d˚ only,
not on d. In Appendix E [12], Corollary E.1, we derive a lower bound result that shows that
under mild conditions on the design distribution, and if the radius of the considered Hölder
ball is not too large, the minimax rate for the integrated quadratic risk is bounded below by
C2D

d˚
2 n´2β{p2β`d

˚q, for constants C2,D2 independent of d˚. We show below that this rate
can be achieved by a well-chosen horseshoe GP in the regime (21), up to a slowly-varying
term Dd˚

3 plognqc. To do so, one first determines a horseshoe scaling parameter τ for which
condition (15) holds, and then we state the sparse high-dimensional result as Corollary 3
(more details on optimality can be found below in Appendix E [12], Corollary E.1).

EXAMPLE 3 (Horseshoe prior with vanishing parameter τ ). Consider π “ πτ a horse-
shoe prior of parameter τ ą 0. Then (15) is verified for large enough n if

(22) 10a˚e´nρε
2
n{2d

˚

ď τ ď
ξ

d2
1
?
ρn
.

For a˚, εn as in (17)–(18), the last display holds for large enough n and fixed K (or more
generally K ďCd

˚

for some C ą 1) if one sets for some δ ą 0

τ “ τ˚ :“ pn1`δd4q´1{2.

For a proof of both claims, see Lemma G.18 [12].

COROLLARY 3 (High-dimensional horseshoe GP). In the setting of Theorem 2, suppose
d˚, d verify Condition (21). Let Π be the multibandwidth prior (10) with horseshoe scaling
density πτ˚ and τ˚ “ pn1`δd4q´1{2, δ ą 0. Then, for K ě 1, there exists M “Mpξ, ρq ą 0
such that

sup
f0PFpKq

Ef0Πρrf : ‖f ´ f0‖L2pµq ěMεn |X,Y s Ñ 0,

as nÑ8 where, for some constant C that depends on β, ξ, ρ only,

ε2n “K
2Cd

˚

plognq
2βp1`d˚q

2β`d˚ n´
2β

2β`d˚ .

In particular, for K2 ďCd
˚

, the rate ε2n is of order n´2β{p2β`d
˚q, up to a smaller order term

at most of order C2d˚plognq
2βp1`d˚q

2β`d˚ .

The rate ε2n obtained in Corollary 3 is optimal in the minimax sense up to the smaller order
termK2Cd

˚

(up to a log factor). As mentioned above, as long asK does not grow faster than
Cd

˚

4 this is a slower order term compared to the main term n´2β{p2β`d
˚q (in regime (21)) in

the minimax lower bound from Corollary E.1 [12]: in this case the rate is minimax optimal
up to a slower order term Cd

˚

5 . We also note that a growth in Cd
˚

for the radius K of the
Hölder ball is typical for functions in Hölder spaces of dimension d˚, see Appendix D [12],
where this is checked for functions of product form.

The idea behind Corollary 3 is that for small values of the parameter τ , the horseshoe
distribution becomes very ‘sparse’ in the sense that most nonzero values are very close to
0: this is reminiscent of the high-dimensional statistics literature for sparse models, see e.g.
[45, 43], where near-optimal posterior rates for horseshoe posteriors are derived in sparse
settings. We now turn to a deep learning setting, where the prior process is allowed to have
several Gaussian compositional layers.
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4. Main results II: deep simultaneous adaptation to structure and smoothness.

4.1. Multilayer setting: Deep Horseshoe GP. We now consider the problem of adapta-
tion to an unknown compositional structure, first in the fixed dimensional case. The following
result shows that, assuming the regression function can be expressed as a composition (5),
such adaptation can be achieved with a prior mimicking this structure and organizing Gaus-
sian processes in layers. In particular, in the Deep–HGP prior, the distribution on the scalings
of the individual Gaussian processes allows for adaptation to the regularity as we have seen
above, but also adaptation to a sparse network of compositions.

THEOREM 3. Let λ“ pq, d1, . . . , dq, t0, . . . , tqq, β “ pβ0, . . . , βqq, dě 1,K ě 1 and sup-
pose f0 P Fdeeppλ,β,Kq. Let Π be the Deep–HGP prior (11) with fixed parameters τi ą 0.
Then, for any 0ă ρă 1, Πρr¨ |X,Y s contracts to f0 at the rate

εn “ max
i“0,...,q

plognq
αiβip1`tiq

2αiβi`ti n
´

αiβi
2αiβi`ti

in ‖ ¨‖L2pµq distance, where αi “
śq
l“i`1pβl ^ 1q: for any MnÑ8

Ef0Πρrf : ‖f ´ f0‖L2pµq ěMnεn |X,Y s Ñ 0.

The same conclusion holds for the prior Deep–HGPpqmax, dmaxq as in (12), provided the
parameters of λ verify q ď qmax and di ď dmax for all iď dmax.

Theorem 3 shows that the fractional posterior attains the minimax rate of convergence
of contraction (8) over the class Fdeeppλ,β,Kq up to the logarithmic factor logγ n, γ “
maxi“0,...,q 2αiβip1 ` tiq{p2αiβi ` tiq. For simplicity, we only considered the situation
where inverse-bandwidths are distributed as horseshoe random variables. As above in the
fixed d setting with GPs, one can derive similar results for exponential priors on scalings.
However, given the benefits of the horseshoe prior in high-dimensional settings (see also
below), we focus on this choice.

Theorem 3 can be compared to Theorem 2 of [19], providing rates for a deepGP construc-
tion over a compositional functional class. The present result on the Deep–HGP prior now
shows that adaptation to the structure can be achieved with ρ–posteriors without imposing a
hyperprior on all the parameters describing the structure. Even if a prior can still be put on
the depth and width of the composition, as in the first part of the statement, it is enough to
chose these deterministically under the mild condition above. As in our results of Section 3.2
on (single-layer) GPs, instead of imposing a ‘hard’ selection of relevant variables on each
layer, a continuous distribution on the lengthscales, with sufficient mass on small values, is
enough for simultaneous adaptation to smoothness and sparse compositional structure. The
proof of Theorem 3 can be found in Section 6.3 for random q, d (see Appendix H [12] for the
version for deterministic q, d).

REMARK 1 (Benign overfitting). The prior with deterministic q, d in the last part of
the statement of Theorem 3 closely matches current practice in deep GPs implementation:
recent works show that a depth of just a few layers already enables important gains compared
to traditional (single-layer, or ‘shallow’) GPs, see e.g. [53] (q “ 2), [55] (q “ 2 and q “
3), [38] (q “ 2). Interestingly, our result shows that ‘overestimating’ q and d (i.e. choosing
qmax, dmax ‘too large’ in the above statement) does not prevent one to still obtain an adaptive
rate (i.e. knowledge of ‘true’ q, d is not needed). In this sense we see that a form of benign
overfitting is at play, with an overfitted architecture specified by pqmax, dmaxq still leading to
the optimal minimax rate with adaptation both to smoothness and structure.
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In view of Corollary 3, one naturally wonders if the Deep–HGP prior is able to perform
adaptation to the structure and the regularity in a high-dimensional framework as well. More
precisely, suppose f0 : r´1,1sdÑ R belongs to Fdeeppλ,β,Kq with d“ d0 and t0 possibly
depending on n. As in (21), we suppose t0, d0 verify, for some δ ă 1{2 and C1,C2 ą 0,

(23) 1ď t0 ď plognq1{2´δ, 1ď t0 ď d0 “ dďC1n
C2 .

The next result shows that letting the horseshoe scale parameter τ0 of the first layer in
the composition vanish in the Deep–HGP prior, while keeping the other scale parameters
τi, i“ 1, . . . q across the other layers, constant, is enough to still obtain a near-minimax rate
of contraction for the fractional posterior. Choosing τ0 appropriately small (although inde-
pendent of the true unknown t0) allows one to obtain sparsity on the first layer, mitigating the
effect of the growing input dimension d.

THEOREM 4. Under the same assumptions as in Theorem 3, now suppose t0 and d0
satisfy Condition (23), and that d1, . . . , dq are fixed, non n–dependent integers. Let Π be the
Deep–HGP prior with τ0 “ d´2n´1 and τi ą 0, i “ 1, . . . , q be fixed. For any 0 ă ρ ă 1,
there exists c1, c2 depending on β0 and ρ such that the ρ–posterior contracts to f0 at the rate

ε2n “
”

c1K
2ct02 plognq

2β0α0p1`t0q

2β0α0`t0 n
´

2β0α0
2β0α0`t0

ı

_ max
i“1,...,q

plognq
2αiβip1`tiq

2αiβi`ti n
´

2αiβi
2αiβi`ti

in ‖ ¨‖L2pµq distance, that is, for any MnÑ8,

Ef0Πρrf : ‖f ´ f0‖L2pµq ěMnεn |X,Y s Ñ 0.

To the best of our knowledge, Theorem 4 is the first result on deep methods in high-
dimensional regression where both the input dimension d0 “ d0pnq and first effective dimen-
sion t0 “ t0pnq are allowed to grow with n. It combines both the ability of the horseshoe prior
to select relevant dimensions in the input space and its ability to perform model selection in
presence of a compositional parameter. It is particularly interesting given that these methods
are most often applied to high-dimensional problems.

Compared to the condition on τ in Corollary 3, the preceding result requires a smaller τ0.
In the present setting, given the flexibility of the sample paths from deep Gaussian processes,
it is necessary to ‘stabilize’ each GP to avoid ‘wild’ behavior. From a technical point of view,
it translates into more restrictive prior mass conditions for these GPs and the need for more
efficient variable selection. This is achieved with a horseshoe prior that is more peaked near
0, given the choice of the smaller parameter.

REMARK 2. In Theorem 4, we let the dimensions indexed by i“ 0 on the first layer of
the composition to possibly grow with n. Extending this result to a situation where di, ią 0
can also grow with n is not straightforward. Indeed, inspection of the proof of Theorems 3
and 4 shows that the rate involves a multiplicative factor

řq`1
i“1 di whose dependence on the

inner dimensions of the composition is linear and thus prevents polynomially growing di’s.
As this factor does not involve d0, it still allows for t0, d0 as in (23).

4.2. Results for standard posteriors. We now derive results for the posterior distribution
(that is ρ“ 1 in the fractional posterior). To do so one keeps the same prior on the regression
function f as in the previous results, the only difference being that we now also put a prior on
the noise variance σ2. The following Proposition 1 is inspired by an idea of The Thien Mai
[28], who in high-dimensional regression under sparsity, notices the link between standard
posterior and fractional posterior for an updated prior in that sparse setting. Here, in the
different context of nonparametric regression, we use a different n-dependent prior on σ2.
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The model now allows for possibly unknown noise variance: the observations pYi,Xiq are an
independent sample

(24) Yi “ fpXiq ` σηi,

with Xi „ µ and ηi „ N p0,1q, where we treat both f and the variance parameter σ2 as
unknown. We denote by Pf,σ2 the distribution of pX1, Y1q from model (24) given f,σ2.

Let Π be a prior on pf,σ2q defined as a product Πf b πσ2 . We take πσ2 “ πσ2,n to be, for
some fixed b P p0,1q,

(25) πσ2 “Gamma
´!1´ b

2

)

n` 1, b
˘

,

where Gammapa1, a2q denotes a Gamma distribution with shape parameter a1 ą 0 and rate
parameter a2 ą 0, of density proportional to xÑ xa1´1e´a2x on p0,8q. This prior induces
a posterior distribution Πr¨ | pX,Y qs jointly on f and σ2, and the next result examines the
behaviour of its marginal on f , that is Πrf P ¨ , σ2 PR` | pX,Y qs.

PROPOSITION 1. Let Π be a prior on pf,σ2q of product form Πf b πσ2 , with πσ2 given
by (25). Suppose, for some rate εn “ op1q with nε2nÑ8 and a constant D ą 0, that

(26) Πf r}f ´ f0}8 ď εns ě e
´Dnε2n .

Then, for a constant M ą 0 large enough, as nÑ8, for Db the b–Rényi divergence, the
marginal posterior distribution on f given observations from (24) verifies

Ef0,σ2
0
Π
“

Dbppf,2σ2
0
, pf0,2σ2

0
q ďMεn | pX,Y q

‰

Ñ 1.

If Πr}f}8 ďK | pX,Y qs “ 1` op1q for some fixed constant K ą 0, we also have

Ef0,σ2
0
Π
“

}f ´ f0}
2 ďMεn | pX,Y q

‰

Ñ 1.

This result shows that, modulo defining an appropriate prior on σ2, results for fractional
posteriors (that effectively only require the prior mass condition as in the statement), also hold
for the (marginal in f of the) classical posterior; see Corollary 4 below. Proposition 1 is also
of independent interest, as it holds for any choice of prior on Πf in random design regression;
its proof can be found in the Appendix [12], Section I. We also note that sampling from
the marginal posterior on f from the above augmented prior does not add any fundamental
difficulty, see Section 5.

COROLLARY 4. Provided the respective priors Πf are replaced with augmented pri-
ors Πf b πσ2 , with πσ2 the prior (25) on σ2, the results stated in Theorems 1–4 still hold
for the corresponding standard marginal posterior in f (instead of the fractional posterior
corresponding to Πf in these statements). Specifically, the nonparametric convergence rates
derived in Theorems 1–4 remain valid under these modifications.

To prove this result, note that Theorems 1–4 are established by proving the correspond-
ing inequality (26), as outlined in the preliminaries of Section 6 (the slightly different con-
stants can be accommodated by checking the condition (27) therein for ε1n “ Rεn and a
large enough constant Rą 0). Given that the prior distributions have samples almost surely
bounded by 1, Corollary 4 follows from Proposition 1.
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5. Discussion and open questions. In this work, we provide theoretical guarantees for
the convergence of posterior distributions using deep Gaussian process priors. One key in-
sight is in the role played by lengthscale parameters: not only do these enable adaptation to
smoothness, but they can also at the same time perform an effective variable selection (adap-
tation to sparsity) by ‘freezing’ the Gaussian process paths in suitable directions, a point
relevant also for standard (non-deep) Gaussian processes; this has not been recognised so
far in the literature to the best of our knowledge. The fact that adaptation to smoothness and
structure can be performed simultaneously is particularly appealing computationally in that
there is no need to include a model selection part in the building of the prior (if that was the
case, posterior sampling would require to have access to the posterior distribution over mod-
els, which is often costly to implement). The obtained deepGP prior is then simple enough
so that it corresponds to recently proposed algorithms, see below for more on this.

We also derive new results on deep methods for high-dimensional input spaces, and on
the way obtain explicit dimension-dependent constants for the characteristics of the involved
GPs.

The use of fractional posteriors. Many of our results consider fractional posterior distri-
butions, where the parameter ρ can be taken to be any constant in p0,1q. The main reason
for this is of technical nature: in order for one to use the general theory of convergence of
Bayesian posteriors in [20], one needs to build sieve sets, capturing most prior mass, whose
entropy or ‘complexity’ is well controlled. However, especially in complex settings such as
deep learning models, sieves can be difficult to construct, in particular since the probability
of the complement of the sieve is required to have a form of exponentially fast decrease, with
at the same time the requirement to control the entropy of the sieve set. This difficulty leads
[19] to condition sample paths of Gaussian processes to verify certain smoothness constraints.
This can be avoided using ρ–posteriors, since convergence of these can be guaranteed under
prior mass conditions only [6, 26, 27, 54], so we do not need to condition on boundedness
of derivatives in our prior construction. This is an advantage also computationally, as adding
more conditioning constraints may typically slow down MCMC samplers.

Beyond fractional posteriors, we have also obtained results for the standard posterior
(ρ“ 1) and avoid the just-mentioned technical difficulties: the idea then has been to use an
augmented prior that also models the noise variance. For the original prior (without a prior
on σ2) one can conjecture that the standard posterior also achieves optimal rates; although
it seems delicate to prove this using the current tools available for proving posterior conver-
gence, given that construction of sieves (while keeping the prior simple) looks particularly
difficult, it is conceivable that, at least in say regression settings, one may be able to state
an adapted version of the generic theorem of [20]. Although beyond the scope of the present
contribution, one may note that promising results are obtained in [2], where in regression
with heavy-tailed priors both standard and fractional posteriors are shown to converge at the
same rate up to constants, for a prior for which the construction of sieves seems also presently
out of reach, which suggests that posterior convergence for ρ“ 1 under prior mass conditions
only is not exceptional.

On the other hand, we argue that, at least for the set of applications of Bayesian (possibly
tempered) posteriors considered here, one does not loose much with fractional posteriors,
except slightly in the constants in the convergence rate: here as ρ is fixed (and can be chosen
e.g. to be ρ“ 1{2) we did not keep the dependence in ρ in the constants, but it is shown in
[27] that nonparametric rates arising from ρ–fractional posteriors are typically the same as for
the usual posterior but with effective sample size n1 “ nρ; for ρ“ 1{2 the constant in terms
of ρ in the rate is not particularly large then, so is not a main concern. Also, regarding sam-
pling algorithms in practice, most sampling methods such as MCMC are of similar difficulty
with the fractional or the original likelihood, so this is not a main concern computationally
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(we discuss below sampling from deepGP fractional posteriors from Example 1). One loses,
though, the interpretation of the posterior as a conditional distribution and possibly efficiency
for
?
n–estimable parameters that comes with the Bernstein–von Mises theorem, which will

not hold as such for ρ–posteriors but again typically with a variance inflated by 1{ρ, see [27]
for more discussion. However, again, this is not a main concern here, as we are interested in
estimation rates up to constants. Another interesting topic not covered in the present work is
uncertainty quantification. It should be possible to prove that, modulo certain (unavoidable)
structural conditions on the regression function such as self-similarity, certain credible sets
from the deepGP (possibly, fractional) posterior are also confidence sets. In case one uses a
fractional posterior, this may slightly increase the radius compared to the classical posterior,
although, we expect, not in a significant way if ρ is kept far away from 0; we refer to [2] for
an empirical study of the influence of ρ on nonparametric credible sets.

Implementation. Although our main focus here is on theoretical guarantees, we note that
sampling from the deep Gaussian process fractional posteriors with exponential priors on
GP lengthscales (Example 1) is readily available using the R package deepgp [37]. The
later provides MCMC samples for standard posteriors (ρ“ 1) using Vecchia approximation;
one can similarly obtain MCMC samples from fractional posteriors with any ρ ă 1 using
the following remark. Note that using a fractional likelihood with a given ρ P p0,1q to form
the fractional posterior in Gaussian regression with independent errors N p0, σ2q is equiv-
alent to using the standard likelihood in the case the errors are misspecified as independent
N p0, σ2{ρq. Since posterior sampling is conditional on the observed values, and the deepgp
package allows for specifying a given noise level, it suffices to specify it to the misspecified
value σ2{ρ (while data will truly be generated with errors of variance σ2). We also note that
for the implementation of the augmented prior Πf bπσ2 discussed in Section 4.2, it is enough
to sample from the marginal posterior in f , and deepgp allows for a Gamma prior on σ2.
We refer to [38] for illustrations and details on the sampling schemes (we note that it should
also be possible to modify the code, which presently allows for Gamma priors, to include
horseshoe priors on lengthscales as in Examples 2–3).

Considering fixed deterministic composition depth q and width d (in the spirit of Remark
1) and given lengthscale parameters, the prior considered in the present work (but without
Ψ) coincides with that considered in the paper [16] introducing deepGPs, where the kernel is
termed ARD (Automatic Relevance Determination) and the lengthscales are called weights.
In [16], the weights/lengthscales are then calibrated using a variational approach. Many dif-
ferent posterior approximating schemes for deepGPs have been proposed over the last few
years, using in particular variational approximations; we refer to [38] for an overview and
discussion. Obtaining theoretical guarantees for these different approaches, in particular for
the Deep HGP posteriors introduced here, is an interesting avenue for future work.

6. Proof of the main results. We denote by ν the spectral measure of the squared-
exponential SqExp process. Let us recall that this process is stationary with covariance
Kps, tq “ expp´}s´ t}2q “ kps´ tq and that by Bochner’s theorem kptq “

ş

e´txu,tyνpduq;
in particular it follows that ν has Lebesgue density uÑ expp´}u}2{4q{p2dπd{2q.

Preliminaries: reducing the problem to a prior mass condition. Given a rate pεnq, Theorem
F.1 and Proposition F.1 in Appendix F [12] ensure that if Π satisfies, for f0 P Cr´1,1sd and
ρ P p0,1q,

(27) Π

«

‖f ´ f0‖8 ď
2σ20

a

1` 4σ20
εn

ff

ě e´nρε
2
n ,
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then the fractional posterior is such that, for Dρ the ρ–Rényi divergence as in (22),

E0Πρ

ˆ

η :
1

n
Dρpp

n
η , p

n
η0q ě 4

ρε2n
1´ ρ

|X

˙

ď e´nρε
2
n ` pnε2nq

´1.

Let us now focus on the considered regression model. Assuming that the regression functions
we consider are bounded, say ‖f‖8 ,‖g‖8 ď 1, using 1´ xď´ logx and 1´ e´x ě xe´x

both for xě 0 and the additivity of the Rényi divergence for densities of independent obser-
vations, it follows that

1

n
Dρpp

bn
f , pbng q “ ´

1

1´ ρ
log

ż

e
´
ρ´ρ2

2σ2
0
pf´gq2

dµě
1

1´ ρ

„

1´

ż

e
´
ρ´ρ2

2σ2
0
pf´gq2

dµ



ě
ρ

2σ20
e
´2 ρ´ρ

2

σ2
0 ‖f ´ g‖2L2pµq

.(28)

We note that under the regularity assumptions on f0 and with the use of the ‘link’ function
Ψ, the boundedness assumption is satisfied for both f0 and a draw f from the posterior in our
different theorems. Consequently, in the following, the proofs consist in proving (27) for f0
as in the different statements and for the different priors considered. This will imply

E0Πρ

ˆ

f : ‖f ´ g‖2L2pµq
ě

8σ20
1´ ρ

e
2 ρ´ρ

2

σ2
0 ε2n |X

˙

ď e´nρε
2
n ` pnε2nq

´1,

which suffices to conclude.

6.1. Proof of Theorem 1. The proof of the theorem is a (simpler) variation on the proof
of Theorem 2 to follow: therein, it suffices to work with the fixed values of scaling parameters
specified in (14). For easy reference the precise argument is given below the end of the proof
of Theorem 2.

6.2. Proof of Theorem 2. Given A PRd`, let us denote by ϕAf0 the concentration function
of the Gaussian process WA as in (10) and its RKHS by HA. To derive the result, we prove
below that (27) is satisfied, since any f0 P FpKq satisfies ‖f0‖8 ď 1 and

∥∥ΨpWAq
∥∥
8
ď 1

by definition. Also, since
∥∥f0 ´ΨpWAq

∥∥
8
ď

∥∥f0 ´WA
∥∥
8

, we bound this last quantity
instead as it then implies (27) for f “ΨpWAq.

Since we assume f0 P FV SpK,β,d, d˚q, we have f0px1, . . . , xdq “ g0pxi1 , . . . , xid˚ q for
some g0 PFpK,β,d˚q. Let us set, for S0 “ t1, . . . , duzti1, . . . , id˚u and ξ “ 2σ20{

a

1` 4σ20 ,

Ii “

#

r0, ξ{p8d
?
ρnqs, if i P S0,

ra˚,2a˚s, otherwise,

for a˚ P r1, ns as in the statement of the Theorem. For a given vector A, let us introduce
Ã“ pÃ1, . . . , Ãdq with Ãi “Ai1iPti1,...,id˚u for i“ 1, . . . , d. For any εą 0,

Π rf : ‖f ´ f0‖8 ă ξεs “ P
“
∥∥WA ´ f0

∥∥
8
ă ξε

‰

ě

ż

I1

. . .

ż

Id

P
“
∥∥WA ´ f0

∥∥
8
ă ξε |A

‰

d
ź

i“1

πpAiqdAi.

One may now split the contribution of Ai’s into subsets of indices as follows

P
“
∥∥WA ´ f0

∥∥
8
ă ξε |A

‰

ě P
”
∥∥∥W Ã ´ f0

∥∥∥
8
ă ξε{2 ,

∥∥∥W Ã ´WA
∥∥∥
8
ă ξε{2 |A

ı

ě P
”
∥∥∥W Ã ´ f0

∥∥∥
8
ă ξε{2 |A

ı

´ P
”
∥∥∥W Ã ´WA

∥∥∥
8
ą ξε{2 |A

ı

.
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In what follows we bound from below and above respectively the quantities, for η “ ξε{2,

P1pηq “

ż

I1

. . .

ż

Id

P
”
∥∥∥W Ã ´ f0

∥∥∥
8
ă η |A

ı

d
ź

i“1

πpAiqdAi,(29)

P2pηq “

ż

I1

. . .

ż

Id

P
”
∥∥∥W Ã ´WA

∥∥∥
8
ą η |A

ı

d
ź

i“1

πpAiqdAi.(30)

In the bounds P1, P2 to follow, we use that the involved scaling parameters Ai belong to the
respective intervals Ii defined above.

Starting with (29), denote A˚ “
`

Ai1 , . . . ,Aid˚
˘

P Rd
˚

` . Conditionally on the Ai’s, the
Gaussian process W Ã, interpreted as a process on variables indexed by i1, . . . , id˚ only, has
the same distribution as the Gaussian process WA˚ on r´1,1sd˚ (they are both centered with
same covariance kernel; in slight abuse of notation we denote also W for the process in the
d˚–dimensional space). Since WA˚ is independent of Ai for i P S0, for η ą 0,

P
”
∥∥∥W Ã ´ f0

∥∥∥
8
ă η |A

ı

“ P
”
∥∥∥WA˚ ´ g0

∥∥∥
8
ă η |A˚

ı

.

The term P1 can then be bounded from below by

P1pηq “
ź

iPS0

πpIiq ¨

ż

Ii1

. . .

ż

Ii
d˚

P
”
∥∥∥WA˚ ´ g0

∥∥∥
8
ă η |A˚

ı

d˚
ź

j“1

πpAij qdAij

ě
ź

iPS0

πpIiq ¨

ż

Ii1

. . .

ż

Ii
d˚

e´ϕ
A˚

g0
pη{2q

d˚
ź

j“1

πpAij qdAij ,

where we use Lemma A.1 to bound from below the probability in the display.
We now use Theorem 5 applied to g0, a function with input dimension d˚. We set ε“ εn

to be chosen so that η “ ξεn{2. Suppose,

8ě ξεn ě 4C1Kpa˚q´β,(31)

ρnε2n{2ě C2K2pa˚qd
˚

` pCd˚ca˚qd
˚

log1`d
˚

p8a˚{εnq,(32)

where Ci “ Cipβ,d˚q, i“ 1,2 are constants of the form ciC
d˚
i as in the statement of Theorem

5. Up to making C1,C2 larger, one can always assume C1,C2 ě 1. Below we will also use
that if εn ď 1, a˚ ě 1 verifying the last display exist, then a˚ ď n. Indeed, the last term in
the second inequality is bounded from below by pCd˚ca˚qd

˚

log1`d
˚

p8a˚q. As 8a˚ ě e one
must have pCd˚ca˚qd

˚

ď ρnε2n{2 where C ě 1, so that a˚ ď pnε2nq
1{d˚ ď n.

By Theorem 5 we have ϕA
˚

g0 pεnq ď ρnε
2
n{2, uniformly for a˚ ďAij ď 2a˚. One deduces

P1pξεn{2q ě
ź

iPS0

πpIiq ¨ e
´ρnε2n{2 ¨

ź

iRS0

πpIiq.

Let us now deal with the term P2 in (30). First one notes that, given A,

X :“W Ã ´WA

is a centered Gaussian process. In order to bound it, one first computes

σ2 “ sup
tPr´1,1sd

ErX2ptq |As “ sup
tPr´1,1sd

2
´

1´ e´
ř

iPS0
A2
i t

2
i

¯

“ 2
´

1´ e´
ř

iPS0
A2
i

¯

ď 2 pd´ d˚q max
iPS0

A2
i ,
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using e´u ě 1´u for any u and |S0| “ d´d˚. SettingM – e´
ř

iPS0
A2
i s

2
i ,N – e´

ř

iPS0
A2
i t

2
i ,

P – e´
ř

iRS0
A2
i psi´tiq

2

, Q– e´
ř

iPS0
A2
i psi´tiq

2

,

D ps, tq2 :“ Er|Xpsq ´Xptq|2 |As

“ E
„

´

W Ãptq ´WAptq ´W Ãpsq `WApsq
¯2
|A



“ 4` 2PM ´ 2PQ´ 2M ´ 2N ` 2PN ´ 2P

“ 2 p1´Qq ` 2 p1´ P q p1`Q´M ´Nq .

For s, t P r´1,1sd, using again e´u ě 1´ u,

1´Qď |s´ t|28 pd´ d
˚q max

iPS0

A2
i , 1´ P ď |s´ t|28 d˚ max

iRS0

A2
i .

For any x, y, z ě 0, we have 1 ` e´z ´ e´x ´ e´y ď 2 ´ e´x ´ e´y ď x ` y, using the
inequalities e´z ď 1 and e´x ě 1´ x. Deduce

1`Q´M ´N ď
ÿ

iPS0

ps2i ` t
2
i qA

2
i ď 2 pd´ d˚qmax

iPS0

A2
i .

Combining the previous bounds one obtains, for any s, t P r´1,1sd,

Dps, tq2 ď 2 |s´ t|28 pd´ d
˚qmax

iPS0

A2
i

„

1` 2d˚ max
iRS0

A2
i



.

On the other hand, using Dps, tq2 ď 2ErXpsq2 `Xptq2 |As ď 4σ2 for any s, t, we have

sup
s,tPr0,1sd

Dps, tq ď 2σ.

According to Lemma C.9 [12], since Xp0q “ 0 almost surely, we have

E r‖X‖8 |As ď 4
?

2

ż σ

0

b

log 2N pε, r´1,1sd,Dqdε.

Writing Z2 “ 2 pd´ d˚qmax
iPS0

A2
i

„

1` 2d˚ max
iRS0

A2
i



, this quantity is upper bounded by

4
?

2

ż σ

0

b

log 2N pε{Z, r´1,1sd, | ¨ |8qdεď 4
?

2d

ż σ

0

c

log
4Z

ε
dε,

using 2Npη, r´1,1sd, | ¨ |8q ď p4{ηq
d for η ď 1, which is the case here since σ{Z ď 1 (see

also below). By a change of variable v “
a

logp4Z{εq , the upper bound is, with C 1 “ 32
?

2,

4
?

2d

ż 8

?
log 4Z

σ

8Zv2e´v
2

dv “C 1
?
dZ

ż 8

?
log 4Z

σ

v2e´v
2

dv.

Integrating by parts,
ş8

a v
2e´v

2

dv “ ae´a
2

{2`
ş8

a e
´v2dv{2. For aě 1 we have

ş8

a e
´v2dv ď

ş8

a v
2e´v

2

dv so that
ş8

a v
2e´v

2

dv ď ae´a
2

. Let us apply this to the previous bound, noting
that log 4Z{σ ě log 4ě 1, using the upper bound on σ obtained above and the definition of
Z . One obtains, using that σÑ σ

a

logp4Z{σq is increasing on r0,4Z{
?
es, and that σ2 ď

σ̄2 :“ 2pd´ d˚qmaxiPS0
A2
i ď Z

2 ď p4Z{e1{2q2,

E r‖X‖8 |As ď 8
?

2dσ
a

log 4Z{σ ď 16d max
iPS0

Ai

d

1

2
log

ˆ

16r1` 2d˚ max
iRS0

A2
i s

˙

.
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Assuming maxiRS0
A2
i ě 1, we obtain for some universal c1 ą 0,

E r‖X‖8 |As ď c1d ¨max
iPS0

Ai ¨

d

log

ˆ

1` 2d˚ max
iRS0

A2
i

˙

.

One can now use Gaussian concentration to control the deviations of }X}8 from its expec-
tation. Suppose

(33) εn ě 4ξ´1c1d ¨max
iPS0

Ai ¨

d

log

ˆ

1` 2d˚ max
iRS0

A2
i

˙

.

Combining Lemma C.8 [12] and the above bound on E r‖X‖8 |As gives

(34) P r‖X‖8 ą ξεn{2 |As ď P r‖X‖8 ´E‖X‖8 ą ξεn{4 |As ď e
´ξ2ε2n{32σ

2

.

Recall that, for Ai P Ii,

max
iPS0

Ai ď ξ{p8d
?
ρnq,

which gives σ2 ď ξ2{p32ρnq, so that the last but one display is bounded from above by
e´ρnε

2
n , uniformly for Ai in the corresponding interval Ii. One deduces

P2pξεn{2q ď e
´ρnε2n

d
ź

i“1

πpIiq.

Combining this with the obtained lower-bound on P1pξεn{2q, one gets, using e´ρnε
2
n{2 ě

2e´ρnε
2
n if nε2n ě 1{4ρ, that P1pξεn{2q ´ P2pξεn{2q ě e

´ρnε2n{2
ś

πpIiq{2, so that

(35) Π rf : ‖f ´ f0‖8 ă ξεns ě e
´ρnε2n{2

d
ź

i“1

πpIiq{2ě e
´ρnε2n ,

where we used (15).
Let us now optimise in terms of εn verifying the conditions (31)–(32)–(33). Since

max
iPS0

Ai ď ξ{p8d
?
ρnq, max

iRS0

Ai ď n

for Ai P Ii, we have that (33) holds if, for some c2 ą 0 depending on ρ,

(36) ε2n ě c2
logp1` 2d˚n2q

n
.

Now turning to (31)´ (32), recalling Ci “ Cipβ,d˚q ě 1 and K ě 1, it suffices to have, using
εn ě 1{

?
n and a˚ ď n as noted earlier,

(37) ε2n ě tB1a
˚´2βu _ tB2a

˚d˚ log1`d
˚

pnq{nu,

where B1 “ Cpξ´1C1Kq2 and B2 “ Cρ´1K2C2pc1d˚c2qd
˚

, with c1, c2,C universal con-
stants. We note that (37) implies (36) for C large enough, using a˚ ě 1 and n ě 3 (which
implies logpd˚q À log1`d

˚

pnq). This concludes the proof of Theorem 2, provided εn ď 8ξ´1.

Proof of Theorem 1. One follows the proof of Theorem 2, noting that the fixed values of
scaling parameters specified in (14) belong to the intervals Ii from the proof of Theorem 2,
and where now there is no conditioning on Ai (those have given values now).

Let us set a˚ “ n1{p2β`sq, ε2n “M log1`spnqn´2β{p2β`sq and d˚ “ s. Then the conditions
(31), (32), (33) and (37) arising on εn in the proof of Theorem 2 are satisfied for M large
enough depending on s, K , β, ξ and ρ. This gives

Π rf : ‖f ´ f0‖8 ă ξεns ě e
´ρnε2n .

One concludes similarly as for the proof of Theorem 2, using the discussion following (27).
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6.3. Proof of Theorem 3. The proof of Theorem 2 needs to be suitably generalized and
modified: as we shall see below, the considered L8 balls for the various layers of the compo-
sition need to have carefully chosen radii. To obtain the results, one needs to verify the prior
mass condition (27) for εn as in the statement of the theorem. For any f0 P Fdeeppλ,β,Kq
where λ“ pq, d1, . . . , dq, t0, . . . , tqq, we now have

Π rf : ‖f ´ f0‖8 ă ξεns ěΠqrtqusΠrtd1, . . . , dqu| qs

Π
“

‖gq ˝ ¨ ¨ ¨ ˝ g0 ´ hq ˝ ¨ ¨ ¨ ˝ h0‖8 ă ξεn | q, d1, . . . , dq
‰

.

Let us now fix 0ď iď q and 1ď j ď di, such that we focus on the marginal distribution of
gij . Lemma C.7 [12] indeed ensures that for any εnpiq ą 0, denoting d“ pd1, . . . , dqq,

Π

«

‖gq ˝ ¨ ¨ ¨ ˝ g0 ´ hq ˝ ¨ ¨ ¨ ˝ h0‖8 ă ξq
q
ź

i“0

r2|βi´1|tiK _ 1s max
i“0,...,q

εnpiq
αi | q,d

ff

ě

q
ź

i“0

di`1
ź

j“1

Π
”∥∥WAij ´ hij

∥∥
8
ď ξ1{αiεnpiq | q,d

ı

,(38)

where WAij is as in (10) (with random bandwidths Aij) and αi “
śq
l“i`1pβl^ 1q. Since the

hij are bounded by 1 in supnorm, the factors in the above product are lower bounded by

Π
”

‖gij ´ hij‖8 ď ξ
1{αiεnpiq | q, d1, . . . , dq

ı

.

If we can find εnpiq such that the above quantity is lower bounded by e´ρnεnpiq
2αi , then we

can verify that εn “CpK,λqmaxi“0,...,q εnpiq
αi such that nε2nÑ8, for

CpK,λq “

«

q

q
ź

i“0

r2|βi´1|tiK _ 1s

ff

_

q
ÿ

i“0

di`1,

is a posterior contraction rate thanks to (27). Having nε2nÑ8 ensures that the remaining
mass in Theorem F.1 in Appendix F [12] is vanishing, so that εn is indeed a contraction rate.
Indeed, up to the constant factor

L“ΠqrtqusΠrtd1, . . . , dqu| qs

independent of n, we can derive (27) from the lower bound on the right-hand side of (38)

Le´ρnε
2
n .

Indeed, as long as nε2n Ñ 8, we could replace εn with Cεn, C ě 1, for C such that
Le´ρnε

2
n ě e´ρnCε

2
n . Since the left side of (27) increases when replacing εn with Cεn, (27)

would be satisfied with Cεn. This is enough as we seek to express εn up to a large enough
constant.

From here, we can continue as in the proof of Theorem 2. Since we assume hij P
FV SpK,βi, di, tiq, we have hijpx1, . . . , xdq “ fijpxk1 , . . . , xkti q for some fij P FpK,βi, tiq.
Let us set, for S0 “ t1, . . . , diuztk1, . . . , ktiu, ξ “ 2σ20{

a

1` 4σ20 , and

vi,n :“
ξεnpiq

1´αi

8
?
ρndi

,

the intervals

Ik “

#

r0, vi,ns, if k P S0,
ra˚,2a˚s, otherwise,
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for a˚ P r1, n{2s. Let’s also consider an arbitrary vector Aij such that pAijqk P Ik for 1 ď

k ď d (in the following, we note Ak “ pAijqk for simplicity). If we can show
śdi
k“1 πpIkq ě

2e´ρnεnpiq
2αi{2, and, C1,i,C2,i constants of the form cj,iC

ti
j,i, j “ 1,2, as in the statement of

Theorem 5,

4ě ξ1{αiεnpiq{2ě 4C1,iKpa˚q´βi ,(39)

ρnεnpiq
2αi{2ě C2,iK2pa˚qti ` pCtcia

˚qti log1`tip8a˚{ξ1{αiεnpiqq,(40)

(counterparts of (31) and (32)) and, for some c1 ą 0,

εnpiq ě 4ξ´1{αic1di ¨max
kPS0

Ak ¨

d

log

ˆ

1` 2ti max
kRS0

A2
k

˙

,(41)

max
kPS0

Ak ď
ξεnpiq

1´αi

8
?
ρndi

(42)

(the first is a counterpart of (33), the second ensures that an upper bound e´ξ
2εnpiq2{32σ2

i

obtained as in (34) is further upper bounded by expp´ρnεnpiq
2αiq, as σ2i ď 2dimaxkA2

k).
Under these conditions, we can conclude

Π
”∥∥WAij ´ hij

∥∥
8
ď ξ1{αiεnpiq | q, d1, . . . , dq

ı

ě e´ρnεnpiq
2αi

in the same way we obtained (35).
From (42), which is satisfied by definition of vi,n, and max

kRS0

Ak ď n, (41) is satisfied

whenever

(43) εnpiq
4αi´2 ě c2

logp1` 2tin
2q

n

for some c2 ą 0. Now turning to (39)´ (40), recalling Cj,i “ Cj,ipβi, tiq ě 1 andK` “K_1,
it suffices to have, using εnpiq ě 1{

?
n and a˚ ď n as noted earlier,

(44) εnpiq
2αi ě tB1a

˚´2αiβiu _ tB2a
˚ti log1`tipnq{nu,

where B1{αi
1 “CpC1,iK`t2i q2 and B2 “Cρ

´1K`
2C2,ipc1tc2i qti , with c1, c2,C universal con-

stants. If εnpiq ď 1, we note that (44) implies (43) for C large enough, using αi ď 1, a˚ ě 1
and ně 3 (which implies logptiq À log1`tipnq).

Optimising a˚ in (37), leads to setting

(45) pa˚q2αiβi`ti “ pB1nq{pB2 log1`tipnqq _ 1.

Condition (44) then becomes, for a˚ as in (45),

(46) εnpiq
2αi ě

„

B3plognq
2αiβip1`tiq

2αiβi`ti n
´

2αiβi
2αiβi`ti



_
“

B2 log1`tipnq{n
‰

,

where B3 “ K2cti5 t
ti

c6
2αiβi`ti

i , recalling B2 “ K2pc3t
c4
i q

ti , and c3, . . . , c6 ě 1 are constants
only depending on βi, ρ. For εnpiq equal to the lower bound in (46), we indeed have εnpiq ď

1 and, for n large enough, εnpiq2 “ B
1{αi
3 plognq

2βip1`tiq

2αiβi`ti n
´

2βi
2αiβi`ti . Condition (42) is then

satisfied by definition.
It now remains to prove that

śdi
k“1 πpIkq ě e

´ρnεnpiq2αi{2 given the definition of vi,n and
condition (45). Using the fact that 1ď a˚ ď n{2, a straightforward modification of the proof
of Lemma G.17 [12] gives that it is satisfied for a parameter τi ą 0 satisfying

(47) nεnpiq
2αi ě p2{ρq rti logp10a˚{τiq ´ di log pvi,ne0τiq ` log 2s ,
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whenever vi,n ă τi ă a˚. This last condition is satisfied for any fixed τi ą 0 as vi,n Ñ 0
and a˚Ñ8. Also, equation (47) is satisfied for large enough n as the left-hand side has a
polynomial growth and the right-hand side has a logarithmic growth in n.

This concludes the proof of Theorem 3 in the case of the prior Deep–HGP. The proof for
the prior Deep–HGPpqmax, dmaxq is very similar and can be found in Appendix H [12].

6.4. Proof of Theorem 4. We proceed as in the proof of Theorem 3 but with the new
horseshoe prior with shrinking parameter τ0 on the lengthscales of the first layer, with special
attention to that layer of GPs, i“ 0, as d0, t0 may now go to infinity. As in Corollary 3, for
i“ 0, we now have

(48) εnp0q ě
”

B3plognq
2α0β0p1`t0q

2α0β0`t0 n
´

2α0β0
2α0β0`t0

ı

_
“

B2 log1`t0pnq{n
‰

,

which as nÑ8, under (23), is equal to εnp0q “ Ct0n
´

2α0β0
2α0β0`t0 plognq

2α0β0p1`t0q

2α0β0`t0 , for C de-
pending on K , ρ and βi, iě 0. Also the condition on τ0 becomes

(49) 10a˚e´nρεnp0q
2α0{4t0 ď τ0 ďC0

εnp0q
1´α0

a

nd40

for a˚ as in (45) and C0 depending ξ and ρ, via a slight modification of Lemma G.18 [12].
As it is satisfied under the assumption of the theorem, this concludes the proof.

7. Dimension-dependent bounds for multibandwidth SqExp Gaussian processes. In
order to prove posterior contraction rates for deep GPs, a key step is to derive an upper
bound for the concentration function (9). The next Theorem enables us in particular to re-
visit Lemmas 4.2 and 4.3 from [5], with explicit multiplicative constants depending on the
ambient dimension d in the result. This is a novel contribution to the literature on squared-
exponential GPs, to the best of our knowledge. Also, these results allow us to deploy the
HGP and Deep–HGP priors in the high-dimensional setting. For simplicity we do not con-
sider here the anisotropic case in which the function f0 can have varying smoothness across
coordinates, although this could be done as well, following the approach of [5]. We focus
on the variable selection aspect of the problem, assuming the same regularity on the active
directions of f0.

THEOREM 5. Let WA be a SqExp Gaussian process in dimension d ě 1 with deter-
ministic vector of scalings A “ pA1, . . . ,Adq with a ď Ai ď 2a for i “ 1, . . . , d and some
aě

a

logp2q{d{2. Let ϕAf0pεq be the concentration function of WA. Suppose f0 PFpβ,K,dq
for some β,K ą 0. There exist constants C1pβ,dq and C2pβ,dq depending only on β,d and a
universal c,C ą 0 such that, if

C1pβ,dqK2a´β ď εď 4,

then

ϕAf0pεq ď C2pβ,dqK2ad ` pCaqddcd log1`dp2a{εq.

Moreover, for i“ 1,2 one can take Cipβ,dq “ cipβqCipβqd for some constants cipβq,Cipβq
that depend only on β.

The proof of this result can be found in Appendix A [12].
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