
Submitted to the Annals of Probability

GROWTH DICHOTOMY FOR UNIMODULAR RANDOM ROOTED TREES

BY MIKLÓS ABÉRT1,a, MIKOŁAJ FRĄCZYK2,b AND BEN HAYES3,c
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We show that the growth of a unimodular random rooted tree (T, o) of
degree bounded by d always exists, assuming its upper growth passes the
critical threshold

√
d− 1. This complements Timár’s work who showed the

possible nonexistence of growth below this threshold.
The proof goes as follows. By Benjamini-Lyons-Schramm, we can realize

(T, o) as the cluster of the root for some invariant percolation on the d-regular
tree. Then we show that for such a percolation, the limiting exponent with
which the lazy random walk returns to the cluster of its starting point always
exists. We develop a new method to get this, that we call the 2-3-method,
as the usual pointwise ergodic theorems do not seem to work here. We then
define and prove the Cohen-Grigorchuk co-growth formula to the invariant
percolation setting. This establishes and expresses the growth of the cluster
from the limiting exponent, assuming we are above the critical threshold.

1. Introduction. A random rooted graph (G, o) is unimodular, if it satisfies the so-called
mass transport principle, saying that for any measurable paying scheme, the expected income
and outpay of the root o are equal. The Benjamini-Schramm limit of finite graphs is a URG,
and the limit tends to behave like a vertex transitive graph in many senses. This allows one to
prove new results on arbitrary graph sequences, pulling mathematical energy from the vertex
transitive world (see [2], [8] and the references therein). In general, results that hold for vertex
transitive graphs tend to generalize to the unimodular random setting.

At the Banff workshop “Graphs, groups and stochastics” in 2011, Kaimanovich asked if
the exponential growth

lim
n→∞

|B(o,n)|1/n

almost surely exists for a unimodular random rooted graph (G, o) where B(o,n) denotes the
ball of radius n in G. This trivially holds for a fixed vertex transitive graph by submultiplica-
tivity of the size of balls. Timár showed that this was false in [9], giving a counterexample
that was a unimodular random rooted tree of bounded degree. There was a consensus in the
community that this is where the story ends.

In Timár’s construction, the random tree is one ended a.s., the lower growth always equals
1, and the upper growth is almost surely a small positive constant. We initially proved (see
Theorem D below) that a one-ended unimodular random rooted tree of maximal degree d has
upper growth at most

√
d− 1. To our surprise, we then also found that once the upper growth

of the tree surpasses this threshold, the growth will actually start to exist!
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THEOREM A. Let (T, o) be a unimodular random rooted tree with degree bound d and
upper growth

limsup
n→∞

|B(o,n)|1/n >
√
d− 1

Then the growth

lim
n→∞

|B(o,n)|1/n

exists.

The proof starts by applying the theorem of Benjamini, Lyons and Schramm [4], saying
that every unimodular random rooted tree with degree bound d can be realized as the cluster
(connected component) of the root of some invariant edge percolation of the d-regular tree
Td. The next step is to establish a notion of “dimension" or “exponent" of the cluster of
the root for such invariant percolations, using the return exponent of the lazy random walk
starting at the root, to the cluster of the root.

THEOREM B. Consider an invariant edge percolation E of the d-regular tree Td, rooted
at o and let E(o) be the connected component of o. Let (Xn)n∈N be the lazy random walk on
Td, starting at o. Then the limit

ρE := lim
n→∞

P[Xn ∈ E(o)]1/n

exists.

Just by its definition, the above limit could depend on the realization of the unimodular
random rooted tree (T, o) as an invariant percolation cluster, but it is easy to show that it only
depends on (T, o) itself. In particular, if (T, o) is ergodic, then this limiting exponent is a
constant.

Remark. Note that we only use the lazy random walk instead of the simple one because it
avoids periodicity issues. All the results of the paper can be adapted to simple random walk.

As the usual pointwise ergodic theorems did not seem to do the job here, in the next step
we develop a new method to show the existence of the above exponent. It turns out that
this method (that we call the 2-3 method) and also the existence of the exponent applies
in a much greater generality than stated here, for arbitrary invariant random partitions of
countable groups, and even more generally, for arbitrary subrelations of p.m.p. equivalence
relations. As one would expect, the above exponent can be interpreted as the spectral radius
(norm) of a suitable operator, but that takes its natural form only in the language of subre-
lations. The subrelation language as well as the most general results are developed in the
paper [1]. In the present paper, we do not use operator theory language and decided to make
the paper self-contained by giving a probabilistic proof for the minimal version of the 2-3
method needed for percolation clusters as well.

In the next step, we aim to express the growth of our tree (T, o) in terms of the above
exponent. We first use a trick that allows us to assume that the tree has no leaves. For this,
we substitute the original rooted tree with its spine, defined as the union of its bi-infinite
geodesics. Note that the spine can be also obtained by consecutively removing the leaves
from (T, o)).

THEOREM C. Let (T, o) be a unimodular random rooted tree of degree at most d. If the
upper growth of (T, o) is larger than

√
d− 1 then the spine of (T, o) has the same growth as

(T, o).
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In particular, in the threshold we are looking at, the growth will exist for (T, o) as long as
it exists for its spine. Passing to the spine makes the sizes of spheres in (T, o) to be monotone
increasing, that will be useful later.

At this point we take out a well-known tool from the group theory toolbox. If we consid-
ered a fixed subgroup H of the free group F as a substitute of E(o) then the above sampling
exponent would trivially exist by submultiplicativity and be equal to the spectral radius of
the corresponding random walk operator on l2(F/H). The growth of H embedded in F is
called the co-growth of H . In the realm of subgroups, the connection between this co-growth
and the spectral radius was established by Grigorchuk and Cohen, leading to the famous
co-growth formula [6, 5].

It turns out that one can generalize this formula to our invariant percolation setting and
prove that in the range where the upper growth of (T, o) is (

√
d− 1, d− 1], the growth and

the exponent of (T, o) completely determine each other. Note that in the subgroup case of
Grigorchuk and Cohen, the existence of the co-growth was automatic from submultiplicativ-
ity and the original analysis in [6, 5] leading to the co-growth formula only detected the upper
growth. To detect the actual growth, we have to use a large deviation principle for the distance
traversed by a random walk on a regular tree [10, Thm 19.4]. We also have to exploit, in a
nontrivial way, concavity of the rate function as well as the above explained monotonicity of
the growth sequence. This part of the paper seems to be restricted to connected components
of percolated trees, that is, it does not seem to generalize to subrelations, but we expect there
to be further applications of this method.

As we mentioned, Timár’s example for the nonexistence of growth is a one ended uni-
modular random rooted tree, in particular, it is hyperfinite. Recall that a unimodular random
rooted tree is hyperfinite if and only if it has one or two ends a.s. [3, Theorem 8.9]. Our next
theorem, already mentioned at the start, shows that a hyperfinite unimodular random rooted
tree has upper growth at most

√
d− 1.

THEOREM D. Let (T, o) be a hyperfinite unimodular random rooted tree of degree at
most d. If (T, o) is two ended then its growth exists and equals 1. If (T, o) is one ended then
its upper growth is at most

√
d− 1 and by Timár’s construction, its growth may not exist.

Note that the upper bound
√
d− 1 for the (upper) growth of one ended unimodular random

rooted trees can be achieved by the so-called canopy tree, the Benjamini-Schramm limit of
metric balls in Td.

Theorems A and D still leave open the case of unimodular random rooted trees with in-
finitely many ends (or, equivalently, the non-hyperfinite case), but with upper growth at most√
d− 1. We could not decide whether these trees will also have growth or not.

QUESTION 1. Let (T, o) be a unimodular random rooted tree with bounded degree and
with infinitely many ends a.s. Does the growth

lim
n→∞

|B(o,n)|1/n

exist?

This question is actually two questions packed together that both make sense in them-
selves. We discuss these and some initial results at the end of the paper.

The paper is structured as follows. In Section 2 we define some of the basic notions of
the paper and prove Theorem D. In Section 3 we establish the 2-3 method and show how it
implies Theorem B. In Section 4 we define the spine and prove Theorem C. In Section 5 we
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establish the large deviation principle result needed for our main Theorem A, which is then
proved in Section 6. Finally, in Section 7 we suggest some questions and further directions.

We use Vinogradov’s notation �,� to indicate that inequality holds up to an implicit
multiplicative constant.

2. Preliminaries. In this section we define some basic notions, like growth and unimod-
ularity, discuss invariant percolation and prove the one-ended case of Theorem D. This proof
serves as a good practice of the mass transport principle. The two-ended case will be proved
in Subsection 4.

Let (G,o) be a connected rooted graph of bounded degree. We define the lower and upper
growth of (G,o):

gr(G) = lim inf
n→∞

|BG(o,n)|1/n, gr(G) = limsup
n→∞

|BG(o,n)|1/n.

It is easy to see that they do not depend on the choice of the root. If the above quantities
coincide, we say that G has growth and write

gr(G) = gr(G) = gr(G).

The growth of balls is completely determined by the growth of spheres. We have

gr(G) =max{1, lim
n→∞

|SG(o,n)|1/n},

and a similar identity for the upper growth. We give a brief argument. If gr(G) = 1 there is
nothing to show. Suppose gr(G)> 1 and let ε > 0.

lim
n→∞

|B(o,n)|1/n = lim
n→∞

(|B(o,n)| − |B(o,n− εn)|)1/n

= lim
n→∞

 n∑
k=dn−εne

|SG(o, k)|

1/n

≤ lim
n→∞

(εn|SG(o, dn− εne)|dεn)1/n

= lim
m→∞

|SG(o,m)|
1−ε
m dε.

Taking ε→ 0 we obtain gr(G)≤ limn→∞ |SG(o,n)|1/n. The inequality in the other direction
is obvious. The same proof shows the identity for upper growth, it is enough to replace all
limits by upper limits.

For general rooted graphs, even trees, of bounded degree, there is no reason why the graph
should have growth. In contrast, vertex transitive graphs trivially have growth. Introducing
unimodular random rooted graphs can be done in various ways and here we choose the most
pragmatic version, picking the mass transport principle (that we use anyways later) as the
definition. An in depth introduction to unimodular random rooted graphs can be found in [3].

Let Gd denote the space of rooted, connected graphs with degree bound d. A point in this
space is a rooted, connected graph up to rooted isomorphism. One can define a metric on Gd
as

d((G1, o1), (G2, o2)) = inf
1

k+ 1

over k such that the k-ball in G1 around o1 is isomorphic to the k-ball in G2 around o2 (as
rooted graphs). Endowed with this metric, Gd becomes a compact, totally disconnected space.
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A random rooted graph (G,o) is unimodular if it satisfies the mass transport principle.
This asserts that for every measurable non-negative real valued function F defined on the set
of triples (G,x, y) understood up to bi-rooted isomorphism, where G is a bounded degree
graph and x, y are vertices of G, we have

E

 ∑
x∈V (G)

F (o,x)

= E

 ∑
x∈V (G)

F (x, o)

 ,

provided that one of the sides is finite. A unimodular random rooted tree is a unimodular
random rooted graph that is a tree almost surely. It is convenient to think of the above identity
as the fact that for any paying scheme, the expected mass “sent out" from the root is equal to
the expected mass received by the root.

We say that the unimodular random rooted graph (G, o) is ergodic if one can not obtain
it as a nontrivial convex combination of other unimodular random rooted graphs. Since the
upper and lower growth of a graph are measurable functions on Gd that do not depend on the
choice of the root, they both must be constants by ergodicity, almost surely.

Unimodular random rooted graphs admit a strong statistical type of homogeneity, and as
such, they tend to behave like vertex transitive graphs. So it is reasonable to ask whether
they have growth. This was a question of Kaimanovich answered negatively by Adam Timár
in [9]. Timár constructed an example of a unimodular random rooted tree (T, o) such that
gr(T) = 1 while gr(T) = c > 1. The example in [9] is a one ended tree with a hierarchy of
fast and slow growing finite regions of super-exponentially growing size. The fact that the
resulting graph is one ended seemed necessary in the construction and we were unable to
find any example of a unimodular random rooted tree with more than one end and no growth.
As we realized, for one ended trees there is a natural barrier on the upper growth. We now
restate and prove Theorem D.

THEOREM 2.1. Let (T, o) be a one ended unimodular random rooted tree of degree at
most d. Then gr(T)≤

√
d− 1.

PROOF. Orient the edges of the tree T towards its unique end ξ. Call a vertex y an r-
ascendant of x if there is an oriented path of length r from x to y and an r-descendant of x
if x is an r-ascendant of y.

For every r ≥ 0 consider the mass transport function Fr : V (T)× V (T)→R≥0:

Fr(x, y) =

{
1 if y is the r-ascendant of x,
0 otherwise.

Under this paying scheme, the total outpay of every vertex is 1. We define fr(y) :=∑
x∈V (T)Fr(x, y) to be the total income of y. Then fr(y) equals the number of r-descendants

of y.
By the mass transport principle, we have

E (fr(o)) = E

 ∑
y∈V (T)

Fr(o, y)

= 1.

We use fr to construct a new mass transport function Er:

Er(y, z) =

{
fr−k(y) if y is the k-ascendant of z
0 otherwise,
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with the convention that fj(y) = 0 if j < 0. We claim that the total income
∑

y∈V (T)Er(y, z)

is an upper bound for |ST(z, r)|. Indeed, every point of the r-sphere around z is an (r− k)-
descendant of the k-ascendant of z for some k = 0, . . . , r.

We now estimate the expected total outpay of the root:

E

 ∑
z∈V (T)

Er(o, z)

= E

(
r∑

k=0

fk(o)fr−k(o)

)

� E

br/2c∑
k=1

(d− 1)kfr−k(o) +

r∑
k=br/2c+1

fk(o)(d− 1)r−k


=

br/2c∑
k=1

(d− 1)kE(fr−k(o)) +
r∑

k=br/2c+1

E(fk(o))(d− 1)r−k

� r(d− 1)r/2.

By the mass transport principle we have

E(|ST(o, r)|)≤ E

 ∑
z∈V (T)

Er(o, z)

� r(d− 1)r/2.

Let α>
√
d− 1. By Markov’s inequality we get

P (|ST(o, r)| ≥ αr)� r

(√
d− 1

α

)r
.

By the Borel-Cantelli lemma we deduce that the event that |ST(o, r)| ≥ αr happens only
finitely many times almost surely. Therefore gr(T)≤ α. We prove the theorem by letting α
go to

√
d− 1.

3. The 2-3–method for percolated trees. In this section we prove Theorem B with an
extra ergodicity statement. To do this, we introduce and prove the 2-3 method, using mass
transport. The 2-3-method, described in more general setup in [1], is a strategy to show that
certain log-Lipschitz random sequence qn grows or decays with exponential rate. The idea
is to show that q2n� q2n, q3n� q3n with probability tending quickly to 1 as n→∞. Since
the set 2i3j , i, j ∈ N is logarithmically dense in N we can use Borel-Cantelli lemma and
the log-Lipschitz property to show that the sequence qn is approximately sub-multiplicative,
hence the limit limn→∞ q

1/n
n exists. In our case, showing that q2n� q2n, q3n� q3n with high

probability will involve a tailor made mass transport identity. In principle 2 and 3 could be
replaced by any pair of multiplicative independent natural numbers.

Let Td be the d-regular tree with a root o and let E be an invariant edge percolation. For
any vertex v ∈ Td let E(v) be the cluster of v (i.e. the connected component of v in the graph
whose edge set is E). Finally, let Xn be the lazy random walk on Td starting at o. Our goal in
this section is to prove that the limit

ρE := lim
n→∞

P[X2n ∈ E(o)]1/2n

always exists. Since we are working with the lazy random walk, we could in principle take
the limit over all natural numbers. However, with ρE defined as above the proof of almost
sure existence works for non-lazy random walks as well. Laziness is only used later, when we
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are deriving the corollaries on growth of trees. To motivate this statement one may observe
that when d is even and we identify Td with the Cayley graph of the free group Fd/2 and
the connected components of E happen to be cosets of a subgroup H ⊂ Fd/2 then the limit
above is nothing else than the spectral radius of the lazy random walk on the coset graph
Fd/2/H . For a general percolation it is not clear why such limit should exist, as the connected
components of E aren’t as homogeneous as cosets of a subgroups. Still, the invariance of the
percolation turns out to be enough.

The following theorem is essentially Theorem B from the Introduction, adding a further
ergodicity statement.

THEOREM 3.1. The limit

lim
n→∞

P[X2n ∈ E(o)]
1

2n

exists. Moreover if E has indistinguishable clusters, then the limit is almost surely equal to

ρE := lim
n→∞

(E[1X2n∈E(o)])
1/2n

REMARK 1. The reader will notice that we stick to even times even though the walk
is lazy, so probability of return at odd times in non-zero. It is true that this argument could
be run for all n for the lazy random walk. We opted to keep even times, because then the
argument applies to all symmetric random walks in an unchanged form. We leave it as an
exercise to the reader that the above Theorem implies that limn→∞E[1Xn∈E(o)])1/n exists in
the case we are interested (which is when Xn is lazy).

For any x, y ∈ Td write pk(x, y) for the probability that the lazy random walk starting at x
ends in y in k steps. Let pEk (x) :=

∑
y∈E(x) pk(x, y). We define two functions fE1 , f

E
2 : Td ×

2N→R≥0.

fE1 (x,2l) :=
∑

y∈E(x)

p2l(x, y)p
E
2l(y)

−1

fE2 (x,2l) :=p
E
2l(x)

∑
y∈E(x)

p2l(x, y)

 ∑
z∈E(x)

p2l(y, z)p
E
2l(z)

−1 .

LEMMA 3.2. For any x ∈ Td
E[fE1 (x,2l)] =1,

E[fE2 (x,2l)] =1.

PROOF. Let F1, F2 : Td × Td→R≥0 be defined by

F1(x, y) := p2l(x, y)p
E
2l(x)

−1, F2(x, y) := p2l(x, y)p
E
2l(y)

 ∑
z∈E(x)

p2l(x, z)p
E
2l(z)

−1 .



8

We easily check that
∑

y∈E(x)Fi(x, y) = 1 for i = 1,2 and every x ∈ Td. By the mass
transport principle we get

1 = E

 ∑
y∈E(x)

F1(y,x)

= E

 ∑
y∈E(x)

F2(y,x)

 .
The lemma follows, since

fE1 (x,2l) =
∑

y∈E(x)

F1(y,x), fE2 (x,2l) =
∑

y∈E(x)

F2(y,x).

LEMMA 3.3. We have

pE2l(x)
2 ≤fE1 (x,2l)pE4l(x),

pE2l(x)
3 ≤fE2 (x,2l)pE6l(x).

PROOF. By Cauchy-Schwartz

pE2l(x)
2 ≤

 ∑
y∈E(x)

p2l(x, y)p
E
2l(y)

−1

 ∑
y∈E(x)

p2l(x, y)p
E
2l(y)

≤ fE1 (x,2l)pE4l(x).
pE2l(x)

2 ≤

 ∑
y∈E(x)

p2l(x, y)

 ∑
z∈E(x)

p2l(y, z)p
E
2l(z)

−1
·

 ∑
y∈E(x)

p2l(x, y)

 ∑
z∈E(x)

p2l(y, z)p
E
2l(z)


≤pE2l(x)−1fE2 (x,2l)pE6l(x).

PROOF OF THEOREM 3.1. Let l, p, q ∈ N. By Lemma 3.3 and a simple induction, for
every x ∈X we have

(3.1) pE2l(x)
2p3q ≤Cp,q(x,2l)pE2p+13ql(x),

where

Cp,q(x,2l) :=

p−1∏
i=0

fE1 (x,2
i+1l)2

p−1−i3q
q−1∏
j=0

fE2 (x,2
p+13jl)3

q−1−j
.

By Lemma 3.2 the sums
∑∞

l=1 l
−2fEi (x,2l), i = 1,2 converge a.e. In particular, for almost

every x there exists an l0 = l0(x) such that fEi (x,2l) ≤ l2 for l ≥ l0. Hence, for l ≥ l0 we
will have

Cp,q(x,2l)≤
p−1∏
i=0

(2i+1l)2
p−i3q

q−1∏
j=0

(2p+13jl)2·3
q−1−j

,

2−p3−q logCp,q(x,2l)≤
p−1∑
i=0

log(2il)

2i
+

q−1∑
j=0

log(2p3jl)

2p3j

≤50 + 2 log l.



GROWTH DICHOTOMY FOR UNIMODULAR RANDOM ROOTED TREES 9

Let l1 ≥ l0. Put ρE
s
:= lim inf l→∞ p

E
2l(x)

1

2l and ρEs := limsupl→∞ p
E
2l(x)

1

2l . Since the set
2p3ql1 becomes dense on the logarithmic scale as p, q→∞, we have

ρE
x
= lim inf

l→∞
pE2l(x)

1

2l =lim inf
p,q→∞

pE2p+13ql1(x)
1/2p+13ql11

≥ lim inf
p,q→∞

Cp,q(x,2
p+13ql1)

−1/2p+13ql1pE2l1(x)
1/2l1

≥l1/l11 pE2l1(x)
1/2l1 .

By taking the limit along a sequence l1 →∞ such that pE2l1(x)
1/2l1 → ρEx we obtain the

inequality ρE
x
≥ ρEx . This proves that liml→∞ p

E
2l(x)

1/2l exists almost surely.
We now prove the second part of the theorem. Assume E has indistinguishable clusters

and define ρE(x) := liml→∞ p
E
2l(x)

1/2l. This function is constant of the clusters of E, so by
indistinguishability is almost surely equal to some constant ρ0. By (3.1) and the inequality
between the arithmetic and the geometric mean we get

pE2l(x)

pE2p+1l(x)
1/2p
≤Cp,0(x,2l)1/2

p

=

(
p−1∏
i=0

fE1 (x,2
i+1l)2

p−1−i

)1/2p

≤ 1

2p

(
1 +

p−1∑
i=0

2p−1−ifE1 (x,2
i+1l)

)
.

We take expectation and use Lemma 3.2 to get

E
[

pE2l(x)

pE2p+1l(x)
1/2p

]
≤ 1.

Upon taking the limit as p→∞ we find that E
[
pE2l(x)

]
≤ ρ2l0 . Therefore,

limsupl→∞E
[
pE2l(x)

]
≤ ρ0. By Fatou lemma we have lim inf l→∞E

[
pE2l(x)

]
≥ ρ0, so

liml→∞E
[
pE2l(x)

]
= ρ0 and the theorem is proved.

4. The spine of a unimodular random rooted tree. In this section we introduce the
spine and prove Theorem C.

Let T be a tree. Call an edge e weak if one side of T \ e is finite. The spine of T , denoted
spine(T ), is the unique infinite connected component of what remains of T after throwing
out all the weak edges. The spine of a tree T is naturally a sub-tree of T . If the tree T is not
one ended, then T \ spine(T ) is a union of finite trees. We will call these trees decorations.

Let (T, o) be a unimodular random rooted tree and let ν be the corresponding proba-
bility measure on the moduli space Md of rooted graphs of degree bounded by d. Let
C = {(G,o) : G is a tree and o is in the spine}. This is a measurable set and ν(C) > 0 un-
less (T, o) is one ended a.s.. We define the spine of (T, o) as (spine(Tc), oc) where (Tc, oc) is
chosen according to ν|C . It is a unimodular random rooted graph. Indeed, the mass transport
formula for (T, o) and a payout scheme F (G,x, y)1x∈Tc1y∈Tc implies the mass transport
formula for (spine(Tc), oc) and the payout scheme F .

THEOREM 4.1. Let (T, o) be a unimodular random rooted tree of degree bounded by d.
Let (T′, o′) be the spine of (T, o). If T′ is regular, then gr(T) = gr(T′). In general, we have
gr(T)≤max{(d− 1)1/2, gr(T′)}. In particular, if gr(T)≥ (d− 1)1/2 then gr(T) = gr(T′).

Let o ∈ spine(T). The union of connected components of T \ spine(T) will be called the
decoration adjacent to o. The decorations adjacent to different vertices o, o′ ∈ spine(T) are
pairwise disjoint. The starting point of our discussion is the following lemma.
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LEMMA 4.2. Let (T, o) be a unimodular random rooted tree and let (T′, o′) be its spine,
which we assume to be non-empty almost surely. Then, the expected size of the decoration
adjacent to the root o′ is finite.

PROOF. Let (T, o) be a unimodular random rooted tree and let (T′, o′) be the spine. Let
(T, o′) be (T, o) conditioned on the event {o ∈ spine(T)}. In this way (T, o′) is no longer
unimodular. However, it can be considered as the spine (T′, o′) equipped with decorations at
every vertex. Then, as a random graph with decorations it remains unimodular. We will use
that perspective in the proof.

Let T be a general tree. For every vertex v ∈ spine(T ) let w(v)− 1 be the total number of
vertices of the connected components of T \ spine(T ) adjacent to v. We define a function on
pairs of vertices: F (x, y) = 1 if x ∈ spine(T ) and y = x or y is in a connected component of
T \ spine(T ) adjacent to x and F (x, y) = 0 otherwise. It is easy to see that for any x in the
spine we have

∑
y∼xF (x, y) = w(x) and for any vertex y we have

∑
x∼y F (x, y) ≤ 1. By

the mass transport principle we have

P(o ∈ T′)E(w(o′)) = E
∑
x∼o′

F (o′, x) = E
∑
x∼o′

F (x, o′)≤ 1.

Since we assume that T′ is non empty, the probability P(o ∈ T′) is non-zero. The lemma is
proved.

We are ready to prove Theorem 4.1.

PROOF. Let us start with the easier case, when T′ is a d′-regular tree, d′ ≤ d. Let w : T′→
N be the weight of decorations, defined as at the beginning of the proof of Lemma 4.2. Let
α> 1 and let F : T′ × T′→R≥0 be given as

F (x, y) = (α(d′ − 1))−d(x,y)w(x).

By the mass transport principle, we have

E

(∑
x∈T′

F (x, o′)

)
= E

(∑
x∈T′

F (o′, x)

)
≤ d′

d′ − 1
(1− α−1)−1E(w(o′)).

In particular the leftmost sum is finite a.s.. We unfold it to get(∑
x∈T′

F (x, o′)

)
=

∞∑
r=0

(α(d′ − 1))−r
∑

x∈ST′ (r)

w(x)

�
∞∑
r=0

(α(d′ − 1))−r
∑

x∈BT′ (r)

w(x)≥
∞∑
r=0

(α(d′ − 1))−rBT(o
′, r).

We have used the fact that |BT(o
′, r)| ≤

∑
x∈BT′ (o′,r)

w(x). This crude estimate will be
sufficient for regular T′. We deduce that for every vertex o′ in the spine of T we have
limsupr→∞ |BT(o

′, r)|1/r ≤ α(d− 1) almost surely. The origin o is at a finite distance from
the spine so we get that gr(T)≤ α(d′− 1). We get the regular case of the theorem by letting
α→ 1.

We move to the general case. Let (T, o) be a unimodular random rooted tree of degree at
most d with the spine (T′, o′). If (T′, o′) is empty almost surely then the graph T is one-ended
so the theorem follows from Lemma 2.1. From now on we assume that (T′, o′) is non-empty



GROWTH DICHOTOMY FOR UNIMODULAR RANDOM ROOTED TREES 11

almost surely. Let C := max{gr(T′), (d− 1)1/2}. We need to show that gr(T)≤C . We start
with a simple observation. For any vertex x ∈ T′ we have

|BT(x, r)| ≤
∑

y∈BT′ (x,r)

min{w(y), (d− 1)r−d(x,y)}(4.1)

≤
∑

y∈BT′ (x,r)

(w(y)(d− 1)r−d(x,y))1/2.

Let R be a positive integer. Let HR : T
′ × T′→ R≥0 be the mass transport function defined

as

HR(x, y) =w(x)|ST′(x,d(x, y))|−11d(x,y)≤R.
We compute the mass sent out from the origin o′:∑

y∈T′
HR(o

′, y) = (R+ 1)w(o′).

Hence, by the mass transport principle

E

 ∑
y∈BT′ (o′,R)

w(y)|ST′(y,d(o
′, y))|−1

=E

∑
y∈T′

HR(y, o
′)

(4.2)

=(R+ 1)E(w(o′)).
We recall that E(w(o′)) <∞ by Lemma 4.2. We let α > 1 again. By the Borel-Cantelli
lemma, the inequality

(4.3)
∑

y∈BT′ (o′,R)

w(y)|ST′(y,d(o
′, y))|−1 =

R∑
r=0

∑
y∈ST′ (o′,r)

w(y)|ST′(y, r)|−1 ≤ αR,

holds for all but finitely many R ∈ Z≥0 almost surely.
We would like to obtain a similar estimate for the expression∑
y∈BT′ (o′,R)

(d− 1)R−d(o
′,y)|ST′(y,d(o

′, y))|=
R∑
r=0

(d− 1)R−r
∑

y∈ST′ (o′,r)

|ST′(y, r)|.

We have ∑
y∈ST′ (o′,r)

|ST′(y, r)| ≤
r∑

k=0

(d− 1)r−k|ST′(o
′,2k)|,

because every vertex x with d(x, o′) = 2k ≤ 2r, is counted on the left with multiplicity at
most |ST′(z, r− k) ∩ ST′(o

′, r)| ≤ (d− 1)r−k, where z is the midpoint of the geodesic seg-
ment connecting o′ to x. Hence,

R∑
r=0

(d− 1)R−r
∑

y∈ST′ (o′,r)

|ST′(y, r)| ≤
R∑
r=0

(d− 1)R−r
r∑

k=0

(d− 1)r−k|ST′(o
′,2k)|

=

R∑
k=0

(R− k)(d− 1)R−k|ST′(o
′,2k)|

≤R
R∑
k=0

(d− 1)R−k|ST′(o
′,2k)|.
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We have limsupk→∞ |ST′(o
′,2k)|1/(2k) ≤ gr(T′) almost surely, so∑

y∈BT′ (o′,R)

(d− 1)R−d(o
′,y)|ST′(y,d(o

′, y))| ≤R
R∑
k=0

(d− 1)R−k|ST′(o
′,2k)|(4.4)

≤αRC2R.

holds for all but finitely many R ∈ Z≥0 almost surely.
Let R ∈ Z≥0 be such that both (4.3),(4.4) hold. By the Cauchy-Schwarz inequality, we get∑

y∈BT′ (o′,R)

(w(y)(d− 1)R−d(o
′,y))1/2 ≤ αRCR.

Both (4.3),(4.4) hold for almost all R ∈ Z≥0 almost surely so by combining (4.1) with the
last inequality we get that

limsup
R→∞

|BT(o
′,R)|1/R ≤ limsup

R→∞

 ∑
y∈BT′ (o′,R)

(w(y)(d− 1)R−d(o
′,y))1/2

1/R

≤αC

holds almost surely. To prove the theorem, we let α→ 1.

5. A large deviation principle for the lazy random walk on a regular tree. In this
section we establish a large deviation principle for the lazy random walk on a regular tree.
The starting result is due to Lalley [7], which we quote from the writeup in Woess’s book
[10, 19.4], but we need to add some additional math to be able to apply it.

Let Td be the d-regular tree. Choose a root o ∈ Td and let Xn be the lazy random walk
starting at o. The probability of passing to each neighbor is 1/2d and we do not move with
probability 1/2. Let x be a vertex of Td. We have the following estimate.

THEOREM 5.1. [10, 19.4] There is an analytic function ϕ : [0,1]→R such that

P[Xn = x]∼B(d(o,x)/n)(1 +
d− 2

2
d(x, o))n−3/2enϕ(d(x,o)/n),

where B : [0,1]→ R is an analytic function, positive on (0,1). Here the sign ∼ means that
the ratio is asymptotically contained between two positive constants. This estimate holds
uniformly in [ε,1− ε] for any ε > 0.

We have ϕ(0) = log
(
1
2 +

√
d−1
d

)
,ϕ(1) = − log(2d). Put I(t) = ϕ(t) + t log(d− 1) for

t ∈ [0,1]. Since the distribution of Xn is spherically symmetric, we have P(d(Xn, o) =
d(x, o)) = d(d − 1)d(x,o)P(Xn = x). The result of Lalley implies the following large de-
viations estimate.

COROLLARY 5.2. Let a, b ∈ [0,1], a < b. Then

lim
n→∞

1

n
logP(an≤ d(o,Xn)≤ bn) = max

t∈[a,b]
I(t).

We will refer to I(t) as the rate function (Figure 1). It is analytic and non-positive on [0,1].

LEMMA 5.3. The function I is strictly concave, and the right derivative of I at 0 satisfies
I ′(0) = 1

2 log(d− 1).
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Fig 1: Rate function for d= 5

PROOF. For d ∈N, set

r =

(
1

2
+

√
d− 1

d

)−1
, s=

(
1

2
−
√
d− 1

d

)−1
and define

F : [0, r]→R

by

F (x) =
d

(d− 1)x

((
1− 1

2
x

)
−
√

(1− x/r)(1− x/s)
)
.

The function ϕ : [0,1]→R in Theorem 5.1 is given by [10, 19.3]

ϕ(t) =min{t log(F (x))− log(x) : 0≤ x≤ r}.

Set ψ : [0,1]→R, x : [0,1]→R by

ψ(t) =
√
d2t2 + 4(d− 1)(1− t2),

x(t) =
2d

(d− 2)2
(d−ψ(t)).

Then by [10, 19.3], we have that the minimum defining ϕ is achieved at x(t). Note that for
t ∈ (0,1), we have that x(t) ∈ (0, r), moreover x(0) = r,x(1) = 0. Since x(t) ∈ (0, r) for all
t ∈ (0,1) we have that

0 =
d

dx
(t logF (x)− log(x))

∣∣
x=x(t)

= t
F ′(x(t))

F (x(t))
− 1

x(t)
for all t ∈ (0,1).
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Thus

(5.1) ϕ′(t) = log(F (x(t))) + t
F ′(x(t))

F (x(t))
x′(t)− x′(t)

x(t)
= logF (x(t)) for all t ∈ (0,1).

Thus the right derivative of ϕ at 0 is given by:

lim
t→0

ϕ′(t) = log(F (x(0))) = log(F (r)) = log

(
d

(d− 1)r

(
1− 1

2
r

))
=log

(
d

d− 1

(
1

r
− 1

2

))
= log

(
1√
d− 1

)
.

Hence, the right derivative of ϕ at 0 is −1
2 log(d − 1). We proceed to compute the second

derivative of ϕ. Using (5.1), we have:

ϕ′′(t) =
F ′(x(t))

F (x(t))
x′(t) =

x′(t)

tx(t)
=− 2d

(d− 2)2
ψ′(t)

tx(t)
for all t ∈ (0,1).

Since x(t) > 0 for all t ∈ (0,1), and ψ′(t) > 0 for all t ∈ (0,1) this shows that ϕ is strictly
concave.

6. Growth of unimodular random rooted trees. In this section we prove our main
Theorem A, using all the results before. Since we already have working notation for the
upper and lower growth, we restate Theorem A using those.

THEOREM 6.1. Let (T, o) be a unimodular random rooted tree of degree at most d with
gr(T)>

√
d− 1. Then gr(T) = gr(T).

PROOF. Let (T, o) be a unimodular random rooted tree of degree at most d such that
gr(T)>

√
d− 1. Let (T′, o′) be the spine of (T, o). By Theorem 4.1 we have gr(T) = gr(T′)

and the inequality gr(T′) ≤ gr(T) is clear. Therefore, it is enough to prove existence of the
growth for the spine. We can assume from now on that (T, o) has no leaves. We will use the
following result of Benjamini, Lyons and Schramm:

THEOREM 6.2 ([4, 4.2]). There exists an invariant edge percolation E on the d-regular
tree Td such that the law of T is given by the connected component of the root.

Note that if T is an ergodic unimodular random rooted graph then the percolation E has
indistinguishable clusters, by definition. Theorem 6.1 will be deduced from the existence
of the exponent ρE, measuring the decay of the return probability to clusters of E. This
deduction is non-trivial and requires careful examination on how the decay of ρE depends on
the growth of |ST(o, r)|. We will show that in the range where |ST(o, r)| grows at least as fast
as (d− 1)r/2 the two quantities determine each other. In that regime, the rate of exponential
decay of return probabilities pE2n = P(X2n ∈ E) determines the linear growth of the numbers
αn := − log |ST(o,n)|

d(d−1)n−1 which is proved using analytic properties of the rate function I and
the Lipschitz property of αn. The growth gr(T) can be then read off from the linear growth
of the sequence αn

We will need several preliminary lemmas that will be used to show that αn exhibits linear
growth. They are abstract and independent of our setup.
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Fig 2: Sequence (r,αr) and the set U .

LEMMA 6.3. Let (αn)n∈N be a sequence of real numbers such that |αn+1−αn| ≤C for
some constant C . Define the set

C :=
⋂

m→∞

⋃
n≥m
{(r/n,αr/n) ∈R2 | r ∈N}.

Then C is the closed cone given by

C= {(x, y)|x ∈ [0,∞), x lim inf
n→∞

αn
n
≤ y ≤ x limsup

n→∞

αn
n
}.

In particular, the limit limn→∞
αn
n exists if and only if C is a half line.

PROOF. It is clear that C is contained in the cone

{(x, y)|x ∈ [0,∞), x lim inf
n→∞

αn
n
≤ y ≤ x limsup

n→∞

αn
n
}.

We sketch the proof of the reverse inclusion. Let α− := lim infn→∞
αn
n and α+ :=

limsupn→∞
αn
n . Let x ∈ [0,+∞) and y ∈ [α−x,α+x]. For the sake of contradiction, sup-

pose that (x, y) 6∈ C. Since C is closed, there is an ε > 0 such that BR2((x, y), ε)∩C=∅. By
definition of C, this means that there is an m0 ∈N such that (r,αr) 6∈

⋃
n≥m0

nBR2((x, y), ε)
for all r ∈ N. Write U :=

⋃
n≥m0

nBR2((x, y), ε). As it can be seen on Figure 2, for large
r the set U becomes too thick for the sequence (r,αr) to cross from one side to the other.
This is a contradiction, because the sequence must approach the lines y = α−x and y = α+x
infinitely often.

LEMMA 6.4. Let (αn)n∈N be a sequence of real numbers and let F : [0,1]→ R be a
strictly concave continuous function, right differentiable at 0. Suppose that

1. lim infn→∞
αn
n <F ′(0),

2. |αn+1 − αn| ≤C for some constant C ,
3. the limit ` := limn→∞maxr=0,...,n

(
F
(
r
n

)
− αr

n

)
exists.

Then, the limit limn→∞
αn
n exists.
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(a) Sets D and C (b) Set Vδ

Fig 3

PROOF. Let

C=
⋂

m→∞

⋃
n≥m
{(r/n,αr/n)|r ∈N}.

Let α− := lim infr→∞
αr
r , α+ := limsupr→∞

αr
r . By Lemma 6.3, C is the closed cone

bounded by the half lines y = α−x,x ≥ 0 and y = α+x,x ≥ 0. Let D := {(x, y)|x ∈
[0,1], y ≤ F (x)− `} and put D− := {(x, y)|x ∈ [0,1], y < F (x)− `}. Both are convex and
D is closed.Let t ∈ [0,1].

We claim the third condition of the lemma implies that C ∩D− =∅. Indeed, let (x, y) ∈
C ∩D−. Put ε := F (x) − ` − y > 0. Since (x, y) ∈ C, there is a sequence rm ≤ nm, with
nm→∞, such that rm/nm→ x,αrm/nm→ y. For m large enough we have

` <F

(
rm
nm

)
− αrm
nm
− ε

2
.

But

`= lim
n→∞

max
r=0,...,n

(
F
( r
n

)
− αr

n

)
>F

(
rm
nm

)
− αrm
nm
− ε

2
,

for m large enough. This is a contradiction so C∩D− =∅.
The third point also implies that there exists a sequence (nm)m∈N, rm ∈ {0, . . . , nm}

such that limm→∞

(
F
(
rm
nm

)
− αrm

nm

)
= `. Passing to a sub-sequence we can assume that

limm→∞( rmnm ,
αrm
nm

) = (x0, y0). Condition 1 and the fact that C ∩ D− = ∅, guarantee that
(x0, y0) 6= (0,0). By construction, (x0, y0) ∈ C ∩D so we deduce that C ∩D 6= ∅. By the
strict concavity of F (t), the intersection C∩D is a single point p= (x0, y0) lying on the line
y = α−x (see Figure 3a).

Let δ, ε > 0. Define Wε = {(x, y) ∈ C|y − F (x) + `≤ ε}. By the strict concavity of F (t)
we can choose ε small enough so that Wε ⊂ BR2(p, δ). Note that for every point (x, y) ∈
C \Wε we have F (x)− y ≤ `− ε. Hence, by the condition (3), there exists an n0 ∈ N such
that for all n > n0 there is an rn ∈N such that ( rnn ,

αrn
n ) ∈Wε ⊂BR2(p, δ). Let

Vδ :=
⋃

(x1,y1)∈BR2 (p,δ)

{(x, y) ∈ C||y− y1| ≤C|x− x1|}

(see Figure 3b). By the condition (2), all the points ( rn ,
αr
n ), n≥ n0 are contained in Vδ . Let

Uδ :=
⋂
n≥n0

nVδ,
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Fig 4: Set Uδ

(see Figure 4). From the preceding discussion we know that (r,αr) ∈ Uδ for every r ∈ N.
Simple computation shows that this forces an inequality limsupr→∞

αr
r ≤ α− + O(Cδ).

Taking ε, δ→ 0 we get limsupr→∞
αr
r = lim infr→∞

αr
r .

Let Xn be the lazy random walk on Td. Using notation from Section 3 and Theorem 6.2
we have

pEn(o) = P(Xn ∈ T).

Let an := |ST(o,n)|
d(d−1)n−1 for n ≥ 1 and a0 := 1. Using the spherical symmetry of Xn we can

rewrite the last identity as

pEn(o) =

n∑
r=0

P(d(Xn, o) = r)ar.

By Theorem 3.1

lim
n→∞

(
n∑
r=0

P(d(Xn, o) = r)ar

)1/n

= ρE.

This is where the link between growth and the return exponent enters the picture. The number
of terms in the sum is sub-exponential in n, so we get

logρE = lim
n→∞

max
r=0,...,n

(
1

n
logP(d(Xn, o) = r) +

1

n
logar

)
(6.1)

= lim
n→∞

max
r=0,...,n

(
I
( r
n

)
+

logar
n

)
.(6.2)

For the second line one can divide {1, . . . , n} into segments of length ∼ εn, use Corollary
5.2, the Lipschitz property of αn and let ε→ 0. To prove that the growth gr(T) exists, we need
to show that limn→∞

1
n logan exists. We note that the sequence an satisfies the inequalities:

(6.3) an+1 ≤ an for n≥ 1 and an+1 ≥
an
d− 1

.

The second inequality is in fact the only way we use the fact that T has no leaves.
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Let αn :=− logan. We would like to use Lemma 6.4 to show that limn→∞
− logan

n exists.
By Lemma 5.3, I ′(0) = 1

2 log(d− 1). The assumption gr(T)>
√
d− 1 yields

lim inf
n→∞

αn
n
<

1

2
log(d− 1),

so the condition (1) of Lemma 6.4 is satisfied. The estimate (6.3) and the identity (6.1)-
(6.2) imply that the sequence (αn)n∈N satisfies also the conditions (2),(3) of Lemma 6.4.
Upon applying the lemma we find that limn→∞

αn
n exists. The existence of the growth gr(T)

follows.

As a corollary, we obtain an analogue of the celebrated Cohen-Grigorchuk co-growth for-
mula [5, 6] for unimodular random rooted trees.

COROLLARY 6.5. Let T,E be as in Theorem 6.2. Let γ := gr(T). Then

ρE =

{√
d−1
d

(
eγ√
d−1 +

√
d−1
eγ

)
if γ ≥ 1

2 log(d− 1)

2
√
d−1
d otherwise.

.

PROOF. We can read the exponent ρE from the formula (6.2). It will depend only on
the asymptotic growth of the sequence logar . To get the formula one has now to repeat
the computation proving [5, Theorem 3] where γi’s in Cohen’s paper are replaced by our
|ST(o, i)|= aid(d− 1)i−1, 2t is our degree d, Cohen’s ai,n is our dnP(d(Xn, o) = i) and the
quantity ‖a‖ being defined by [5, (3.3)] is then dρE.

7. Questions and further directions. As we stated in the Introduction, Question 1 is in
fact two separate questions packed together. The first is the same question, but we add the
assumption that the tree equals its own spine.

QUESTION 2. Let (T, o) be a unimodular random rooted tree with bounded degree, with
no leafs and with infinitely many ends a.s. Is it true that the growth of (T, o) exists?

The second asks whether passing to the spine can change having a growth or change the
value of the growth. Currently we only prove this assuming the lower bound on the upper
growth.

QUESTION 3. Let (T, o) be a unimodular random rooted tree with bounded degree and
with infinitely many ends a.s. Assume that the growth of the spine of (T, o) exists. Does the
growth of (T, o) exist and is it equal to the growth of the spine?

In other terms, if we take such a unimodular random rooted tree without leaves, can we
decorate it in a unimodular way with finite trees hanging down of finite expected size, that
changes either having growth, or the value of the growth?

These two questions, if answered right, will formally prove Question 1 and we feel that
they are of fundamentally different nature so it makes sense to separate then.

It is natural to ask whether in our main theorem on the existence of growth, one can
drop the assumption that (T, o) is a tree. In particular, is there a similar result for arbitrary
unimodular random rooted graphs? We expect that the answer is negative but were unable to
produce counterexamples.
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