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In this paper, we study large time large deviations for the height function
h(x, t) of the q-deformed polynuclear growth introduced in [1]. We show that
the upper-tail deviations have speed t and derive an explicit formula for the
rate function Φ+(µ). On the other hand, we show that the lower-tail devi-
ations have speed t2 and express the corresponding rate function Φ−(µ) in
terms of a variational problem.

Our analysis relies on distributional identities between the height func-
tion h and two important measures on the set of integer partitions: the Pois-
sonized Plancherel measure and the cylindric Plancherel measure. Following
a scheme developed in [31] we analyze a Fredholm determinant represen-
tation for the q-Laplace transform of h(x, t), from which we extract exact
Lyapunov exponents and through inversion the upper-tail rate function Φ+.
The proof of the lower-tail Large Deviation Principle is more subtle and re-
quires several novel ideas which combine classical asymptotic results for the
Plancherel measure and log-concavity properties of Schur polynomials. The
techniques we develop to characterize the lower-tail are rather flexible and
have the potential to generalize to other solvable growth models.

CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 q-Deformed Polynuclear Growth and other solvable models . . . . . . . . . . . . . 11
3 Upper-Tail LDP for q-PNG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4 Lower-Tail LDP for q-PNG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5 Further approaches to the lower-tail . . . . . . . . . . . . . . . . . . . . . . . . . 54
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Funding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Supplementary Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

1. Introduction.

1.1. The Model and Main Results. In this paper, we consider the q-Deformed Polynu-
clear Growth, or q-PNG in short, which is a growth process introduced rather recently [1].
The q-PNG is a solvable one-parameter deformation of the more well-studied Polynuclear
Growth model (PNG), famously analyzed by Prähofer and Spohn [87] to characterize uni-
versal processes of growing interfaces (i.e. the Airy2 process) and also more recently by
Mateski-Quastel-Remenik [77] for its connection to integrable systems. The literature on the
PNG is somewhat broad, given its well understood connections with Ulam’s problem, deter-
minantal point processes, free fermions, Bethe Ansatz, and last passage percolation to name
a few (see [47, 3, 99, 100, 5, 57, 40, 88, 96, 52, 33, 59, 60]). On the other hand, the solv-
ability structures of the q-deformation of the PNG we consider here are only recently starting
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FIG 1. Illustration of the dynamics of the q-PNG. The solid line denotes the height profile at a time t, while the
dotted broken line denotes the height functions at a slightly later time t′. Thin vertical lines denote nucleations
that took place in the time interval (t, t′).

to emerge: this paper makes advancements in this direction, while in parallel establishing its
probabilistic properties.

1.1.1. The model. In the q-PNG the height function h(x, t) is a piecewise constant func-
tion taking integer values and with jump discontinuities of unit size. Such height function
can be seen as the profile created stacking on top of each other islands one unit size thick.
As time moves forward, islands expand laterally at a constant speed, which we assume to be
unitary. This lateral expansion might lead two islands to collide: in this situation, the two col-
liding islands merge and with probability q ∈ (0,1), on top of the contact point a new island
of infinitesimal width gets created. Moreover, new islands of infinitesimal width randomly
appear on the surface and these additional “nucleation" events follow a Poisson point process
in space and time of intensity Λ> 0. A snapshot of the evolution of the height function h is
given in Figure 1. A special choice of the initial condition, which is the one we focus on in
this paper, is given setting

h(x, t= 0) =

{
0 if x= 0,

−∞ if x ̸= 0.

This is referred to as droplet initial condition.
In place of this rather informal description of the process, we take a different perspective

and draw in the (x, t) plane the trajectories of up and down unit jumps of the height h.

DEFINITION 1.1. Consider the half plane R × R+ and on the cone C = {(x, t) : |x| ≤
t} sample a Poisson process P = {(xi, ti)}i≥0 of intensity Λ > 0. From every point p ∈
P emanates two rays, one directed north-eastward and the other directed north-westward
respectively with angles 45◦ and 135◦. Whenever two rays emanating from different vertices
intersect, with probability 1−q they terminate at the intersection point, and with probability q
they cross each other and continue along their trajectory. To any point (x, t) ∈ C we associate
the height h(x, t) as the number of rays that intersect with a straight segment from (x, t)
to (0,0). By agreement we set h(x, t) = −∞ if (x, t) /∈ C. This procedure is depicted in
Figure 2.

1.1.2. Main results. Recently several properties of the q-PNG with droplet initial con-
dition have been established. In the original paper [1], Aggarwal, Borodin, and Wheeler
characterized the large time fluctuations of the height around the expected value, which obey
the Tracy-Widom GUE law [107] as

(1.1) lim
t2−x2→+∞

P

(
h(x, t)− vΛ,q (t2 − x2)1/2

σΛ,q (t2 − x2)1/6
≤ s

)
= FGUE(s),

for vΛ,q =Λ/(1− q) and σΛ,q = 3
√

Λ/2(1− q). In [1], the authors also showed that, under a
proper scaling in space and time, the height function h converges, as q→ 1, to the solution of
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FIG 2. Above we see a snapshot of the height h(x, t) of the q-PNG. Below we see a representation in space-time
coordinates of a possible evolution leading to the profile h.

the KPZ equation [62] in the sense of 1-point distribution. Later, Drillick and Lin [36] proved
a strong law of large numbers for h by constructing a colored version of the model1.

In this paper, we consider another important question, from the probabilistic standpoint,
which is that of characterizing the probability of rare events for the growth of the height
function. While restricting ourselves to the particular case of droplet initial condition, we
focus on two particular, although very natural, questions: determining the decay of large
deviation events where the height function assumes values, larger or smaller (of order t)
respectively, than those prescribed by the law of large numbers. Intuitively, upper- and lower-
tail events should possess different decay rates. In fact, for the height h(x, t) function to
assume values larger than the expected value it is sufficient to require that nucleation events
at location x take place at an unusually high rate along the time window [0, t]: this suggests
that P(h(x, t) > (vΛ,q + ξ)t) = e−O(t). On the other hand for the height function h(x, t) to
assume values smaller, of order t, than the expected value, we need to require that through
the entire backward light cone {(y, s) : |x− y| < t− s} nucleations have taken place with
unusually slow rate, suggesting that P(h(x, t)< (vΛ,q−ξ)t) = e−O(t2), where t2 signifies the
area of the backward light cone. The following theorems confirm these qualitative heuristics,
quantifying explicitly the decay rate functions.

For convenience, we shall work with intensity Λ= 2(1− q) so that the law of large num-
bers vΛ,q = 2. In this case, upper tail will correspond to {h(0, t) ≥ µt} events for µ ≥ 2,
whereas lower tail will correspond to {h(0, t)≤ µt} events for µ ∈ [0,2].

THEOREM 1.2 (Upper-tail Large Deviation Principle). Let h be the height function of the
q-PNG with intensity Λ= 2(1− q) and droplet initial condition. Then, for µ≥ 2 we have

(1.2) − lim
t→∞

1

t
logP(h(0, t)≥ µt) = Φ+(µ),

1Both in [1] and [36] authors denote the deformation parameter by t, while we use the letter q.
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where the rate function is

(1.3) Φ+(µ) = 2µarccosh(µ/2)− 2
√
µ2 − 4.

THEOREM 1.3 (Lower-tail Large Deviation Principle). Let h be the height function of
the q-PNG with intensity Λ= 2(1− q) and droplet initial condition. Then, for µ ∈ [0,2], we
have

(1.4) − lim
t→∞

1

t2
logP (h(0, t)≤ µt) = Φ−(µ),

where the rate function Φ− : R→ R ∪ {+∞} is a decreasing, convex, continuous on [0,∞)
function with Φ−(µ) = +∞ for µ < 0, Φ−(0) = 1− q, and Φ−(µ) = 0 for µ≥ 2. Further-
more, it possesses the following expression,

(1.5) Φ−(µ) = sup
y∈R

{
F(y)− log q−1

2
(µ− y)2

}
.

where the function F is described in Section 1.1.3.

REMARK 1.4. Few remarks related to the above theorems are in order.

1. The intensity Λ of the q-PNG is assumed to be 2(1 − q) for convenience. Under this
intensity, we have the law of large numbers limt→∞ h(0, t)/t= 2, which is free of q. The
Large Deviation Principle (LDP) for the general intensity case can be obtained with minor
modifications in our arguments.

2. In Corollary 2.6, we show that for each t > |x| > 0, we have the following equality in
distribution (in the sense of one-point marginals):

h(x, t)
d
= h(0,

√
t2 − x2).

This allows us to derive LDPs for the height function of a q-PNG model at a general
location from our main theorems.

3. Note that the upper-tail rate function Φ+ is free of q, and in fact, matches with the upper-
tail rate function for the (q = 0) PNG model obtained in [100]. This matching of the
upper-tail rate function of a non-determinantal model with its determinantal counterpart
was observed in the context of the KPZ equation [31] and ASEP [32] as well. A geometric
explanation for this matching can be given using the theory of Gibbsian line ensembles.
We refer to the recent work of Ganguly and Hegde [42] where this line ensemble approach
was carried out successfully in obtaining sharp estimates on the upper-tail of the KPZ
equation and other general models under certain assumptions. The lower-tail rate function,
however, depends on the q parameter (see Section 1.1.3).

1.1.3. Description of F . The explicit characterization of the function F requires the
introduction of several objects. Throughout the paper, we will use the notation

(1.6) ηq := log q−1.

We will call h : R→ R to be K-Lipschitz if |h(x)− h(y)| ≤K|x− y| for all x, y ∈ R. We
define the set

(1.7)
Y1 := {h : R→ R+ : h is 2-Lipschitz, non-decreasing in R−,

decreasing on R+ and ∥h∥L1 = 1}
and the functional

(1.8) W(q)(κ,h;x) := 1+ κ logκ+ κJηq
(h;x/

√
κ), for κ > 0, h ∈ Y1, x ∈ R,
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FIG 3. Connections between models

where

Jη(h;y) :=−
1

2
+ η

[−y]2+
2

+
1

2
∥ϕVKLS − h∥21

+ 2

∫
R
h(ξ)

(
1[

√
2,+∞)(|ξ|)arccosh

∣∣∣∣ ξ√2
∣∣∣∣+ η

2
1[ y√

2
,+∞)(ξ)

)
dξ.

(1.9)

Above the norm ∥ · ∥1 is the Sobolev H1/2 norm defined in Equation (4.5), the function
ϕVKLS ∈ Y1 is the Vershik-Kerov-Logan-Shepp optimal shape, explicitly given in Equa-
tion (4.4) and [a]+ := max{a,0}. We also define the minimizer of the functional W(q) for
any fixed x as

(1.10) F(x) := inf
κ>0

inf
h∈Y1

W(q)(κ,h;x).

The following theorem describes some of the main properties of F we prove in this paper.

THEOREM 1.5. Fix q ∈ (0,1). The function F(x) is decreasing, non-negative, convex,
and continuously differentiable with derivative F ′(x) being ηq-Lipschitz. Moreover, there
exists xq ∈ R such that

(1.11) F(x) = (1− q) + ηq
x2

2 for all x≤ xq.

Furthermore, we have

(1.12) F(x) = inf
y∈R

{
Φ−(y) +

ηq
2
(x− y)2

}
.

REMARK 1.6. The functionalW(q) has an alternative representation reported in (5.12).

REMARK 1.7. The function F is the Moreau envelope of the lower-tail rate function Φ−
with parameter 1/ηq . The Moreau envelope of a function f with parameter λ is defined as the
infimal convolution of f with x2

2λ [82]. It has applications in convex and variational analysis
(see [4, 92]) and can be understood as a general mechanism to smoothen convex functions.

REMARK 1.8. The functionF is, in fact, the lower tail rate function for the q-PNG height
function with a random shift; see (1.19). For this reason, we will often refer to F as a lower-
tail rate function as well. In Section 5.1 we conjecture an explicit formula for the function F ,
given in terms of a solution of a certain non-linear differential equation.

1.2. Proof Ideas. We now describe the key ideas behind the proofs of our main theorems.

1.2.1. Connections between different solvable models. Our proof is facilitated by the
connections between q-PNG and two important measures on the set of integer partitions: the
Poissonized Plancherel measure and the cylindric Plancherel measure.

We observe that the height function h after a random shift by χ, a q-geometric random
variable (see (2.1)), is equal in distribution to the largest row of a random partition dis-
tributed according to a cylindric Plancherel measure. This distributional identity is proven
in Theorem 2.5 and essentially comes from a more general result established first in [49].
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The cylindric Plancherel measure and the more general Periodic Schur measure were in-
troduced in the seminal paper by Borodin [11]. A remarkable property of these measures, as
observed by Borodin, is that upon a random shift by Sζ , a Theta(q, ζ)-distributed random
variable (see (2.25)), they become determinantal point processes (Figure 3). The explicit cor-
relation kernel K (defined in (2.26)) for the Sζ -shifted cylindric Plancherel measure allows
us to derive Fredholm determinant formulas for the one-point probability distribution of the
height function h after the combined (χ+ Sζ)-shift:

(1.13)
P(h(0, t) + χ+ Sζ ≤ s) = PcPlan(t(1−q))(λ1 + Sζ ≤ s)

= det
(
1−Kζ,t(1−q)

)
ℓ2(s+ 1

2
,s+ 3

2
,... )

.

On the other hand, the one-point probability distribution of (χ+Sζ)-shift of the height func-
tion h is also equal to the expectation of a certain multiplicative functional of the Poissonized
Plancherel measure, derived in [1] as a special case of a more general result by Borodin [13]
and also follows from the results in [51] (see Theorem 2.12). This leads to a second formula
for the probability distribution of (χ+ Sζ)-shifted height function h:

(1.14) P(h(0, t)+χ+Sζ ≤ s) = PcPlan(t(1−q))(λ1+Sζ ≤ s) = EPlan(t)

[∏
i≥1

1

1 + ζqs+i−λi

]
.

These formulas form the starting point of our analysis towards LDP results for q-PNG.

1.2.2. Upper-Tail. In this subsection, we present a brief sketch of the proof for the upper-
tail. The main component of our proof is the Fredholm determinant formula from (1.13).
Recall that a Fredholm determinant can be defined as a series:

det(I −Kζ,t(1−q)) = 1− tr(Kζ,t(1−q)) +

∞∑
L=2

(−1)L tr(K∧L
ζ,t(1−q)),(1.15)

where the notation K∧L
ζ,t(1−q) comes from the exterior algebra definition (see Section 3.4). We

shall collectively call the L ≥ 2 series as “higher-order term”. In the upper-tail regime, we
expect the Fredholm determinant to behave perturbatively, i.e., leading order of 1− det(I −
Kζ,t(1−q)) is given by the trace term tr(Kζ,t(1−q)). Indeed, direct analysis of the trace yields

− lim
t→∞

1

t
logP(h(0, t)+χ+Sζ ≥ µt) = Ψ+(µ) :=

Φ+(µ) µ ∈ [2, q
1

2 + q−
1

2 ]

µηq + 2q−
1

2 − 2q
1

2 µ ∈ [q
1

2 + q−
1

2 ,∞)

where Φ+ is defined in (1.3). However, it is not straightforward to extract the upper-tail rate
function from the above result. From the precise tail behavior of χ+Sζ (notice that χ has an
exponential right tail and no left tail, while Sζ has Gaussian left and right tails), the previous
limit suggests that, assuming that the upper-tail rate function Φ̃+ of h exists, Φ̃+ can be found
as a solution of the relation

(1.16) Ψ+(µ) = inf
p∈R

{
Φ̃+(µ− p) +L(p)

}
,

where L(p) := max{p,0} · ηq . By [17, p.57], taking Legendre transform of both sides we
find that Ψ∗

+ = Φ̃∗
+ + L∗. Since Ψ+ and L are linear with slope ηq after a certain point,

we have Ψ∗
+(x) = L∗(x) =∞ for all x > ηq . Thus for all x > ηq , any Φ̃∗

+(x) ∈ (−∞,∞]

satisfies Ψ∗
+(x) = Φ̃∗

+(x)+L∗(x). This indicates that the above deconvolution problem does
not have a unique solution. Indeed, there are infinitely many proper convex closed functions
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including Φ+ defined in (1.3) that all satisfy the above deconvolution problem. This suggests
that direct analysis of the Fredholm determinant would not produce the exact rate function.

To bypass the above problem, we utilize the Fredholm determinant in a different way
following the strategy of [31, 32]. First, using the explicit distribution formula for χ+Sζ , one
can check that P(h(0, t)+χ+Sζ/√q ≤ 0) is equal to a certain q-Laplace transform of h(0, t),
defined as E[Fq(ζq−h(0,t))] where Fq(ζ) :=

∏
k≥0(1+ζq

k)−1. This q-Laplace transform may
then be inverted in the following way to extract a formula for the moment-generating function
of h(0, t).

(1.17) E[eph(0,t)] =
(−1)n

∫∞
0 ζ−α dn

dζn E[Fq(ζq−h(0,t))] dζ

(−1)n
∫∞
0 ζ−αF

(n)
q (ζ)dζ

, for p > 0,

where n := ⌊pηq⌋+ 1, and α := pηq − ⌊pηq⌋. The (−1)n factor above ensures both the nu-
merator and the denominator are positive. The above formula follows via Fubini’s theorem
and properties of Fq [32, Lemma 1.8, Proposition 2.2]. Armed with the Fredholm determi-
nant formula from (1.13), we utilize the above relation to compute an exact expression for
p-th Lyapunov exponent for h(0, t), which is the limit of logE[eph(0,t)] scaled by t:

lim
t→∞

1

t
logE

[
eph(0,t)

]
= 4sinh(p/2).(1.18)

The upper-tail rate function can then be computed from the Lyapunov exponent by a standard
Legendre-Fenchel transform technique.

Let us now mention briefly how we derive (1.18) from (1.17). We focus on the right-
hand side of (1.17). The denominator does not depend on t and vanishes in the −1

t log limit.
For the numerator, we wish to plug in the Fredholm determinant formula from (1.15) (with
ζ 7→ ζ/

√
q) and analyze the derivatives of the Fredholm determinant series. However, direct

analysis of these derivatives is still quite delicate as the derivatives of the higher-order term
(which also has a similar series representation) have an oscillatory behavior for large values
of ζ . To circumvent this issue, we first split the range of integral in the numerator into two
parts: [0, τ ] and [τ,∞) based on a carefully chosen τ (see (3.5)). Using the decay properties
of Fq and the precise value of τ , the integral on the range [τ,∞) can easily be shown to be
subdominant. For the [0, τ ] range integral, we now feed in the Fredholm determinant formula
and write the integral as a sum of the following two terms:

(−1)n+1

∫ τ

0
ζ−α dn

dζn
tr(Kζ/

√
q,t(1−q))dζ, (−1)n

∫ τ

0
ζ−α dn

dζn

∞∑
L=2

(−1)L tr(K∧L
ζ/

√
q,t(1−q))dζ.

Relying on the explicit expression of the kernel which involves Bessel functions, we develop
precise estimates for the traces of the kernel and its derivatives in Section 3. This allows us
to show that the first term above yields the correct Lyapunov exponent whereas the second
term is subdominant.

1.2.3. Lower-Tail. For the characterization of lower-tail probabilities, rather than the ex-
plicit Fredholm determinant expression for the law of the height h, we use its connections
with Poissonized Plancherel and cylindric Plancherel measures. We start with analyzing the
multiplicative functional formula from (1.14). The fact that it is worthwhile to probe into
multiplicative functional formulas to derive lower-tail asymptotics for KPZ models was first
noted by Corwin and Ghosal [24], who obtained sharp lower-tail estimates for the KPZ equa-
tion. But, as we will see below, in our case, the analysis of the right-hand side of (1.14) alone
only gives us partial information. For a complete characterization of the lower-tail LDP, we
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will need new ideas based on the distributional equality between the law of the height h and
the first row of the cylindric Plancherel measure.

Utilizing the precise form of the functional in (1.14) and leveraging regularity properties
of the Poissonized Plancherel measure allow us to to establish the Large Deviation Principle

(1.19) − lim
t→+∞

1
t2 logP(h(0, t) + χ+ S1 ≤ xt) =F(x),

where F(x) is defined in (1.10). Observing the structure of the functional W(q) defined in
(1.8) we see that the q-dependent term ηq

2 [−y]
2
+ + ηq

∫ +∞
y/

√
2
h(ξ)dξ originates from the limit

of the product
∏

i≥1(1 + qs+i−λi)−1 appearing in the right-hand side of (1.14), while the
remaining terms come from a Poissonization of the Vershik-Kerov limit of the Plancherel
measure [109]. From the precise tail behavior of χ+ S1, the previous limit suggests that, (a)
assuming that the lower-tail rate function Φ̃− of h exists, Φ̃− can be found as a solution of

(1.20) F(x) =min
y∈R

{
Φ̃−(x− y) + ηq

y2

2

}
.

Unlike the case of the upper-tail discussed around (1.16), because of the presence of the
quadratic term ηqy

2/2, the problem (1.20), admits a unique solution, (b) assuming that F ,
Φ̃− are proper convex and closed. The solution then is expressed [48] as

Φ̃−(µ) = (F∗ − g∗)∗(µ) = sup
y∈R

{
F(y)− ηq

2
(µ− y)2

}
.

Here, again, the superscript ∗ denotes the Legendre transform.
To rigorously support the aforementioned argument, it is necessary to establish the two

assumptions (a) and (b) made earlier. This is where we rely on several innovative ideas origi-
nating from the asymptotic results for the Poissonized Plancherel measure and log-concavity
properties of Schur polynomials. We first look for regularity properties of the rate function
F . These regularity properties will allow us to first identify uniquely the function Φ̃− and
further to prove that the lower-tail large deviation function for h exists and it is given by Φ̃−.
To this end, we find the distributional equality between the height function h and the cylindric
Plancherel measure to be crucial. In fact, using log-concavity properties of the (skew) Schur
polynomials proved by Lam-Postnikov-Pylyavyskyy [66] we are able to conclude, through a
Laplace principle-type argument, that both F and (any possible) Φ̃− are necessarily convex.
The final important ingredient to the proof of Theorem 1.5 and hence of Theorem 1.3 is the
explicit characterization of the function F(x) as x→−∞. The parabolic behavior (1.11) of
the function F(x) for x negative sufficiently large follows from an exact minimization of the
functional W(q), owing to classical results of Vershik-Kerov [109, 110], Logan-Shepp [74]
along with further non-trivial inequalities we establish. Interestingly, this explicit knowledge
of F for large negative x can be leveraged to extract uniform equicontinuity bounds of the
pre-limit lower-tail probabilities for the height function h; see Proposition 4.16. Then, a com-
pactness argument, in the style of Arzelá-Ascoli theorem, allows us to conclude that the limit
in the left-hand side of (1.4) exists and hence, by its convexity and Lipschitz properties, is
equal to the infimal deconvolution between the function F and a parabola, as in (1.5).

One of the key novelties of this paper is the deconvolution scheme that we propose to
establish lower tail Large Deviation Principle. In our forthcoming work [30] we adapt this
scheme to the stochastic six vertex model and we envision them to be adaptable to ASEP as
well, where similar algebraic structures are present. The fact that the functionF is the Moreau
envelope of a convex, closed function, i.e. Φ− implies, thanks to results from convex analysis
[4], that F is also continuously differentiable. This is remarkable because only little explicit
knowledge of the function F is required to establish this sort of regularity. In the presence
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of further regularity of Φ−, namely it being C2, we could find an explicit expression for F
(which would become C2 in a half line [µq,+∞), from properties of the Moreau envelope),
which would follow from solving a certain highly non-linear differential equation derived
(under the assumption that F ∈C2) in Section 5.1.

1.3. Comparison with other large deviations results for growth processes. We now re-
view some of the results and available techniques to solve LDP problems for KPZ models.

1.3.1. Upper-Tail LDP literature. Zero-temperature models, such as PNG, Totally
Asymmetric Simple Exclusion Process (TASEP), and first and last passage percolation (LPP),
have sub- or super-additive structures. The existence of the upper-tail rate function in these
models can be deduced easily from a standard subadditive argument [63]. Thus, it is the
explicit form of the upper-tail rate function that is interesting in these models. For the PNG
model, i.e., q-PNG with q = 0, [100] first computed the upper-tail rate function explicitly.
Seppäläinen’s proof was based on a coupling between the superadditive process with a suit-
able particle system that admits certain known stationary initial conditions. This general cou-
pling approach to extract the upper-tail rate function was later applied in other models such
as TASEP [101], LPP with inhomogeneous exponential weights [38], LPP in the Bernoulli
environment [23], and Brownian LPP [55]. A different proof for the PNG upper-tail rate
function was given by [35] based on Young diagrams.

The LDP problem for TASEP (equivalently Exponential LPP) was also explored by Jo-
hansson in his seminal paper [56]. He related TASEP to the largest eigenvalue for the La-
guerre unitary ensemble, which is a particular example of continuous Coulomb gas that
arises in random matrix theory. Leveraging potential theory tools, Johansson developed a
comprehensive framework for obtaining upper- and lower-tail LDP results for both discrete
and continuous Coulomb gases. This framework has been successfully extended to integrable
discretizations of Coulomb gases [28]. Over the past two decades, it has been discovered that
some of the solvable models mentioned above possess determinantal structures. A direct per-
turbative analysis of the Fredholm determinants provides an alternative route to extract the
one-point upper-tail rate function in those models (see [37] for unitary invariant ensembles).
In a more recent work, [90] employed exact solvability to prove multi-point LDP for TASEP.

In the case of positive temperature models, the available techniques are limited. Nonethe-
less, in certain instances, the techniques used in zero-temperature models can be applied to
specific positive temperature models that possess a rich structure. Two such models are log-
gamma polymer [102] and O’Connell-Yor polymer [84]. Indeed, exploiting the fact that these
polymer models can be coupled with their stationary counterparts, the approach in [100] was
successfully implemented to obtain the upper-tail rate function in these models [44, 54]. The
Lyapunov exponent approach that we used here to obtain the upper-tail rate function for
q-PNG was first implemented in the context of the KPZ equation [31] with droplet initial
condition (see [71, 61] for earlier physics works, and see the rigorous work [45] for gen-
eral initial data). The scheme was also later utilized in extracting upper-tail rate functions
for half-space KPZ [72] and ASEP [32] (see [27] for earlier work on one-sided upper-tail
estimates for ASEP). Lastly, we mention the recent paper by [42] which utilizes the line en-
semble framework to address the upper-tail problem for the KPZ equation and related zero-
temperature models satisfying suitable hypotheses. In fact, their techniques also provide a
one-sided multi-point upper-tail LDP for the KPZ equation (see also [73] for a multi-point
upper-tail LDP for the KPZ equation in a different regime). Although the approach presented
in [42] shows promise for application in other solvable models, many of the inputs of their
paper have not yet been established for those models.
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1.3.2. Lower-Tail LDP literature. The explicit study of lower-tail probability for solv-
able growth processes in the KPZ class is harder, from a methodological perspective than
that of fluctuations or upper-tail large deviations. The reason for this is that explicit formu-
las such as Fredholm determinant representations for the probability distribution of the height
function have oscillatory behavior in this regime and hence are hard to analyze in this setting.

The first explicit result concerning the evaluation of the lower-tail rate function for a
growth process is found in the seminal paper by Logan and Shepp [74], where authors, us-
ing potential theoretic arguments, derived an upper bound (which easily becomes a sharp
equality [35]) for the probability law of the longest increasing subsequence of a random per-
mutation. The calculations presented in [74] (which in the paper are attributed to B.F. Logan)
can be also used to derive explicitly the lower-tail of the PNG [100], through a simple Pois-
sonization argument. Large deviations of the TASEP were proved in the seminal paper by
Johansson [56], where lower-tail were expressed in terms of a variational problem. The con-
nection between TASEP and the edge of Laguerre Unitary Ensemble offers another route to
derive the explicit lower-tail rate function borrowing results of [111] (see [76] for detailed
calculations for the case of Gaussian β-ensembles). For first passage percolation, [8] proved
a t2 speed one-sided LDP using geometric techniques.

More recently, considerable attention has been given to the characterization of rare events
for the KPZ equation. The approach of using the multiplicative functional formulas to study
lower-tail asymptotics was first done in [24] where the authors established sharp lower-tail es-
timates for the KPZ equation under the droplet initial condition. The full lower-tail LDP was
resolved in [108], proving conjectures from the physics literature [97, 25, 65]. The different
routes used in these physics works along with Tsai’s approach were later shown to be closely
related in [64]. A Riemann-Hilbert approach presented later in [19], highlights similarities
between the lower-tail problem for the KPZ equation and that of zero temperature models. A
key step to the derivation of the rate function amounts to finding a g-function (in the jargon
of the Riemann-Hilbert Problem), which solves a one-cut singular integral equation (i.e. the
support of g is connected). Besides the above methods, the physics work [70] discusses an-
other route to obtain LDP for the KPZ equation by using its connection to KP equation [89].
For the O’Connell-Yor and log-gamma polymer models, recently Landon and Sosoe [69, 68]
developed a systematic approach to obtaining lower tail estimates by combining exact for-
mulas and coupling arguments (adapted from [39]) and geometric arguments (adapted from
[43]). While their results provide the correct cubic-order exponents in the moderate deviation
regime, it is not clear how to extend them to the LDP regime.

Before our work, the lower-tail LDP problem had been successfully solved only for the
KPZ equation among the non-determinantal models. Compared to the existing literature, our
situation, from a technical standpoint, is considerably different. As defined in (1.10) the rate
function F is found through a minimization of a quadratic functional: in this case, the explicit
minimizer could be found as the solution of a multi-cut Cauchy integral equation, which
gives rise to complicated transcendental relations seemingly hard to manipulate (discussed in
Section 5.2). Without an explicit characterization of the optimizer of the functionalW(q), we
find through the use of log-concavity properties of Schur polynomials, that the function F
is strictly convex, which allows us to compute rigorously its deconvolution and to establish
Large Deviation Principle, hence avoiding to rely on explicit knowledge of F .

1.4. Further Approaches. In general the presence of a rich mathematical structure
around the study of the q-PNG invites to several alternative approaches, which we do not
pursue in this paper. We discuss approaches through connections to dimer models and
probabilistic-geometric methods from the theory of last passage percolation here. We col-
lect further directions, which include connections to potential theory and Riemann-Hilbert
method in Section 5.
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1.4.1. Approach through Morales-Pak-Tassy’s extension of the Hook integral. As ex-
plained in Section 1.2.1, we have used in our main arguments a relation between the height
function of the q-PNG and the first row of a partition taken with cylindric Plancherel law.
This correspondence opens the possibility to study large deviations for the height function h
using asymptotic formulas for fλ/ρ, the number of standard Young tableaux of skew shape
λ/ρ. In [80], authors managed to compute the asymptotic limit of the Naruse hook formula
(2.9), which expresses fλ/ρ in terms of the evaluation of a functional c(ϕλ/ρ) which is a
deformation of the hook integral (4.2). The expression of the functional c involves solving
a variational problem that arises from a connection between lozenge tilings on a hexagonal
lattice and the Naruse hook formula [79] and for this reason, it appears significantly more
involved to analyze explicitly. Variational problems associated with the asymptotic number
of standard Young tableaux have appeared in literature also in [106, 46].It would be interest-
ing to analyze these various variational problems to possibly extract further properties of the
lower-tail rate function Φ−; we leave these further approaches for future works.

1.4.2. Approach through geometric techniques from the theory of last passage percolation.
Yet another possible way of studying lower-tail behaviors of the q-PNG model is through its
connection to a cylindrical Poissonian last passage percolation. The connection between q-
PushTASEP and a model of last passage percolation in a cylindric geometry was essentially
discovered in [50, 51] and used by Corwin and Hegde to obtain bounds for the tail proba-
bilities of the height function in a q-PushTASEP in the moderate deviation regime [26]. For
a thorough description of the last passage percolation model, the reader should consult [26,
Section 1.4, 1.5]. Following the scaling limit presented in Theorem 2.3 which transforms
the q-PushTASEP into the q-PNG we can transform the last passage percolation model with
random geometric weights into a model with Poisson rates.

Although it is possible that techniques developed in [26] could adapt well to our situation
and possibly allow us to derive moderate deviation bounds for the tails of the distribution of
h, we are also positive that sharper bounds, in the style of results developed by Ganguly and
Hegde [43], could be obtained. We leave these interesting directions for future works.

Organization. The rest of the article is organized as follows. In Section 2, we describe the
connections between q-PNG and other solvable models of interest. The upper-tail LDP and
lower-tail LDP are proven in Section 3 and Section 4 respectively. In Section 5, we discuss
possible different approaches that could lead to an explicit characterization for the lower-tail
rate function.

Notation and Conventions. Throughout the paper we fix a q ∈ (0,1) and use the notation
ηq := log q−1. We use C(x, y, z, . . .) > 0 to denote a generic deterministic positive finite
constant that is dependent on the designated variables x, y, z, . . . .#A denotes the cardinality
of a finite set A.

2. q-Deformed Polynuclear Growth and other solvable models. In this section, we
show how the q-Deformed Polynuclear Growth is related to several other solvable models in
probability and algebraic combinatorics. In Section 2.1 and Section 2.2, we connect q-PNG to
q-PushTASEP and Cylindric Plancherel measures respectively. In Section 2.3, we describe a
sampling procedure for cylindric Plancherel measure which lead us to derive crucial moment
bounds for the observables in that model. Finally, in Section 2.4 we derive exact formulas
descending from the above connections. These formulas will be a central tool for our analysis
of probabilities of tail events in Sections 3 and 4.
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2.1. q-PNG as a limit of the q-PushTASEP. The scope of this subsection is to relate the
q-PNG described in the introduction with another solvable model, the q-PushTASEP [16, 78].
This connection had been predicted in [1], where the q-PNG was defined as a scaling limit of
another stochastic model.

The q-PushTASEP is a discrete-time interacting particle system whose distribution is re-
lated to the q-Whittaker measure [14]. In order to describe the model we need to define a
special probability distribution that generalizes the beta binomial law, given next. Here and
below we will make use of the notion of q-Pochhammer symbol

(z; q)n := (1− z)(1− qz) · · · (1− qn−1z),

for z ∈ C and n ∈N∪ {+∞}.

DEFINITION 2.1. The q-deformed beta binomial distribution φq,µ,ν(·|m) is given by

φq,µ,ν(k|m) = µk
(ν/µ; q)k(µ; q)m−k

(ν; q)m

(q; q)m
(q; q)k(q; q)m−k

, k ∈ {0, . . . ,m}.

By virtue of the q-Chu-Vandermonde identity [53] we have
∑m

k=1φq,µ,ν(k|m) = 1, when-
ever the sum converges. Moreover, several choices of q,µ, ν guarantee that φq,µ,ν(k|m) is
positive.

A relevant specialization of the q-deformed beta binomial distribution comes from setting
ν = 0, m=+∞. We say that a random variable Y has q-Geometric distribution of parameter
µ ∈ (0,1) if

(2.1) P(Y = k) = φq,µ,0(k|+∞)= µk
(µ; q)∞
(q; q)k

, k ∈ Z,

and in this case we write Y ∼ q-Geo(µ). We are now ready to define the q-PushTASEP.

DEFINITION 2.2. Let N ∈ N and consider locations y1 < · · · < yN with yi ∈ Z. The
N -particles q-PushTASEP is the process {xk(T ) : k = 1, . . . ,N, T = 1,2, . . .}, where

• at time T = 0, we have xk(0) = yk, for k = 1, . . . ,N ;
• at time T the k-th particle evolves as

xk(T ) = xk(T − 1) + Jk,T + Pk,T ,

where Jk,T ∼ q-Geo(a) with a > 0 and

Pk,T ∼ φq−1,qxk(T−1)−xk−1(T−1),0(·|xk−1(T )− xk−1(T − 1)).

Here we assume x0(T ) =−∞ by convention.

When yi = i for i= 1, . . . ,N we call this the q-PushTASEP with step initial condition.

In words, in the q-pushTASEP particles evolve following a sequential update from the
leftmost to the right. The jump of each particle consists in the sum of two independent com-
ponents. One is a pushing effect, produced by the random variables Pk,T , which depends on
the movements of particles to the left. The other is a independent jump given by the random
variables Jk,T . The pushing effect in particular makes sure that the exclusion rule is preserved
following each update.

The q-PushTASEP model is of particular interest as it degenerates to various well-known
models. Indeed, in [78], it was shown that taking q→ 1 limit of the model, one obtains the
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J J ′

G
G′

xk−1 x′k−1 xk x′k

J J ′

G

G′

FIG 4. On the left panel a local update of q-pushTASEP particles xk−1 = xk−1(T − 1), xk = xk(T − 1) into
x′k−1 = xk−1(T ), x

′
k = xk(T ). In the right panel the representation of the update as a vertex configuration.

log-gamma polymer model [102]. The log-gamma polymer model itself degenerates to con-
tinuum directed random polymer under intermediate disorder regime [2] whose free energy
is related to the KPZ equation [62]. Presently, we describe how q-PushTASEP degenerates to
q-PNG as well.

To this end, we first construct a vertex model from the q-PushTASEP particle system (see
[18] also). At each location (k,T ) ∈ ([1,N ]∩Z)×Z, consider the random variables

J = xk−1(T )− xk−1(T − 1), J ′ = xk(T )− xk(T − 1),

G= xk(T − 1)− xk−1(T − 1)− 1, G′ = xk(T )− xk−1(T )− 1.

We interpret G and J to be the number of arrows entering from below and left into (k,T )
respectively, and G′ and J ′ to be the number of arrows exiting above and to the right from
(k,T ) respectively (see Figure 4).

Note that the arrows satisfy certain conservation property: J −G= J ′ −G′. Let us write
R(j, g; j′, g′) := P [J ′ = j′,G′ = g′ |J = j,G= g] . We have

(2.2) R(j, g; j′, g′) =

j′∑
k=0

φq−1,qg,0(j
′ − k|j) ak

(q; q)k
(a; q)∞.

Considering the specialization a = ε2θ2 we see that, up to order ε2, the relevant cases are
when j, g, j′, g′ ∈ {0,1} and we find

R(0,0; 0,0),R(1,0; 1,0),R(0,1; 0,1) = 1+O(ε2).

Thus most of the vertices in the lattice will have no arrows. If there is a single arrow entering,
it exits in the same direction with high probability. However, note that

R(1,1; 0,0) = 1− q+O(ε2), R(1,1; 1,1) = q+O(ε2).

Thus if two arrows enter at a point, they pass through each other with a probability close to q
and annihilate each other with a probability close to 1− q. Finally, we observe

R(0,0; 1,1) =
ε2θ2

1− q
+O(ε4).

Thus with O(ε2) probability a pair of exiting arrows is created, or nucleates. Taking k,T of
the order ε−1, we thus expect O(1) many nucleations, and they are distributed according to
a Poisson point process in the ε ↓ 0 limit. Given the definition of q-PNG from Definition 1.1,
the above heuristic computation suggests that upon a 45◦ rotation, the above-constructed
vertex model is converging to q-PNG in the ε ↓ 0 limit.
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THEOREM 2.3. Let {xk(T ) : k = 1, . . . ,N, T = 1,2, . . .} be the q-PushTASEP with step
initial condition. Then, under the scaling

(2.3) a= ε2θ2, N = ⌊ε−12−1/2(t+ x)⌋, T = ⌊ε−12−1/2(t− x)⌋,

we have, as a process in (x, t)

xN (T )−N d−−→
ε↓0

h(x, t)

in the sense of distribution w.r.t the uniform-on-compact topology. Here h denotes the height
function of the q-PNG with intensity Λ= θ2/(1− q) and droplet initial condition.

SKETCH OF PROOF. The argument outlined in the above paragraphs can be made rigorous
by adapting the proof of [1, proposition 4.4] given in Appendix B of the same paper. To avoid
repetition, we direct the readers to [1] for details and provide below only an outline of the
main ideas.

Denote by h̃(η, τ) = h(2−1/2(η − τ),2−1/2(η + τ)), the height function of the q-PNG in
a space-time frame rotated by 45◦ and by ˜q−PNG the push-forward measure defined by the
change of coordinates h→ h̃.

As explained in the previous paragraphs the q-pushTASEP can be seen as a stochastic
vertex model with stochastic vertex weights R as in (2.2). In this vertex model step initial
conditions correspond to taking edges (1, i)− (1, i+ 1) occupied by infinitely many arrows
while edges (i,0)−(i+1,0) empty, as shown in Figure 5. In this language the height function
is h(k,T ) = xk(T )− k which counts the number of edge arrows crossed by a segment with
endpoints (k+ 1

2 , T + 1
2) and (12 ,

1
2). Under the scaling of parameter a= ε2θ2 we denote the

height function by hε.
For fixed real numbers A,B > 0 we define the finite rectangular lattice

Λ(A,B)
ε = {0, . . . , ⌊A/ε⌋} × {0, . . . , ⌊B/ε⌋}.

We also define the events

E(A,B)
ε = for all (i, j) ∈ Λ

(A,B)
ε there is at most one nucleation in the cross-

shaped set [iε, (i+ 1)ε)× [0,B]∪ [0,A]× [jε, (j + 1)ε).

and

E(A,B)
ε =

no edge in Λ
(A,B)
ε has more than a single arrow and no more than

one configuration per row and column in Λ
(A,B)
ε .

A simple calculation shows that

P ˜q−PNG

(
E(A,B)
ε

)
= 1−O(εAB) Pq−pushTASEP

(
E(A,B)
ε

)
= 1−O(εAB).

Conditioning the processes ˜q−PNG and q−pushTASEP respectively to events E(A,B)
ε and

E
(A,B)
ε it is possible to couple them in such a way that

h̃(η, τ) = hε(η/ε, τ/ε) for all η, τ such that (η/ε, τ/ε) ∈ Λ(A,B)
ε ,

with probability 1−O(εAB). This shows that, letting ε tend to 0, we have hε→ h̃ in law over
the compact set [0,A]× [0,B]. Upon rotating back the space time coordinates (η, τ)→ (x, t),
this proves the theorem.
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FIG 5. On the left panel a typical evolution of a q-pushTASEP under the scaling (2.3) with ε small. Here discrete
time runs upward and the bottom row consists in a step initial condition. The left panel depicts the vertex config-
uration corresponding to the dynamics on the left panel.

2.2. Relationships between q-PNG and Cylindric Plancherel measures. The connection
between the q-PNG and the q-PushTASEP elaborated in the previous subsection allows us to
establish a relation between the q-PNG and cylindric Plancherel measure. This is because of
a more general connection relating the periodic Schur measure [11] and the q-PushTASEP
discovered in [51]. In order to discuss these developments we need to introduce some nota-
tion.

A partition λ is a decreasing sequence of non-negative integers λ1 ≥ λ2 ≥ · · · which even-
tually become zero λm = λm+1 = · · ·= 0. The size of a partition λ is the sum of its elements
|λ|= λ1 + λ2 + · · · . For any n ∈N∪ {0} we denote

(2.4) pn =#{λ partition : |λ|= n}.

It is well-known (see [93, Eq. (1.15)] for example) that pn is of exponential order in the
square root of n. Indeed, there exists a constant C > 0 such that

(2.5) pn ≤ eC
√
n

holds for all n. Graphically a partition is represented by its Young diagram, obtained drawing,
one above the other, left justified rows of cells of lengths given by elements λ1, λ2, . . . as
done below in Figure 6. We are going to identify a partition with its Young diagram and
for us, the two notions will be equivalent. Given a partition λ we also define its transpose
λ′ = (λ′1, λ

′
2, . . . ), where λ′i =#{j : λj ≥ i}; the Young diagram of λ′ is obtained from that

of λ by a reflection with respect to the diagonal. A partition ρ is contained in another partition
λ if ρi ≤ λi for all i = 1,2, . . . and in this case we write ρ ⊂ λ. This relation also implies
that all cells of the Young diagram of ρ belong also to that of λ. Whenever ρ⊂ λ we define
the skew partition λ/ρ which is the set of cells of the Young diagram of λ which do not
belong to ρ. The size of a skew partition (or equivalently of a skew Young diagram) λ/ρ is
|λ/ρ|= |λ| − |ρ|.

Labeling cells of skew Young diagrams with natural numbers defines Young tableaux. We
say that a Young tableau T of shape λ/ρ is partial if T is a labeling of cells of λ/ρ, where
values are increasing row-wise and column-wise and each value appears at most once. A
tableau T is standard if it is a partial tableau where values range in {1, . . . , |λ/ρ|}. Partial
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and standard Young tableaux are also defined when ρ=∅, and in this case we say that their
shape is straight (as opposed to skew). The content of a tableau T is the set of its labels

(2.6) cont(T ) = {T (i, j) : (i, j) ∈ shape(T )}.

11
2 8 9

1 4
5 6

FIG 6. On the left the Young diagram corresponds to the partition (4,3,1). On the right a partial Young tableau
of skew shape (5,3,3,1)/(3,1) and content {1,2,4,5,6,8,9,11}.

For a skew partition λ/ρ we define the number

(2.7) fλ/ρ := #{T : T is a standard Young tableau of shape λ/ρ}.

Counting standard Young tableau of a given shape has been a problem of great interest in al-
gebraic combinatorics and representation theory. In the case of straight shapes the celebrated
hook length formula [41] provides the closed expression

(2.8) fλ =
|λ|!∏

c∈λ hλ(c)
,

where hλ(c)− λi − i+ λ′j − j + 1 is the hook length of the cell c = (i, j) in λ. A similar
formula is available for the number of standard Young tableaux of skew shape:

(2.9) fλ/ρ = |λ/ρ|!
∑

C∈E(λ/ρ)

∏
c∈λ\C

1

hλ(c)
.

where the sum is performed over the E(λ/ρ), the set of all excited Young diagrams of λ/ρ
(which, for the sake of brevity we will not define here). This formula was discovered by
Naruse [83] and a proof can be found in [81]. There exist also other formulas for fλ/ρ in
terms of Littlewood–Richardson coefficients, determinants [105], and reverse semistandard
tableaux [86].

With these definitions in place, we are ready to define an important measure on the set of
partitions.

DEFINITION 2.4. Fix any γ > 0. The cylindric Plancherel measure with intensity γ is
the probability measure on the set of skew partitions

PcPlan(γ)(λ/ρ) = q|ρ|γ2|λ/ρ|
(
fλ/ρ

|λ/ρ|!

)2

e−γ2/(1−q)(q; q)∞.

It was shown in [11, Example 3.4] that the measure of the whole set of skew partitions is one,
i.e.
∑

ρ⊂λ PcPlan(γ)(λ/ρ) = 1.

The cylindric Plancherel measure is a particular case of the periodic Schur measure, which
is also a probability measure on the set of skew partitions proportional to

(2.10) qρsλ/ρ(a1, . . . , aN )sλ/ρ(b1, . . . , bT )

 N∏
i=1

T∏
j=1

(aibj ; q)∞

 (q; q)∞.
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It was introduced by Borodin in [11] and more recently revisited by Betea-Bouttier [9]. In
(2.10) functions sλ/ρ are the Schur polynomials [75] and a1, . . . , aN , b1, . . . , bT ∈ [0,1). The
cylindric Plancherel measure is recovered from (2.10) setting N = T = n, ai = bj = γ/n for
all i, j and taking the limit n→+∞. Under this limit we have

(2.11) sλ/ρ −−−−−→
n→+∞

γ|λ/ρ|
fλ/ρ

|λ/ρ|!
and

N∏
i=1

T∏
j=1

(aibj ; q)∞ −−−−−→
n→+∞

e−γ2/(1−q).

The limit q → 0 of the cylindric Plancherel measure recovers the Poissonized Plancherel
measure [15], which we denote by

PPlan(γ)(λ) = γ2|λ|
(
fλ

|λ|!

)2

e−γ2

.

Note that the Poissonized Plancherel measure is supported on straight partitions λ. On the
other hand, taking γ→ 0, the cylindric Plancherel measure becomes the volume measure

(2.12) Pvol(ρ) = q|ρ|(q; q)∞.

The following theorem states an equivalence in law between the height function of the
q-PNG and the length of the first row in a cylindric Plancherel measure.

THEOREM 2.5. Fix any θ > 0. Let h be the height function of the q-PNG with intensity
Λ= θ2/(1−q) and droplet initial condition and let χ∼ q-Geo(q) be an independent random
variable. Then, for all t > |x|> 0 we have

(2.13) h(x, t) + χ
d
= λ1,

where λ1 is the first row of a random partition λ where λ/ρ∼ P
cPlan(θ

√
(t2−x2)/2)

.

PROOF. In [51] it was shown that

(2.14) xN (T )−N + χ= λ1,

where xN (T ) is the N -th particle in the q-PushTASEP with step initial conditions and λ1 is
the first row of a partition λ distributed according to the periodic Schur measure (2.10) with
parameters ai = bj =

√
a for all i, j. This is a consequence of [51, Theorem 4.10] and [51,

Proposition 3.1], which are respectively rephrasing of [49, Theorem 1.3] and [78, Section
6.3]. Taking the scaling limit (2.3), in the periodic Schur measure on the right-hand side of
(2.14) we see that

sλ/ρ(a1, . . . , aN )−−→
ε↓0

[
θ(t+ x)√

2

]|λ/ρ| fλ/ρ
|λ/ρ|!

, sλ/ρ(b1, . . . , bT )−−→
ε↓0

[
θ(t− x)√

2

]|λ/ρ| fλ/ρ
|λ/ρ|!

and hence the limiting law of the partition λ becomes P
cPlan(θ

√
(t2−x2)/2)

. Since by Theo-

rem 2.3 under the same scaling limit xN (T )−N converges to h(x, t), this proves (2.13).

COROLLARY 2.6. Fix any θ > 0. Let h be the height function of the q-PNG with intensity
Λ= θ2/(1− q) and droplet initial condition. Fix any x ∈ R and t > 0 such that t > |x|> 0.
We have the following equality in distribution (in the sense of one-point marginals):

h(x, t)
d
= h
(
0,
√
t2 − x2

)
.

Since our main results deal with only one-point marginals of the height function of q-PNG,
we shall consider the height function at the origin, i.e. h(0, t), for the remainder of the paper.
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2.3. Sampling the cylindric Plancherel measure. The cylindric Plancherel measure can
be sampled leveraging a combinatorial construction discovered by Sagan and Stanley in [95],
which is a generalization of the celebrated Robinson-Schensted correspondence [91, 98] (see
e.g. [105]). Although we will not discuss precisely this construction, whose details are not
used in this paper, we like to give a general idea of this sampling mechanism. The proce-
dure we present below is a generalization of the canonical use of the Robinson-Schensted
correspondence to sample the Plancherel measure [98]; see also [93, Section 1.8].

We use the notion of partial permutation matrices, that are square matrices M =
(Mi,j)

n
i,j=1 such that Mi,j ∈ {0,1} and for all i, j, we have

∑
kMi,k,

∑
kMk,j ∈ {0,1}.

In other words, partial permutation matrices M have at most one non-zero element per row
and column. We define

(2.15) cont(M) :=

{
i :
∑
k

Mi,k = 1

}
, #M :=

n∑
i,j=1

Mi,j .

The Sagan-Stanley correspondence can be formulated as a bijection

(2.16) (P,Q;M)←→ (P ,Q)

where P,Q are a pair of partial tableaux of the same shape λ/ρ, M is a partial permutation
matrix such that cont(P ) ∩ cont(M) = cont(Q) ∩ cont(MT ) = ∅ and P ,Q are a pair of
partial tableaux of the same shape µ/λ, where

(2.17)
cont(P )∪ cont(M) = cont(P ), cont(Q)∪ cont(MT ) = cont(Q),

|µ/λ|= |λ/ρ|+#M.

where recall the content of a tableau was defined in (2.6). The correspondence (2.16) can be
used iteratively to build random skew partitions from random permutation matrices. For this
let us consider {Mk}k≥0, a sequence of independent Poisson point processes on the square
(0,1)× (0,1), where Mk has intensity γ2qk and ν, an independent random partition taken
with law Pvol as in (2.12). We define

(2.18) Ak := #Mk, Ak ∼ Poi(qkγ2)

and we also define random variables

(2.19) N=max{k :Ak > 0} n=
∑
k≥0

Ak.

By the Borel-Cantelli theorem, since the intensities of the Poisson random variables Ak decay
exponentially we have that N is almost surely finite, whereas a simple calculation shows that

(2.20) n∼ Poi(γ2/(1− q)).

Let us write M to denote the point process obtained by superimposing {Mk}k≥0. From any
realization of the Poisson point processes {Mk}k≥0 and hence of N=N,n= n, we construct
a sequence of n× n partial permutation matrices {Mk}k≥0 as follows:

For each point p= (px, py) ∈Mk, we set Mk(ip, jp) = 1 where

ip :=
∑
k′≥0

#{Mk′ ∩ ([0,1]× [py,1])}, jp :=
∑
k′≥0

#{Mk′ ∩ ([0, px]× [0,1])}.

The remaining entries of Mk are set to be zero (see Figure 7). Notice that almost surely none
of the n points of the Poisson point processes will share an x or y coordinate. Thus almost
surely, Mk’s are partial permutation matrices with #Mk = #Mk. After constructing the
sequence of matricesMk, of which only the matricesM0, . . . ,MN will be not identically zero
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M0 M1 M2
0 0 0 1 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0




0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0


p

FIG 7. A realization of the point processes {Mk}k≥0 and corresponding matrices {Mk}k≥0. Black, red, and
blue points are points in M0, M1, and M2 respectively. Mk =∅ for k ≥ 3. The row number i counts the number
of points weakly above p, while the column number j counts the number weakly to the left of p. Thus M0(6,2) = 1
for the point p marked in the figure.

we start building up random partitions. Let P0,Q0 be the pair of skew tableaux of shape ν/ν
(i.e. with no labeled cells) and construct, through the correspondence (2.16), the sequence of
pairs of partial tableaux (Pi,Qi), for i= 0, . . . ,N such that

(Pi,Qi,MN−i)←→ (Pi+1,Qi+1).

We set (P,Q) = (PN+1,QN+1) and it is clear, by construction that this is a pair of standard
tableau with the same shape, which we denote by λ/ρ, where

(2.21) |λ/ρ|= n and |ρ|= |ν|+
∑
k≥0

k · (#Mk).

The construction just described, along with the fact that the Sagan-Stanley correspondence is
a bijection, proving the following proposition.

PROPOSITION 2.7. The random skew partition λ/ρ constructed through the procedure
described above is distributed according to the cylindric Plancherel measure PcPlan(γ).

The above sampling scheme allows us to derive exponential moment bounds for the size
of random partitions λ and ρ, where λ/ρ is distributed according to the cylindric Plancherel
measure. We report them in the following proposition.

PROPOSITION 2.8. Fix γ > 0. Suppose λ/ρ∼ PcPlan(γ). Then

(2.22) |λ/ρ| ∼ Poi(γ2/(1− q)),
For all θ ∈ (0, log q−1), there exists a constant C =C(q, θ)> 0 such that

E[eθ|ρ|]≤C exp

(
γ2qeθ

1− qeθ

)
.(2.23)

PROOF. Note that (2.22) is a direct consequence of (2.20) and the first equality in (2.21).
Let us focus on proving (2.23). From the second equality in (2.21), we deduce that |ρ| =
|ν|+

∑
k≥0 kAk where ν ∼ Pvol and Ak ∼ Poi(qkγ2) are all independent. Using the explicit

moment generating function for poisson random variables for θ ∈ (0, log q−1), we obtain

(2.24) E
(
eθ

∑
k≥1 kAk

)
=
∏
k≥1

E[eθkAk ] = e
γ2

(
qeθ

1−qeθ
− q

1−q

)
≤ e

qγ2eθ

1−qeθ .

Since P(|ν|= k) = (q; q)∞pkq
k and pk ≤ eC

√
k from (2.5), for any θ ∈ (0, log q−1) we have

E[eθ|ν|]≤C(q, θ)<∞. Combining this with (2.24), we arrive at (2.23).
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2.4. Exact formulas for the height function of q-PNG. The connection between the cylin-
dric Plancherel measure and the height function of the q-Deformed Polynuclear Growth with
droplet initial condition can be leveraged to write down explicit formulas for the distribu-
tion of h. Formulas analogous to those described below were found in [1] through a similar
matching with the Poissonized Plancherel measure.

As found in the seminal paper [11] the cylindric Plancherel measure becomes, after a
certain random shift, a determinantal point process with an explicit correlation kernel. Given
ζ > 0, we say that a random variable Sζ has Theta(q, ζ) distribution if

(2.25) P(Sζ = k) =
qk

2/2ζk

ϑ(q, ζ)
for k ∈ Z,

where the normalization constant can be evaluated as the Jacobi triple product

ϑ(q, ζ) = (q,−√qζ,−√q/ζ; q)∞.

Here we are using the convention that (a1, . . . , am; q)∞ = (a1, ; q)∞ · · · (am; q)∞.

PROPOSITION 2.9 ([11]). Fix any γ, ζ > 0. Let λ/ρ ∼ PcPlan(γ) and Sζ ∼ Theta(q, ζ)
be independent random variables. Consider the point process

S(λ,Sζ) =

{
λi − i+ Sζ +

1

2
: i= 1,2, . . .

}
.

Then S(λ,Sζ) is a determinantal point process on Z′ := Z+ 1/2 with correlation kernel

Kζ,γ(a, b) :=
∑
ℓ∈Z′

1

1 + ζ−1qℓ
Ja+ℓ

(
2γ

1− q

)
Jb+ℓ

(
2γ

1− q

)
,(2.26)

where Jm are the Bessel functions of the first kind.

By the theory of determinantal point processes [104, 58, 12], we have the following:

COROLLARY 2.10. Fix any γ, ζ > 0. Let λ/ρ∼ PcPlan(γ) and Sζ ∼Theta(q, ζ) be inde-
pendent random variables. Then, for any s ∈ Z we have

(2.27) P(λ1 + Sζ ≤ s) = det (I −Kζ,γ)ℓ2(s+ 1

2
,s+ 3

2
,... ) .

For the next result, we define the function Fq : [0,∞)→ [0,∞) as

(2.28) Fq(ζ) :=
∏
k≥0

1

1 + ζqk
.

THEOREM 2.11. Fix any θ, ζ > 0. Let h be the height function of the q-PNG with inten-
sity Λ= θ2/(1− q) and droplet initial condition. We have

E
[
Fq(ζq

−h(0,t))
]
= det(I −Kζ/

√
q,θt/

√
2)ℓ2(N′).(2.29)

where N′ := {1/2,3/2,5/2, . . .}.

PROOF. Let χ∼ q-Geo(q) and Sζ ∼Theta(ζ, q) independent of q-PNG. By [51, Eq, (5.4)]

P(χ+ Sζ ≤ n) =
1

(−ζqn+1/2; q)∞
= Fq(ζq

n+1/2),
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for any n ∈ Z and hence we have

P(h(0, t) + χ+ Sζ ≤ 0) = E
[
Fq(ζq

1/2−h(0,t))
]
.(2.30)

By Theorem 2.5 we know h(0, t) + χ is equivalent in distribution to the first row λ1 of a
partition λ ∼ PcPlan(θt/

√
2). Therefore, h(0, t) + χ + Sζ is equal in law to λ1 + Sζ whose

probability distribution is given in Proposition 2.9. Taking ζ 7→ ζ/
√
q, γ 7→ θt/

√
2 and s 7→ 0

in (2.27), in view of (2.30), we arrive at (2.29). This completes the proof.

We next give another formula for the height function of the q-PNG stemming from a
relation between the periodic Schur and the (usual) Schur measure observed in [51]. This
formula was also derived in [1] as a special case of a more general result by Borodin [13].

THEOREM 2.12. Fix θ, ζ > 0. Let h be the height function of the q-PNG with intensity
Λ = θ2/(1− q) and let χ∼ q-Geo(q), Sζ ∼ Theta(q, ζ) be independent random variables,
independent of h as well. Then for s ∈ Z we have

(2.31) P(h(0, t) + χ+ Sζ ≤ s) = EPlan(θt/
√
2(1−q))

[∏
i≥1

1

1 + ζqs+i−λi

]
.

PROOF. It was shown in [51, Corollary 4.3 and Remark 4.4] that

(2.32) P(λ1 + Sζ ≤ s) = E

∏
i≥1

1

1 + ζqs+i−λ̃i

 ,

where in the left-hand side the partition λ is taken with respect to the periodic Schur measure
(2.10), while in the right-hand side the partition λ̃ obeys a Schur measure (i.e. (2.10) with
q = 0) with specializations in geometric progression (a1, qa1, q

2a1, . . . , aN , qaN , q
2aN , . . . )

and (b1, qb1, q
2b1, . . . , bT , qbT , q

2bT , . . . ). We now take the scaling (2.3) after setting ai =
bj =

√
a and x= 0 to deduce (2.31) from (2.32). The limit of the left-hand side was already

taken in (2.5). Considering the limits

sλ(a1, qa1, q
2a1, . . . , aN , qaN , q

2aN , . . . )−−→
ε↓0

(
θt√

2(1− q)

)|λ| fλ

|λ|!
,

sλ(b1, qb1, q
2b1, . . . , bT , qbT , q

2bT , . . . )−−→
ε↓0

(
θt√

2(1− q)

)|λ| fλ

|λ|!
,

we see that the right-hand side of (2.32) converges to the right-hand side of (2.31).

3. Upper-Tail LDP for q-PNG. The goal of this section is to prove the upper-tail Large
Deviation Principle for the height function h of q-PNG. In Section 3.1, we elaborate on the
brief sketch given in Section 1.2.2 and reduce our proof to establishing asymptotics and
estimates for the leading term and higher-order term respectively. In Section 3.2, we utilize
Bessel function tail behavior to extract various estimates related to the trace of the kernel and
its derivatives. The leading term and the higher-order term are analyzed in Section 3.3 and
Section 3.4 respectively.
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3.1. An outline of proof of Theorem 1.2. In this subsection, we present the main argument
for the proof of the Large Deviation Principle for the upper-tail of the height function h(0, t).
For this, we define the function

(3.1) Υ(p) := 4 sinh(p/2), for p > 0,

whose Legendre transform is the rate function Φ+ defined in (1.3). Indeed, it can be easily
checked that

(3.2) Φ+(µ) = sup
p>0

(
pµ−Υ(p)

)
.

We are now ready to state the main theorem of this section, which computes the large time
asymptotics of the moment-generating function of h.

THEOREM 3.1. Fix any p > 0. Let h be the height function of the q-PNG with intensity
Λ= 2(1− q) and droplet initial condition. We have

lim
t→∞

1

t
logE

[
eph(0,t)

]
=Υ(p),(3.3)

where Υ(·) is defined in (3.1)

Let us complete the proof of Theorem 1.2 assuming the Theorem 3.1.

PROOF OF THEOREM 1.2. Deriving large deviation rate functions from the asymptotic
limit of moment generating function, i.e. from the Lyapunov exponent, is common practice
and in the context of the KPZ equation, this idea has been worked out in [31]. Indeed ap-
pealing to a general result,[45, Proposition 1.13], we obtain that the upper-tail LDP of h(0, t)
is given by the Legendre transform of Υ(·), which is Φ+ due to the relation in (3.2). This
proves the upper-tail LDP.

We now give the proof of Theorem 3.1 elaborating on the strategy outlined in Section 1.2.2.

PROOF OF THEOREM 3.1 MODULO PROPOSITION 3.2 AND PROPOSITION 3.3 BELOW.
We will need to define some parameters which we will use throughout the rest of the section.
For p > 0 and q ∈ (0,1), we set

(3.4) s=
p

log q−1
> 0, n= ⌊s⌋+ 1, α= s− ⌊s⌋.

Set δ := (Υ(p)− 2p)/4 > 0 (in fact any δ ∈ (0,Υ(p)− 2p) will work). For each t > 0, we
define

τ = τ(t) := e−(Υ(p)−δ)t/s.(3.5)

We are going to express the moment generating function of the height function h(0, t)
using a “Fubini trick" from [32, Lemma 1.8, Proposition 2.2] as

E[eph(0,t)] = E[q−sh(0,t)] =
(−1)n

∫∞
0 ζ−α dn

dζn E[Fq(ζq−h(0,t))] dζ

(−1)n
∫∞
0 ζ−αF

(n)
q (ζ)dζ

,(3.6)

where Fq is defined in (2.28). Let us analyze the right-hand side of (3.6). First, from [32,
Proposition 2.2 (b)] we know (−1)n

∫∞
0 ζ−αF

(n)
q (ζ)dζ is strictly positive, finite and free of
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t. Thus we may ignore the denominator while computing 1
t log limit of the right-hand side of

(3.6). Moving to the numerator, we are going to split the integration over two intervals as
(3.7)

(−1)n
∫ ∞

0
ζ−α dn

dζn
E[Fq(ζq

−h(0,t))] dζ =

(∫ τ

0
+

∫ ∞

τ

)
(−1)nζ−α dn

dζn
E[Fq(ζq

−h(0,t))] dζ,

where the parameter τ was defined in (3.5). The second integral in the right-hand side of
(3.7) can be bounded, in absolute value, as follows.∫ ∞

τ

∣∣∣∣ζ−α dn

dζn
E[Fq(ζq

−h(0,t))]

∣∣∣∣dζ = ∫ ∞

τ

∣∣∣ζ−αE
[
q−nh(0,t)F(n)q (ζq−h(0,t))

]∣∣∣dζ
≤ sup

x>0
|xnF(n)q (x)| ·

∫ ∞

τ
ζ−n−α dζ =

τ−s

s
sup
x>0
|xnF(n)q (x)|,

where in the last line we have used that s= n+α− 1. By [32, Proposition 2.2 (c)], we know
that supx>0 |xnF

(n)
q (x)| is finite (and independent of t), whereas, by the choice of τ (3.5) we

have τ−s = e(Υ(p)−δ)t. This shows that for any fixed p > 0 we have

(3.8)
∣∣∣∣∫ ∞

τ
ζ−α dn

dζn
E[Fq(ζq

−h(0,t))]dζ

∣∣∣∣≤C e(Υ(p)−δ)t

for some constant C =C(p).
Let us now examine the first integral on the right-hand side of (3.7). To analyze this re-

maining term, we use the exact representation of E[Fq(ζq−h(0,t))] from (2.29), which allows
us to write

(3.9) E[Fq(ζq
−h(0,t))] = det(I −Kζ,t)ℓ2(N′)

where the correlation kernel Kζ,t equals Kζ/
√
q,θt/

√
2 defined in (2.26) with θ =

√
2(1− q)

(as we work q-PNG with intensity Λ= 2(1− q)). In other words, we set
(3.10)

Kζ,t(a, b) := Kζ/
√
q,t(1−q)(a, b) =

∑
ℓ∈Z′

vq,ℓ(ζ)Ja+ℓ(2t)Jb+ℓ(2t), vq,ℓ(ζ) :=
1

1 + ζ−1qℓ+
1

2

,

for a, b ∈ Z′. For the remainder of this section, we shall always work with ℓ2(N′) space,
and drop it from the Fredholm determinant notation in (3.9). We now state two propositions,
whose proofs are postponed to Section 3.3 and Section 3.4 below.

PROPOSITION 3.2 (Trace asymptotics). For each t > 0, tr(Kζ,t) :=
∑

a∈N′ Kζ,t(a,a) is
differentiable at each ζ ∈ (0,1). For each p > 0, we have

lim
t→∞

1

t
log

[
(−1)n+1

∫ τ

0
ζ−α dn

dζn
tr(Kζ,t)dζ

]
=Υ(p).(3.11)

PROPOSITION 3.3 (Higher-order estimates). For each p > 0, there exists a constant C =
C(p)> 0 such that for all t large enough we have∫ τ

0
ζ−α

∣∣∣∣ dndζn
[
det(I −Kζ,t) + tr(Kζ,t)

]∣∣∣∣dζ ≤C eΥ(p)t− 1
C t.(3.12)

Making use of the identity in (3.9), we write the first integral on the right-hand side of (3.7)
as

(−1)n
∫ τ

0
ζ−α dn

dζn
E[Fq(ζq

−h(0,t))] dζ =(−1)n+1

∫ τ

0
ζ−α dn

dζn
tr(Kζ,t)dζ

+ (−1)n
∫ τ

0
ζ−α dn

dζn
[
det(I −Kζ,t) + tr(Kζ,t)

]
dζ
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and employing the convergence result (3.11) along with the bound (3.12) we get

lim
t→∞

1

t
log

(−1)n τ∫
0

ζ−α dn

dζn
E
[
Fq(ζq

−h(0,t))
]
dζ

=Υ(p).

Combining the previous limit with the bound (3.8) we complete the proof of (3.3).

3.2. Bessel estimates. In this section we collect various estimates related to Bessel func-
tions that will be useful in our later analysis. The key reason why Φ+, defined in (1.3), appears
as the upper-tail rate function is that it governs the tail asymptotics of Bessel functions. In-
deed, from classical estimates for Bessel functions (see Lemma 9.1 and Eq. (9.17) in [7] for
example) we have the following result.

LEMMA 3.4. For each n ∈ Z>0 and for all 0< 2t < n we have

J2
n(2t)≤

π

8
√
n2 − 4t2

e−tΦ+(
n
t ),(3.13)

where Jm are the Bessel functions of the first kind. Furthermore, for each fixed u > 2 we
have

lim
t→∞

2π · t
√
u2 − 4 · J2

⌊ut⌋(2t)e
tΦ+(u) = 1.(3.14)

For each v > 0, we define the function

Uv(x) := vx−Φ+(x).(3.15)

The following lemma collects useful properties of Φ+, Υ, and Uv functions.

LEMMA 3.5 (Properties of Φ+, Υ and Uv functions). We have the following.

(a) Φ+,Φ
′
+ are strictly increasing on [2,∞) with Φ′

+(x) = 2 log x+
√
x2−4
2 and Φ′′

+(x) =
2√

x2−4
.

(b) Uv(x) has a unique maximizer on [2,∞) given by x∗v := 2cosh(v/2) with maximum

Uv(x
∗
v) = Υ(v) = 4sinh(v/2).

(c) Υ(v)/v is strictly increasing with

lim
v↓0

Υ(v)

v
= 2.

(d) For all v > 0, vx∗v = 2v cosh(v/2)>Υ(v).

The above lemma can be checked easily and hence its proof is skipped.
In our analysis in subsequent sections, we shall often encounter the double sum∑

a∈N′

∑
ℓ∈Z′

J2
a+ℓ(2t)e

vℓ

for v > 0, which is related to the trace of the kernel Kζ,t in (3.10) and its derivative (which
we will define in the next subsection). We shall now devote a few lemmas to understanding
the asymptotics as t→∞ of the above double sum restricted to various subsets of N′ ×Z′.
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LEMMA 3.6. Fix any D ∈ R and v > 0. For each t > 0, we have∑
a∈N′

∑
ℓ∈Z′:a+ℓ≤D

J2
a+ℓ(2t)e

vℓ ≤ eDv+2v

(ev − 1)2
.

PROOF. Recall that for integers n > 0, we have J−n(x) = (−1)nJn(x). Combining this
with the uniform estimate for nonnegative order Bessel functions from [67], we have that
supx∈R |J2

m(x)| ≤ 1 for all m ∈ Z. Hence,∑
a∈N′

∑
ℓ∈Z′:a+ℓ≤D

J2
a+ℓ(2t)e

vℓ ≤
∑
a∈N′

∑
ℓ∈Z′:a+ℓ≤D

evℓ.

The required estimate now follows from geometric series estimates.

LEMMA 3.7. Let r > 0 and fix any (2 + r) < γ1 < γ2 ≤∞. Fix any v ≥ 0 and t ≥ 1.
There exists a C =C(r, v)> 0 such that∑

a∈N′

∑
ℓ∈Z′:a+ℓ∈[γ1t,γ2t]

J2
a+ℓ(2t)e

vℓ ≤C · et·maxx∈[γ1,γ2] Uv(x),

where the function Uv is defined in (3.15).

PROOF. Using the estimate from (3.13) we get∑
a∈N′

∑
ℓ∈Z′:a+ℓ∈[γ1t,γ2t]

J2
a+ℓ(2t)e

vℓ

≤ π

8t
√
4r+ r2

∑
a∈N′

e−va
∑

ℓ∈Z′:a+ℓ∈[γ1t,γ2t]

e−tΦ+(
a+ℓ
t )+v(a+ℓ)

≤ π

8t
√
4r+ r2

1

1− e−v

∑
k∈Z∩[γ1t,γ2t]

etUv(k/t).

(3.16)

Now we can estimate the sum in the right-hand side of (3.16) using Laplace’s method, which
can be applied since Uv is concave as shown in Lemma 3.5. In case γ1 ≤ x∗v ≤ γ2, one can
easily show that ∑

k∈Z∩[γ1t,γ2t]

etUv(k/t) ≤C
√
tetUv(x∗

v).

On the other hand, when γ2 < x∗v , we have∑
k∈Z∩[γ1t,γ2t]

etUv(k/t) ≤ etUv(γ2)
∑

k∈Z∩[γ1t,γ2t]

etU
′
v(γ2)(k/t−γ2)

≤C etUv(γ2),

while, if x∗v ≤ γ1, we have∑
k∈Z∩[γ1t,γ2t]

etUv(k/t) ≤ etUv(γ1)
∑

k∈Z∩[γ1t,γ2t]

etU
′
v(γ1)(k/t−γ1)

≤C etUv(γ1).

Plugging these estimates back in (3.16) yields the desired result.
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LEMMA 3.8. Fix any r, v > 0 and t ≥ 1. Fix any σ ∈ (2 + r,∞]. There exists a C =
C(r, v)> 0 such that ∑

a∈N′

∑
ℓ∈Z′:ℓ≤σt

J2
a+ℓ(2t)e

vℓ ≤C · et·Uv

(
min{σ,x∗

v}
)
.(3.17)

where the function Uv is defined in (3.15).

PROOF. Recall that Φ+ is increasing and Φ+(2) = Φ′
+(2) = 0. We can thus choose

a number ξ > 0 such that ξ ≤ min{r,x∗v − 2} and v − Φ′
+(2 + ξ) > 0. Take 0 < δ ≤

min{v−1ξ(v−Φ′
+(2 + ξ)), ξ}. Note that as Φ′

+ is increasing we have

Φ+(2 + ξ) =

∫ 2+ξ

2
Φ′
+(y)dy ≤ ξΦ′

+(2 + ξ).

Thus for any v > 0, we have

Uv(2 + ξ) = v(2 + ξ)−Φ+(2 + ξ)≥ v(2 + ξ)− ξΦ′
+(2 + ξ)≥ v(2 + δ).

Based on this δ, we split the double sum in (3.17) into three parts given by the following
three index sets:

T1 := {(a, ℓ) ∈N′ ×Z′ | a+ ℓ≤ (2 + δ)t},

T2 := {(a, ℓ) ∈N′ ×Z′ | a+ ℓ > (2 + δ)t, ℓ≤ (2 + δ)t},

T3 := {(a, ℓ) ∈N′ ×Z′ | a+ ℓ > (2 + δ)t, (2 + δ)t < ℓ≤ σt}.

We write ∑
a∈N′

∑
ℓ∈Z′:ℓ≤σt

J2
a+ℓ(2t)e

vℓ =

 ∑
(a,ℓ)∈T1

+
∑

(a,ℓ)∈T2

+
∑

(a,ℓ)∈T3

J2
a+ℓ(2t)e

vℓ.

For the first sum, using Lemma 3.6 we have∑
(a,ℓ)∈T1

J2
a+ℓ(2t)e

vℓ ≤C · ev(2+δ)t.

For the second sum using (3.13) we get∑
(a,ℓ)∈T2

J2
a+ℓ(2t)e

vℓ ≤ π

8t
√
4δ+ δ2

∑
ℓ∈Z′:ℓ≤(2+δ)t

evℓ
∑

a∈N′,a+ℓ≥(2+δ)t

e−tΦ+(
a+ℓ
t ).(3.18)

Using the fact that Φ+ is convex we see that for a+ ℓ≥ (2 + δ)t we have

tΦ+(
a+ℓ
t )≥ tΦ+(2 + δ) + ((a+ ℓ)− 2t− δt)Φ′

+(2 + δ).

This forces, after a change of variable k = a+ ℓ in (3.18),

r.h.s. of (3.18)≤C · e−tΦ+(2+δ)
∑

ℓ∈Z′:ℓ≤(2+δ)t

evℓ
∑
k∈N′

e−kΦ′
+(2+δ).

where we recognize that both the above sums are just geometric series. As Φ′
+(2 + δ) > 0,

overall we have ∑
(a,ℓ)∈T2

J2
a+ℓ(2t)e

vℓ ≤C · et·Uv(2+δ).
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Finally, for the third sum we have∑
(a,t)∈T3

J2
a+ℓ(2t)e

vℓ ≤ π

8t
√
4δ+ δ2

∑
ℓ∈Z′:(2+δ)t≤ℓ≤σt

evℓ
∑

a∈N′,a+ℓ≥(2+δ)t

e−tΦ+(
a+ℓ
t ).(3.19)

Using the estimate Φ+(
a+ℓ
t ) ≥ Φ+(

ℓ
t ) +

a
tΦ

′
+(2 + δ) for the term in the exponent, which

holds for (a, ℓ) ∈ T3, we bound the rightmost sum to get

r.h.s. of (3.19)≤C · 1
t

∑
ℓ∈Z′:(2+δ)t≤ℓ≤σt

evℓe−tΦ+(
ℓ
t ).

The last sum can be bounded in a similar manner as done in the proof of Lemma 3.7, to yield
that the above term is at most C · et·Uv(min{σ,x∗

v}). Since

Uv(min{σ,x∗v})≥ Uv(2 + ζ)≥max{Uv(2 + δ), v(2 + δ)},

we see that the third sum dominates. This gives us the desired result.

3.3. Trace Analysis. The main goal of this section is to prove Proposition 3.2. We first
recall a few basic definitions and results from operator theory.

For an operator with kernel T : Z′ ×Z′→ R, we define its norm as

∥T∥ := tr(
√
T ∗T ).

We say T is trace-class when ∥T∥<∞. The operator T is said to be positive if∑
a,b∈Z′

T (a, b)f(a)f(b)≥ 0

for all f : Z′→ R. For a positive operator, we have ∥T∥= tr(T ).
To prove that the kernels are positive and trace class we will often rely on the standard

square root trick result which we recall for the reader’s convenience.

LEMMA 3.9. Consider kernel R : N′ × Z′→ R, with
∑

a∈N′

∑
ℓ∈Z′ R2(a, ℓ) <∞. The

operator K with the kernel

K(a, b) :=
∑
ℓ∈Z′

R(a, ℓ)R(b, ℓ)

is positive and trace-class, with ∥K∥= tr(K) =
∑

a∈N′

∑
ℓ∈Z′ R2(a, ℓ).

A continuous version of this result appears in [31, Lemma 2.1]. The proof in the reference
can be adapted easily to show the above lemma and hence we do not report the details.

Recall the kernel Kζ,t from (3.10). A formal computation suggests that the ‘derivatives’
of the kernel Kζ,t are given by

(3.20)

K
(n)
ζ,t (a, b) :=

∑
ℓ∈Z′

(
dn

dζn
vq,ℓ(ζ)

)
Ja+ℓ(2t)Jb+ℓ(2t)

= (−1)n+1n!
∑
ℓ∈Z′

qℓ+
1

2

(ζ + qℓ+
1

2 )n+1
Ja+ℓ(2t)Jb+ℓ(2t).

The following lemma shows the derivative of K(n−1)
ζ,t is indeed K(n)

ζ,t in the trace norm sense.

For convenience, we write K(0)
ζ,t :=Kζ,t.
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LEMMA 3.10. The kernel Kζ,t defines a positive trace class operator on ℓ2(N′). For
each n≥ 1

(a) (−1)n+1K
(n)
ζ,t defines a positive trace class operator on ℓ2(N′).

(b) K(n−1)
ζ,t is differentiable in ζ at each ζ > 0 in the trace norm, with derivative being equal

to K(n)
ζ,t , i.e.,

lim
ζ′→ζ

∥∥∥∥∥∥K
(n−1)
ζ′,t −K(n−1)

ζ,t

ζ ′ − ζ
−K(n)

ζ,t

∥∥∥∥∥∥= 0.

We now turn to the proof of Lemma 3.10.

PROOF OF LEMMA 3.10. From Lemmas 3.6 and 3.7 it follows that for each t > 0 and
M > 1

∑
a∈N′

∑
ℓ∈Z′

J2
a+ℓ(2t)M

ℓ =
∑
a∈N′

∑
ℓ∈Z′:a+ℓ≤3t

J2
a+ℓ(2t)M

ℓ +
∑
a∈N′

∑
ℓ∈Z′:a+ℓ>3t

J2
a+ℓ(2t)M

ℓ <∞.
(3.21)

This forces ∑
a∈N′

∑
ℓ∈Z′

qℓ+
1

2J2
a+ℓ(2t)

(ζ + qℓ+
1

2 )n+1
<∞,

∑
a∈N′

∑
ℓ∈Z′

J2
a+ℓ(2t)

1 + ζ−1qℓ+
1

2

<∞,

for each ζ, t > 0, q ∈ (0,1) and n ≥ 1. In view of Lemma 3.9, we have that Kζ,t and
(−1)n+1K

(n)
ζ,t are positive and trace-class. We focus on proving the differentiability of

K
(n−1)
ζ,t . Towards this end, set Dζ′,ζ :=

K
(n−1)

ζ′,t −K
(n−1)
ζ,t

ζ′−ζ −K(n)
ζ,t . Assume ζ ′ > ζ . We have

Dζ′,ζ(a, b) =
∑
ℓ∈Z′

Ja+ℓ(2t)Jb+ℓ(2t)

∫ ζ′

ζ

(ζ ′ − r)
2(ζ ′ − ζ)

· (−1)
n+2(n+ 1)!qℓ+

1

2

(r+ qℓ+
1

2 )n+2
dr.

Applying Lemma 3.9 we see that

∥Dζ′,ζ∥=
∑
a∈N′

∑
ℓ∈Z′

J2
a+ℓ(2t)

∫ ζ′

ζ

(ζ ′ − r)
2(ζ ′ − ζ)

· (n+ 1)!qℓ+
1

2

(r+ qℓ+
1

2 )n+2
dr.

Note that (ζ′−r)
2(ζ′−ζ) ≤

1
2 . Thus, by (3.21) with M = q−n−1 we have

∥Dζ′,ζ∥ ≤ (ζ ′ − ζ)
∑
a∈N′

∑
ℓ∈Z′

J2
a+ℓ(2t) · (n+ 1)!q−(n+1)(ℓ+ 1

2
) <∞.

By Dominated Convergence Theorem we get that ∥Dζ′,ζ∥→ 0 as ζ ′ ↓ 0. The proof for ζ ′ < ζ
is analogous. This completes the proof.

We now come to the proof of Proposition 3.2.

PROOF OF PROPOSITION 3.2. We are going to show that there exists a constant C =
C(p)> 1 such that for all t large enough we have

1

C t
· eΥ(p)t ≤ (−1)n+1

∫ τ

0
ζ−α dn

dζn
tr(Kζ,t)dζ ≤C eΥ(p)t.(3.22)
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In view of Lemma 3.10 we have

dn

dζn
tr(Kζ,t) = tr(K

(n)
ζ,t ) = (−1)n+1n!

∑
a∈N′

∑
ℓ∈Z′

qℓ+
1

2J2
a+ℓ(2t)

(ζ + qℓ+
1

2 )n+1
.

Pushing the integral inside the double sum we have

(−1)n+1

∫ τ

0
ζ−α dn

dζn
tr(Kζ,t)dζ = n!

∑
a∈N′

∑
ℓ∈Z′

qℓ+
1

2J2
a+ℓ(2t)

∫ τ

0

ζ−α

(ζ + qℓ+
1

2 )n+1
dζ.(3.23)

Using the substitution u= 1/(1 + ζ−1qℓ+
1

2 ) and setting yℓ = 1/(1 + τ−1qℓ+
1

2 ) the integral
in the right-hand side become∫ τ

0

ζ−α

(ζ + qℓ+
1

2 )n+1
dζ = q−(n+α)(ℓ+ 1

2
)

∫ yℓ

0
u−α(1− u)n+α−1 du.

Thus,

(3.24)

(−1)n+1

∫ τ

0
ζ−α dn

dζn
tr(Kζ,t)dζ

= n!
∑
a∈N′

∑
ℓ∈Z′

ep(ℓ+
1

2
)J2

a+ℓ(2t)

∫ yℓ

0
u−α(1− u)n+α−1 du.

We now seek to find an upper and lower bound for the right-hand side in the above equality.
For the upper bound we extend the range of integration to [0,1] and evaluate the integral,
which we recognize to be a Beta function, to get

(−1)n+1

∫ τ

0
ζ−α dn

dζn
tr(Kζ,t)dζ ≤ Γ(1− α)Γ(n+ α)

∑
a∈N′

∑
ℓ∈Z′

ep(ℓ+
1

2
)J2

a+ℓ(2t).(3.25)

Let us choose a constant b= b(p) such that

2< b <min

{
Υ(p)

p
,2cosh(p/2)

}
,

which exists by virtue of Lemma 3.5. Splitting the summation over ℓ in (3.25), we obtain the
bounds ∑

a∈N′

∑
ℓ∈Z′:a+ℓ≤bt

J2
a+ℓ(2t)e

p(ℓ+ 1

2
) ≤C · epbt ≤C · eΥ(p)t(3.26)

from Lemma 3.6 and ∑
a∈N′

∑
ℓ∈Z′:a+ℓ≥bt

J2
a+ℓ(2t)e

p(ℓ+ 1

2
) ≤C · eΥ(p)t(3.27)

from Lemma 3.7. Combining the inequalities (3.26), (3.27) with (3.25) proves the upper
bound in (3.22). For the lower bound, we set d= 1

t ⌊2t cosh(p/2)⌋ and focus only on a single
term in the double sum in the right-hand side of (3.24), with a= 1

2 and ℓ= d t− 1
2 . We have

r.h.s. of (3.24)≥ n! · epdtJ2
dt(2t)

∫ y∗

0
u−α(1− u)n+α−1 du,(3.28)

where

y∗ := ydt− 1

2
= (1+ τ−1qdt)−1 = (1+ e(Υ(p)−δ−pd)t/s)−1.
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For large enough t, we have Υ(p)− δ− pd < 0, which forces y∗→ 1 as t→∞. Thus, for all
large enough t, one can ensure

∫ y∗

0
u−α(1− u)n+α−1 du≥C−1

∫ 1

0
u−α(1− u)n+α−1 du=C−1 · Γ(1− α)Γ(n+ α)

n!
.

(3.29)

Applying (3.14) we see that for large enough t we have

epdtJ2
dt(2t)≥

1

C t
· e−tΦ+(2 cosh(p/2))+pdt.(3.30)

Note that

pdt− tΦ+(2 cosh(p/2))≤ p+ t[2p cosh(p/2)−Φ+(2 cosh(p/2))]

= p+ tUp(2 cosh(p/2)) = p+Υ(p)t.

Thus,

epdtJ2
dt(2t)≥

1

C t
· e−tΦ+(2 cosh(p/2))+pdt ≥ 1

C̃ t
· eΥ(p)t.(3.31)

Inserting the estimates (3.29), (3.31) in the right-hand side of (3.28) proves the desired lower
bound in (3.22). This completes the proof.

We conclude this subsection by proving additional bounds on the trace of the kernel Kζ,t

and its derivatives. These will be useful for our analysis in Section 3.4 below.

LEMMA 3.11 (Bounds on traces). Fix any r > 0, σ > 2 + r and n ≥ 1. There exists a
constant C =C(n, r, q)> 0 such that

| tr(Kqσt,t)| ≤C · et·Uηq

(
min{σ,x∗

ηq
}
)
−tηqσ(3.32)

| tr(K(n)
qσt,t)| ≤C · e

t·Unηq

(
min{σ,x∗

nηq
}
)

(3.33)

where ηq := log q−1 and the function Uv was defined in (3.15) and x∗p = 2cosh(p/2) was
defined in Lemma 3.5.

PROOF. We use the fact that 1 + qℓ−σt+ 1

2 ≥ 1ℓ>σt + qℓ−σt+ 1

2 · 1ℓ≤σt to get

| tr(Kqσt,t)|=
∑
a∈N′

∑
ℓ∈Z′

J2
a+ℓ(2t)

1 + qℓ−σt+ 1

2

≤ qσt
∑
a∈N′

∑
ℓ∈Z′,ℓ≤σt

q−ℓ− 1

2J2
a+ℓ(2t) +

∑
a∈N′

∑
ℓ∈Z′,ℓ>σt

J2
a+ℓ(2t).

(3.34)

The first term in the right-hand side of (3.34) can be bounded using Lemma 3.8, while the
second term can be estimated using (3.13). Together we have

r.h.s. of (3.34)≤C ·
[
et
[
Uηq (min{σ,x∗

ηq
})−ηqσ

]
+ e−t·Φ+(σ)

]
.

Since Uηq
(min{σ,x∗ηq

})− ηqσ ≥ Uηq
(σ)− ηqσ =−Φ+(σ), the previous inequality implies

(3.32). In order to show (3.33), we use the fact that qσt + qℓ+
1

2 ≥ qσt · 1ℓ>σt + qℓ+
1

2 · 1ℓ≤σt
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to get

| tr(K(n)
qσt,t)|

= n!
∑
a∈N′

∑
ℓ∈Z′

qℓ+
1

2J2
a+ℓ(2t)

(qσt + qℓ+
1

2 )n+1

≤ n!·q−
n

2

∑
a∈N′

∑
ℓ∈Z′,ℓ≤σt

q−nℓJ2
a+ℓ(2t) + n!·q−σ(n+1)t

∑
a∈N′

∑
ℓ∈Z′,ℓ>σt

qℓ+
1

2J2
a+ℓ(2t).

(3.35)

Once again, using Lemma 3.8 and (3.13) we arrive the bound

(3.35)≤C ·
[
et·Unηq (min{σ,x∗

nηq
}) + et[−Φ+(σ)+nηqσ]

]
.

As Unηq
(min{σ,x∗nηq

})≥−Φ+(σ) + nηqσ, this proves (3.33), completing the proof.

3.4. Higher-order terms. The goal of this section is to prove Proposition 3.3. To deal
with the expression det(I −Kζ,t) + tr(Kζ,t), we will use the exterior algebra definition for
Fredholm determinants [103], which we recall here for convenience.

For a trace-class operator T on a Hilbert spaceH , consider the L-th exterior power ∧Li=1H
and the operator T∧L defined by T∧L(v1 ∧ · · · ∧ vL) := (Tv1) ∧ · · · ∧ (TvL). The operator
T∧L is trace-class on ∧Li=1H and we have

det(I − T ) = 1+

∞∑
L=1

(−1)L tr(T∧L).

In light of the above formula, we have

det(I −Kζ,t) + tr(Kζ,t) = 1+

∞∑
L=2

(−1)L tr(K∧L
ζ,t ).

From (3.9) and the calculation in (3.6), we know det(I−Kζ,t) is infinitely differentiable and
from Lemma 3.10 we have tr(Kζ,t) is also infinitely differentiable. Thus taking derivatives
on both sides of the above equation we get

dn

dζn
[det(I −Kζ,t) + tr(Kζ,t)] =

dn

dζn

[ ∞∑
L=2

(−1)L tr(K∧L
ζ,t )

]
.

We claim that the sum and derivative can be interchanged, i.e.,

dn

dζn

[ ∞∑
L=2

(−1)L tr(K∧L
ζ,t )

]
=

∞∑
L=2

(−1)L dn

dζn
tr(K∧L

ζ,t ).(3.36)

We shall justify the interchange in Lemma 3.13. Assuming this, we insert the above formula
in the right-hand side of (3.12) to get∫ τ

0
ζ−α

∣∣∣∣ dndζn
[
det(I −Kζ,t) + tr(Kζ,t)

]∣∣∣∣dζ ≤ ∞∑
L=2

∫ τ

0
ζ−α

∣∣∣∣ dndζn
tr(K∧L

ζ,t )

∣∣∣∣dζ.(3.37)

The derivatives of tr(K∧L
ζ,t ) can be estimated using terms of the form tr(K

(m)
ζ,t ). To state

precisely these estimates, we introduce a few pieces of notation. For any n,L ∈N define the
set of compositions of n of length L

M(L,n) := {m⃗ ∈ (Z≥0)
L |m1 +m2 + · · ·+mL = n}
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and the multinomial coefficient (
n

m⃗

)
:=

n!

m1!m2! · · ·mL!
.

We set r := (Υ(p)/p− 2)/8> 0 so that

q(2+4r)t = e−(2+4r)pt/s > e−(Υ(p)−δ)t/s = τ.(3.38)

where τ is defined in (3.5). Note that the above relation ensures that the bounds in
Lemma 3.11 are valid for all Kζ,t with ζ ∈ [0, τ ].

We now extract a convenient expression for the derivatives of tr(K∧L
ζ,t ) in the following

lemma.

LEMMA 3.12. Fix an orthonormal basis {ei}i≥1 of ℓ2(N′). For each t > 0, tr(K∧L
ζ,t ) is

differentiable in ζ at each ζ ∈ (0, τ ]. Furthermore, we have

dn

dζn
tr(K∧L

ζ,t ) =
∑

i1<···<iL

∑
m⃗∈M(L,n)

(
n

m⃗

)
det
(
⟨eik ,K

(mj)
ζ,t eij ⟩

)L
j,k=1

(3.39)

where K(n)
ζ,t defined in (3.20).

PROOF. Let us first note that

(3.40)

tr(K∧L
ζ,t ) =

∑
i1<···<iL

⟨ei1 ∧ · · · ∧ eiL ,Kζ,tei1 ∧ · · · ∧Kζ,teiL⟩

=
∑

i1<···<iL

det
(
⟨eik ,Kζ,teij ⟩

)L
j,k=1

.

We wish to take the derivative of the terms inside the above sum. By the product rule for
derivatives, we have

dn

dζn
det
(
⟨eik ,Kζ,teiℓ⟩

)L
k,ℓ=1

=
∑

m⃗∈M(L,n)

(
n

m⃗

)
det

(
dmj

dζmj
⟨eik ,Kζ,teij ⟩

)L

j,k=1

.

Thanks to Lemma 3.10, we may pass the derivative on r.h.s. of the above equation inside to
get

dn

dζn
det
(
⟨eik ,Kζ,teiℓ⟩

)L
k,ℓ=1

=
∑

m⃗∈M(L,n)

(
n

m⃗

)
det
(
⟨eik ,K

(mj)
ζ,t eij ⟩

)L
j,k=1

.(3.41)

Given the identities in (3.40) and (3.41), (3.39) follows by taking derivative on both sides
of (3.40) and justifying the interchange of derivatives and the infinite sum

∑
i1<···<iL

. To
establish the interchange, employing [31, Proposition 4.2], it suffices to show that∑

i1<···<iL

∑
m⃗∈M(L,n)

(
n

m⃗

)
det
(
⟨eik ,K

(mj)
ζ,t eij ⟩

)L
j,k=1

converges absolutely and uniformly for ζ ∈ [0, τ ]. To this end, we note that K(mj)
ζ,t s are self-

adjoint Hilbert-Schimdt operators on ℓ2(N′). Thus, appealing to [31, Lemma 4.3] we have∑
i1<···<iL

∑
m⃗∈M(L,n)

(
n

m⃗

)∣∣∣det (⟨eik ,K(mj)
ζ,t eij ⟩

)L
j,k=1

∣∣∣≤ L! ∑
m⃗∈M(L,n)

(
n

m⃗

) L∏
i=1

∣∣∣tr(K(mi)
ζ,t )

∣∣∣ .
Note that The bounds from Lemma 3.11 ensure that the right-hand side of the above equation
converges uniformly for ζ ∈ [0, τ ]. This completes the proof.



LARGE DEVIATIONS FOR q-PNG 33

The following lemma provides an upper bound for the derivatives of tr(K∧L
ζ,t ).

LEMMA 3.13. For L≥ 2, we have∣∣∣∣ dndζn
tr(K∧L

ζ,t )

∣∣∣∣≤ ∑
m⃗∈M(L,n)

(
n

m⃗

)
(#supp(m⃗))!

(L−#supp(m⃗))!

L∏
i=1

| tr(K(mi)
ζ,t )|

where #supp(m⃗) =#{i |mi > 0}. Furthermore, we have

dn

dζn

[ ∞∑
L=2

(−1)L tr(K∧L
ζ,t )

]
=

∞∑
L=2

(−1)L dn

dζn
tr(K∧L

ζ,t ).(3.42)

PROOF. The proof of the above lemma can be completed employing Lemma 3.12 and
using the argument presented in the proof of [31, Proposition 4.5]. The only thing that we
need to check is that there exists C = C(n, t)> 0 such that for all m⃗ ∈M(L,n) and for all
ζ ∈ [0, τ ] we have ∣∣∣tr(K(mi)

ζ,t )
∣∣∣≤C.(3.43)

This last inequality is immediate from the trace bounds in Lemma 3.11, completing the proof.

Given the above lemma, in view of the estimate in (3.37), we now need to estimate inte-
grals of ζ−α times products of traces of different derivative kernels. This is achieved in the
following lemma.

LEMMA 3.14. Fix t > 1 and L≥ 2. There exists a constant C = C(p, q)> 0, such that
for all m⃗ ∈M(L,n) we have∫ τ

0
ζ−α

L∏
i=1

| tr(K(mi)
ζ,t )|dζ ≤CL · t · eΥ(p)t− 1

C t.

PROOF. Since q(2+4r)t ≥ τ from (3.38), we shall instead provide a bound for

A :=

∫ q(2+4r)t

0
ζ−α

L∏
i=1

| tr(K(mi)
ζ,t )|dζ.

Let us set w := #supp(m⃗) and assume m1,m2, . . . ,mw > 0. We use the substitution ζ = qσt

so that dζ = tqσt log q dσ. Using the bounds from Lemma 3.11 we have

A= ηq

∫ ∞

2+4r
q−σαt+σt

L∏
i=1

| tr(K(mi)
qσt,t )|dσ ≤C

L · t
∫ ∞

2+4r
eM(σ)t dσ(3.44)

where

M(σ) := (α−L+w− 1)σηq + (L−w)Uηq

(
min{σ,x∗ηq

}
)
+

w∑
j=1

Umjηq

(
min{σ,x∗mjηq

}
)
,

and ηq is defined in (1.6). We shall now estimate the integral by considering several cases.
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1. When σ ∈ (2 + 4r,x∗ηq
), we have

M(σ) = (α−L+w− 1)σηq + (L−w)Uηq

(
σ) +

w∑
j=1

Umjηq

(
σ)

= (α−L+w− 1)σηq + (L−w)[ηqσ−Φ+(σ)] +

w∑
j=1

[mjηqσ−Φ+(σ)]

= pσ−LΦ+

(
σ) = L ·Up/L(σ),

where we used the fact m1+ · · ·+mw = n= s−α+1 and p= sηq . By properties of the
Uv function (see Lemma 3.5) we have Up/L(σ)≤ 4 sinh(p/2L). Thus we have∫ x∗

ηq

2+4r
eM(σ)t dσ ≤ x∗ηq

· e4L sinh(p/2L)t.

Set g1(L) := 4L sinh(p/2L). Observe that g′1(L) = 4cosh(p/L)(tanh(p/L) − p/L) <
0. This implies g1(L) is strictly decreasing. As L ≥ 2, we have g1(L) < g1(1) =
4sinh(p/2) = Υ(p). Thus one can find a constant C > 0 free of L, such that x∗ηq

·
e4L sinh(p/2L)t ≤ CeΥ(p)t− 1

C
t, which is precisely the bound we are looking for. This com-

pletes our work for this range of σ.

2. When w ≥ 2, σ ≥ x∗ηq
, we have n≥ 2 and

(3.45)

M(σ)≤ (α− 1)σηq − (L−w)Φ+(x
∗
ηq
) +

w∑
j=1

Umjηq
(x∗mjηq

)

≤ (α− 1)σηq +

w∑
j=1

4 sinh(mjηq/2).

We claim that for a1, . . . , ak > 0 we have
k∑

i=1

sinh(ai)≤ sinh

( k∑
i=1

ai

)
.(3.46)

Let us quickly explain why (3.46) is true. Suppose a ≥ 0. Set P (x) := sinh(x + a) −
sinh(x)− sinh(a). Note that P ′(x) = cosh(x+a)− cosh(x)≥ 0 for all x≥ 0. Thus P (·)
is increasing on [0,∞) and hence P (x) ≥ P (0) = 0 for all x ≥ 0. Hence for x,a ≥ 0,
we have sinh(a) + sinh(x)≤ sinh(x+ a). Iterating this inequality k times we get (3.46).
Now using (3.46) we get that

r.h.s. of (3.45)≤ (α− 1)σηq + 4sinh((n−m1)ηq/2) + 4sinh(m1ηq/2)

≤ (α− 1)σηq + 4sinh((n− 1)ηq/2) + 4sinh(ηq/2)

= (α− 1)σηq +Υ((n− 1)ηq) +Υ(ηq),

where the last inequality follows from the fact that for m1 ∈ [1, n − 1], sinh((n −
m1)ηq/2) + sinh(m1ηq/2) is maximized at m1 = 1 or n − 1. Using the above bound,
we get∫ ∞

x∗
ηq

eM(σ)t dσ ≤C · (1− α)−1 · e(α−1)x∗
ηq

tηq · eΥ((n−1)ηq)t+Υ(ηq)t

≤C · (1− α)−1 · e[Υ((n−1)ηq)+Υ(ηq)+x∗
ηq

(α−1)ηq]t

≤C · (1− α)−1 · eΥ(p)t · e[Υ(ηq)+Υ((n−1)ηq)+x∗
ηq

(α−1)ηq−Υ(p)]t.(3.47)
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Recall p= (n+α− 1)ηq . Set g2(α) := Υ(ηq)+Υ((n− 1)ηq)+ x∗ηq
(α− 1)ηq −Υ((n+

α− 1)ηq). As n≥ 2, we have

g′2(α) = x∗ηq
ηq −Υ′((n+ α− 1)ηq)ηq = 2ηq[cosh(ηq/2)− cosh((n+ α− 1)ηq/2)]≤ 0.

This forces g2(α) ≤ g2(0) = Υ(ηq)− x∗ηq
ηq < 0 by property (d) in Lemma 3.5. Thus in

summary there exists a constant C > 0 such that eg2(α)t ≤ e−
1

C
t. Plugging this back in

(3.47) leads to the desired estimate. This completes our work in this step.

3. When w = 1, σ ≥ x∗nηq
, we have

M(σ) = (α−L)σηq + (L− 1)Uηq
(x∗ηq

) +Unηq
(x∗nηq

).

We thus have∫ ∞

x∗
nηq

eM(σ)t dσ ≤C · (L− α)−1 · e(α−L)x∗
nηq

tηq · e((L−1)Uηq (x
∗
ηq

)+Unηq (x
∗
nηq

))t.(3.48)

Note that the exponent above can be bounded from above as

αx∗nηq
ηq +L(x∗ηq

− x∗nηq
)ηq − (L− 1)Φ+(x

∗
ηq
)− ηqx∗ηq

+Unηq
(x∗nηq

)

≤ αx∗nηq
ηq + 2(x∗ηq

− x∗nηq
)ηq −Φ+(x

∗
ηq
)− ηqx∗ηq

+Unηq
(x∗nηq

)

= Υ(p) + g3(α),

where g3(α) = (α−2)x∗nηq
ηq+Υ(ηq)+Υ(nηq)−Υ((n+α−1)ηq). We have g′3(α)> 0.

So, g3(α) ≤ g3(1) = −x∗nηq
ηq +Υ(ηq) ≤ Υ(ηq)− x∗ηq

ηq < 0. Hence, just as in part (b),
we have shown that there exists a constant C > 0 such that eg3(α)t ≤ e−

1

C
t. Plugging this

back in (3.48) leads to the desired estimate. This completes our work in this part.

4. When w = 1, σ ∈ (x∗ηq
, x∗nηq

), and n+ α− 1≤ L, we have

M(σ) = (α−L)σηq + (L− 1)Uηq
(x∗ηq

) +Unηq
(σ).

In this range, we have M ′(σ) = (n+ α− L)ηq − Φ′
+(σ) ≤ −Φ′

+(x
∗
ηq
) + ηq = 0, which

forces M to be decreasing. Thus,

M(σ)≤M(x∗ηq
) = (α−L)x∗ηq

ηq + (L− 1)Uηq
(x∗ηq

) +Unηq
(x∗ηq

)

= (n+ α− 1)x∗ηq
ηq −LΦ+(x

∗
ηq
)≤ sx∗ηq

ηq − 2Φ+(x
∗
ηq
).

Let us set g4(s) := Υ(sηq) − sx∗ηq
ηq + 2Φ+(x

∗
ηq
). Note that g′4(1) = 0 and g′′4(s) ≥ 0.

Thus, g4(s)≥ g4(1) = Υ(ηq)−x∗ηq
ηq +2Φ+(x

∗
ηq
) = Φ+(x

∗
ηq
). So, sx∗ηq

ηq− 2Φ+(x
∗
ηq
)≤

Υ(p)−Φ(x∗ηq
). As Φ+(y)> 0 for all y > 0, this forces∫ x∗

nηq

x∗
ηq

eM(σ)t dσ ≤ x∗nηq
eΥ(p)t · e−Φ+(x∗

ηq
)t ≤CeΥ(p)t− 1

C
t,

for some C > 0 depending only on q (as ηq = log q−1). This completes our work for this
part.

5. When w = 1, σ ∈ (x∗ηq
, x∗nηq

), and n+ α− 1>L, we have

M(σ) = (α−L)σηq + (L− 1)Uηq
(x∗ηq

) +Unηq
(σ) = U(n+α−L)ηq

(σ) + (L− 1)Uηq
(x∗ηq

).

In the above range, M(σ) attains a maximium at x∗(n+α−L)ηq
. Thus, by setting x= L− 1,

we get

M(σ)≤M(x∗(n+α−L)ηq
) = Υ((s− x)ηq) + xΥ(ηq) := g5(x).
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Note that g′5(x) =−Υ′((s−x)ηq)+Υ(ηq)≤−ηqΥ′(ηq)+Υ(ηq)< 0 as Υ′(p) is increas-
ing and s−x= n+α−L≥ 1. So, g5(x)≤ g5(1) = Υ((s− 1)ηq)+Υ(ηq). Now Υ((s−
1)ηq)−Υ(sηq) is decreasing in s, hence Υ((s−1)ηq)−Υ(sηq)≤Υ(ηq)−Υ(2ηq). Hence

g5(x)≤ 2Υ(ηq)−Υ(2ηq) +Υ(sηq) = 2Υ(ηq)−Υ(2ηq) +Υ(p).

Since 2Υ(ηq)−Υ(2ηq)< 0, we have that∫ x∗
nηq

x∗
ηq

eM(σ)t dσ ≤ x∗nηq
eΥ(p)t · e(2Υ(ηq)−Υ(2ηq))t ≤CeΥ(p)t− 1

C
t,

completing our work for this part.

Combining all the above parts, we have thus shown that∫ ∞

2+4r
eM(σ)t dσ ≤CeΥ(p)t− 1

C
t

for some C > 0 depending on p and q. Inserting this bound back in (3.44) and adjusting
the constant C , we get that A ≤ CL · t · eΥ(p)t− 1

C
t. Again, as q(2+4r)t ≥ τ , this establishes

Lemma 3.14.

Combining preliminary results enumerated in the lemmas above, we are now ready to
prove Proposition 3.3.

PROOF OF PROPOSITION 3.3. In view of the estimates from Lemma 3.13 and Lemma 3.14,
we have

r.h.s. of (3.37)≤C · t · eΥ(p)t− 1

C
t

∞∑
L=2

∑
m⃗∈M(L,n)

(
n

m⃗

)
(#supp(m⃗))!CL

(L−#supp(m⃗))!
,

where C > 0 depends only on p. The double sum is computed in proof of Proposition 4.7
in [31]. In particular, the double sum is finite and its value depends only on C and n. Thus.
adjusting the constant C further, we arrive at the desired estimate in (3.12). This completes
the proof.

4. Lower-Tail LDP for q-PNG. In this section, we prove the lower-tail Large Deviation
Principle for the height function h of q-PNG: Theorem 1.2. In Section 4.1, we introduce con-
tinual Young diagrams and several important functionals and discuss a few basic properties of
them. In Section 4.2, we establish continuity-type results for these functionals. In Section 4.3
we use probabilistic arguments to derive the precise lower-tail rate function for the largest
row of the shifted cylindric Plancherel measure and sharp estimates for the lower-tail of the
unshifted ones. We discuss log-concavity properties of Schur polynomials in Section 4.4 and
prove convexity of F defined in (1.10). We complete the proofs of our main theorems related
to the lower-tail in Section 4.5.

4.1. Preliminaries. A key ingredient for the study of the lower-tail rate function of the
q-PNG is the relation (2.31) which matches the probability distribution of a random shift of
h with a multiplicative expectation of the Poissonized Plancherel measure. For this reason, in
this subsection, we recall results concerning the asymptotics of the Plancherel measure.

We introduce the set of continual Young diagrams

Y = {φ : [0,+∞)→ [0,+∞) : φ is decreasing and ∥φ∥L1 <+∞}
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FIG 8. On the left panel a continual Young diagram φ ∈ Y . On the central panel its representation in Russian
notation φ̃. On the right panel the shape φ ∈ Y .

and its subset of shapes with unit integral

Y1 = {ϕ ∈ Y : ∥ϕ∥L1 = 1} .

Given a continual Young diagram φ we define its representation in Russian notation φ̃, which
is the function

φ̃(u) = v ⇐⇒ v− u√
2

= φ

(
v+ u√

2

)
.

In words, the function φ̃ is obtained rotating by 45◦ counterclockwise the graph of φ and as
such have φ̃(x)≥ |x| for all x ∈ R; see Figure 8. Motivated by this we further define

(4.1) φ(x) = φ̃(x)− |x|.

Translating the properties of the function φ, the function φ is easily seen to belong to the set

Y = {h ∈ L1(R) : h is absolutely continuous, nonnegative, sign(x)h′(x) ∈ [−2,0] a.e.}.

For a shape ϕ ∈ Y1 we define its inverse as ϕ−1(y) := inf{x ≥ 0 | ϕ(x) ≤ y}. Note that
ϕ−1 ∈ Y1. We define the Hook integral of ϕ as

(4.2) Ihook(ϕ) :=

∫ ∞

0
dx

∫ ϕ(x)

0
dy loghϕ(x, y),

where

hϕ(x, y) := ϕ(x) + ϕ−1(y)− x− y.

In the seminal paper [109] Vershik and Kerov proved through a series of algebraic manipu-
lations that the hook integral possesses the equivalent representation

(4.3) Ihook(ϕ) =−
1

2
+

1

2
∥ϕVKLS − ϕ∥21 + 2

∫
|y|>

√
2
ϕ(y)arccosh

∣∣∣∣ y√2
∣∣∣∣dy,

where ϕVKLS is the Logan-Shepp-Vershik-Kerov optimal shape

(4.4) ϕVKLS(x) =

{
2
π

[√
2− x2 + xarcsin

(
x√
2

)]
− |x| for |x| ≤

√
2,

0 for |x|>
√
2,

∥ · ∥21 denotes the square of the Sobolev H1/2 norm

(4.5) ∥ψ∥21 :=
∫

R
|ω||ψ̂(ω)|2 dω
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where ψ̂ is the Fourier transform of ψ defined as

ψ̂(ω) =

∫
R
e−iωxψ(x)dx.

An analogous representation to (4.3) of the hook functional Ihook was given in [74]; see also
[93]. From (4.3) it is easy to see that

(4.6) Ihook(ϕ)≥−
1

2
,

for any ϕ ∈ Y1 with the equality holds if and only if ϕ= ϕVKLS.
The following proposition states the convergence, at the exponential scale, of the

Plancherel measure to the hook functional. Such convergence is uniform with respect to
the limit shape.

PROPOSITION 4.1 ([93], Theorem 1.14). Recall fλ from (2.7). As n→∞, uniformly
over all partitions λ ⊢ n we have

1

n
log

(
1

n!
(fλ)2

)
=−1− 2Ihook(ϕλ) +O

(
logn√
n

)
,

where ϕλ ∈ Y1 is defined by

(4.7) ϕλ(x) =
1√
n
λ⌊x

√
n⌋+1.

In order to state our theorem we fix some more notation. For a left continuous decreasing
function ϕ : R+→ R+ with unit integral and q ∈ (0,1) we define

(4.8) V(q)(x;ϕ) = ηq

∫ ∞

0
[ϕ(y)− y− x]+ dy,

where [a]+ =max{a,0} and ηq := log q−1. Define also the functional

(4.9) W(q)(κ,ϕ;x) = 1+κ logκ+2κIhook(ϕ)+κV(q)(x/
√
κ;ϕ), κ > 0, ϕ ∈ Y1, x ∈ R,

and

(4.10) F(x) := inf
κ>0

inf
ϕ∈Y1

{
W(q)(κ,ϕ;x)

}
.

Note that the W(q) functional defined above and the W(q) functional defined in (1.8) are
essentially the same; the only difference is that the second coordinate of the one defined in
the introduction took shapes in Y with unit integral as input. Thus the function F defined
above is precisely the same as the one defined in (1.10).

We shall show in the next subsection that F is the lower-tail rate function for the first row
of shifted cylindric Plancherel measure. Presently, we end this subsection by discussing a few
properties ofW(q) and F .

PROPOSITION 4.2. For each x ∈ R, the minimizer in the optimization problem in (4.10)
is attained at some κ∗ ∈ (0, κ∗), where κ∗ satisfies 1 + κ∗ logκ∗ − κ∗ = ηq .

PROOF. Fix any x ∈ R and any shape ϕ ∈ Y1. We first provide upper and lower bounds
for the function V(q)(x;ϕ). Note that when x≥ 0 we have

0≤V(q)(x;ϕ) = ηq

∫ ∞

0
[ϕ(y)− y− x]+ dy ≤ ηq

∫ ∞

0
ϕ(y)dy = ηq.
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For x < 0, we split the integral into two parts∫ ∞

0
[ϕ(y)− y− x]+ dy =

∫ −x

0
[ϕ(y)− y− x]+ dy+

∫ ∞

−x
[ϕ(y)− y− x]+ dy

=
x2

2
+

∫ −x

0
ϕ(y)dy+

∫ ∞

−x
[ϕ(y)− y− x]+ dy.(4.11)

Since ϕ is nonnegative, we thus have that
∫∞
0 [ϕ(y)− y− x]+ dy ≥ x2/2. On the other hand

for the upper bound notice that
∫∞
−x[ϕ(y)− y − x]+ dy ≤

∫∞
−x ϕ(y)dy. Since ϕ integrates to

1, we thus have
∫∞
0 [ϕ(y)− y − x]+ dy ≤ x2

2 + 1. Combining the x≥ 0 and x < 0 case, we
deduce that

(4.12) ηq
[−x]2+

2
≤V(q)(x;ϕ)≤ ηq

(
[−x]2+

2
+ 1

)
.

Then we can bound from both sides the functionalW(q) as

1+κ logκ−κ+ ηq
[−x]2+

2
≤W(q)(κ,ϕ;x)≤ 1+κ logκ+2κIhook(ϕ)+ ηq

(
[−x]2+

2
+ κ

)
,

where in the lower bound we also used the fact that Ihook(ϕ) ≥ −1/2. For reference let us
also evaluate the functionalW(q) at the special values κ= 1 and ϕ= ϕVKLS as

W(q)(1, ϕVKLS;x)≤ ηq
(
[−x]2+

2
+ 1

)
.

Then, for any κ such that 1 + κ logκ− κ≥ ηq we have

W(q)(1, ϕVKLS;x)≤ 1 + κ logκ− κ+ ηq
[−x]2+

2
≤W(q)(κ,ϕ;x).

This proves that in order for κ to be a minimizer, we must have κ≤ κ∗. Let us also show that
κ= 0 cannot be a minimizer. For any shape ϕ we have

(4.13) W(q)(0, ϕ;x) = 1+ ηq
[−x]2+

2
.

On the other hand, we have

W(q)(κ,ϕVKLS;x)≤ 1 + κ logκ+ κ(ηq − 1) + ηq
[−x]2+

2

and the right-hand side can easily be checked to be a decreasing function for κ ∈ (0, q),
which at κ= 0 equals the right-hand side of (4.13). This implies that for κ to minimize the
functionalW(q) it needs to be κ > 0, completing the proof.

REMARK 4.3. If ϕ is bounded with compact support, then for x≪ 0 (large negative
values), the two integrals in (4.11) are 1 and 0 respectively. This forces

W(q)(κ,ϕ;x) = 1+ κ logκ+ 2κIhook(ϕ) + ηq

(
x2

2
+ κ

)
.

Since ϕVKLS is bounded with compact support, we thus have

(4.14) W(q)(κ,ϕVKLS;x) = 1+ κ logκ+ κ(ηq − 1) + ηq
x2

2

for x≪ 0.
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C

A

B

x

ϕ

FIG 9. The functional V(q)(ϕ;x) is the sum of areas A and C .

We now discuss a few properties of F that can be deduced from the definition.

PROPOSITION 4.4. F is non-negative and decreasing. We have F(x)> 0 if and only if
x < 2. There exists xq < 0 such that

(4.15) F(x) = ηq
2
x2 + (1− q) for all x≤ xq.

PROOF. The fact that F is decreasing follows from the definition. Note that

W(q)(κ,ϕ;x) = (1 + κ logκ− κ) + κ(1 + 2Ihook(ϕ)) + κV(q)(x/
√
κ;ϕ).

The three terms above on the right-hand side are non-negative. Thus F is non-negative.
The first two terms are zero if and only if κ = 1 and ϕ = ϕVKLS. From (4.4), we get that
ϕVKLS(−

√
2) = 0 which forces ϕVKLS(0) = 2. Thus, we have maxy≥0{ϕVKLS(y)− y}= 2.

Hence V(q)(x;ϕVKLS) = 0 if and only if x≥ 2. Consequently, F(x) = 0 if and only if x≥ 2.
We now turn toward the proof of parabolic behavior on the left. For a given ϕ, let A,B,C

be the area of the blue, green, and red regions in Figure 9, respectively. Then

(4.16)

B =

∫ ∞

− x√
2

ϕ(y)dy, C =
x2

2
,

∫ ∞

0
[ϕ(y)− y− x]+ dy =A+C, 1 =

∫ ∞

0
ϕ(y)dy =A+B.

We see that for x≪ 0 we have

V(q)(ϕ;x) = ηq(A+C) = ηq[C + (A+B)−B] = ηq

[
x2

2 + 1− r(−x/
√
2, ϕ)

]
,(4.17)

where we define

r(M,ϕ) :=

∫ ∞

M
ϕ(y)dy.
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From (4.3) we see that

Ihook(ϕ)≥−1
2 + 2

∫
y>M

ϕ(y)arccosh
(
y/
√
2
)
dy ≥−1

2 + r(M,ϕ)arccosh
(
M/
√
2
)
.

Setting M =−x/
√
2κ, which we can assume to grow linearly with x since a minimizing κ

remains bounded by Proposition 4.2, we have

W(q)(κ,ϕ;x) = 1+ κ logκ+ 2κIhook(ϕ) + κηq

(
x2

2κ
+ 1− r(−x/

√
2κ,ϕ)

)
.

≥ 1 + κ logκ+ κ
(
− 1 + 2r(−x/

√
2κ,ϕ)arccosh(−x/2

√
κ)
)

+ κηq

(
x2

2κ
+ 1− r(−x/

√
2κ,ϕ)

)
= 1+ (ηq − 1)κ+ κ logκ+

ηq
2
x2

+ κr(−x/
√
2κ,ϕ)

(
2arccosh(−x/2

√
κ)− ηq

)
.

It is clear that the above expression grows when κ becomes large and therefore to min-
imize it we have to keep κ bounded. Then, when −x becomes large enough so that
2arccosh(−x/2

√
κ)≥ ηq , we can further write

W(q)(κ,ϕ;x)≥ 1 + (ηq − 1)κ+ κ logκ+
ηq
2
x2 =W(q)(κ,ϕVKLS;x),

for x≪ 0 sufficiently large. Here the second equality is due to (4.14). This implies that
ϕVKLS minimizesW(q)(κ, · ;x) for x negative large enough. MinimizingW(q)(κ,ϕVKLS;x)
in the parameter κ we obtain (the minimum is attained at κ= q)

min
κ>0

{
W(q)(κ,ϕVKLS;x)

}
=
ηq
2
x2 + (1− q),

which completes the proof.

4.2. Continuity of different functionals. In this subsection, we state various continuity
properties of different functions introduced in the previous subsection. We first state a conti-
nuity property of the Sobolev norm ∥ · ∥1 defined in (4.5) when restricted to the subspace of
functions in Y1 defined in (1.7).

PROPOSITION 4.5. Let {hn}n∈N ∈ Y1 such that hn −−−−−→
n→+∞

h ∈ Y1 in L1 norm. Let

g ∈ Y1 and assume also that ∥g∥21,∥h∥21,∥hn∥21 <+∞ for all n. Then we have

lim
n→+∞

∥g− hn∥21 = ∥g− h∥21.

PROOF. Fix any u ∈ Y1. We first claim that

(4.18) ∥u∥L∞ ≤
√
2, ∥u′∥L2 ≤ 4

√
2.

We prove the above two inequalities in the two bullet points below.

• Note that if f ∈ Y1, then the area under f contains the square with corner points (0,0) and
(f̃(0)/

√
2, f̃(0)/

√
2). This forces f̃(0)≤

√
2. Thus for any u ∈ Y1, we have |u(y)| ≤

√
2.

• For the derivative, we have u′(y)2 ≤ 2|u′(y)| and hence

∥u′∥L2 ≤ 2∥u′∥L1 =−2
∫ 0

−∞
u′(x)dx+ 2

∫ ∞

0
u′(x)dx= 4u(0)≤ 4

√
2.(4.19)
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Let us now turn towards the proof of Proposition 4.5. Set ∆hn := h− hn and v := g − h.
Then we have∣∣∥g− h∥21 − ∥g− hn∥21∣∣= ∣∣∥v∥21 − ∥∆hn + v∥21

∣∣
=

∣∣∣∣∫
R
|ω|
(
|v̂(ω)|2 − (∆̂hn(ω) + v̂(ω))(∆̂hn(ω) + v̂(ω))

)
dω

∣∣∣∣
≤
∫

R

∣∣∣∆̂hn(ω)∣∣∣(∣∣∣ω∆̂hn(ω)∣∣∣+ 2 |ωv̂(ω)|
)
dω

≤ ∥∆hn∥L2

(
∥∆h′n∥L2 + 2∥v′∥L2

)
≤ ∥∆hn∥L2

(
∥h′n∥L2 + 3∥h′∥L2 + ∥g′∥L2

)
.

By the first bound in (4.18), we have ∥∆hn∥L2 ≤
(
∥h∥L∞ + ∥hn∥L∞

)
· ∥∆hn∥L1 ≤

2
√
2∥∆hn∥L1 . Invoking the second bound in (4.18) we thus obtain∣∣∥g− h∥21 − ∥g− hn∥21∣∣≤ 80 · ∥∆hn∥L1 ,

which tends to zero by the hypothesis, completing the proof.

We now provide a continuity-type result for the hook functional defined in (4.3).

PROPOSITION 4.6. Fix ϕ ∈ Y1 such that Ihook(ϕ)<∞. Then, there exists a sequence of
partitions λ(n) with λ(n) ⊢ n such that

(4.20) Ihook(ϕλ(n))−−−−−→
n→+∞

Ihook(ϕ).

Furthermore, ϕλ(n) converges to ϕ in L1.

PROOF. Fix ε > 0. Assume first that the function ϕ is such that ϕ(0), ϕ−1(0)<+∞ and
set a= ϕ(0), b= ϕ−1(0). This implies that the transformed function ϕ defined as in (4.1) is
compactly supported. Define the partition

µi =
⌊√

nϕ(i/
√
n)
⌋
,

which, in words is the largest partition to fit below the graph of x→
√
nϕ(x/

√
n). Let m=

|µ| and since
∫ +∞
0

√
nϕ(x/

√
n)dx = n we have 0 ≤ n − m ≤

√
2n(a + b). The second

inequality follows from the fact that the length of the graph of the partition µ is contained
within a strip of width

√
2 from the graph of

√
nϕ(x/

√
n) and that the length of the latter is

at most (a+ b)
√
n. We can at this point define the partition λ ⊢ n by adding n−m boxes

to the partition µ. There are many ways to do so. One way is to define the sequence µ(i) as
µ(0) = µ and

µ(2i+1) = µ(2i) + eri for i≥ 0,
(
µ(2i)

)′
=
(
µ(2i−1)

)′
+ eci for i≥ 1

where ek are standard basis vectors and indices ri, ci are defined by

ri =min{r ≥ i : µ(2i)+ er is a partition}, ci =min{c≥ i :
(
µ(2i−1)

)′
+ ec is a partition}.

This simple sequential construction is explained by the example below

· · · ,



LARGE DEVIATIONS FOR q-PNG 43

where the first partition should be µ and red cells represent cells that are added as we move
on with the sequence µ(i). Then we define λ := µ(n−m) and it is clear by construction that

∥ϕλ − ϕ∥L1 ≤ 2
√
2(a+ b)√
n

.

This is because the graph of the partition λ stays within a strip of length 2
√
2 around the

graph of
√
nϕ(x/

√
n). Then, we have

lim
n→+∞

Ihook(ϕλ) = Ihook(ϕ),

which follows since

lim
n→+∞

∥Ω−ϕλ∥21 = ∥Ω−ϕ∥21, lim
n→+∞

∫
|y|>1

ϕλ(y)arccosh|y|dy =
∫

|y|>1

ϕ(y)arccosh|y|dy,

where the first limit follows from Proposition 4.5, while the second uses the fact that ϕ,ϕλ
are compactly supported.

We now would like to remove the assumption that ϕ(0), ϕ−1(0) are bounded to allow
shapes ϕ with possibly infinite tails. Let therefore ϕ be an arbitrary shape in Y1. For any
K > 0 we define the truncation ϕK(x) := (ϕ(x) ∧ K)1x<K . It is clear that ϕK ∈ Y and
ϕK −−−−−→

K→+∞
ϕ in L1. Moreover, since the convergence of ϕK to ϕ is monotone we have that

lim
K→+∞

Ihook(ϕK) = Ihook(ϕ).

Here the monotone convergence was needed to control the convergence of the integral of
ϕK(y) against arccosh|y|. Let θK = ∥ϕK∥ and since ϕK converges in L1 norm to ϕ we also
have θK → 1 as K→+∞. Defining

ψK(x) =
1√
θK

ϕK(
√
θKx),

we have ∥ψK∥= 1 and Ihook(ψK) = θKIhook(ϕk). Since ψK satisfies ψK(0),ψ−1
K (0)<+∞

we can now use the previous part of the proof to find an n large enough and a partition
λ(K) ⊢ n such that Ihook(ϕλ(K)) is arbitrarily close to Ihook(ψK). Then we have

|Ihook(ϕλ(K))− Ihook(ϕ)|

≤ |Ihook(ϕλ(K))− Ihook(ψK)|+ |Ihook(ψK)− Ihook(ϕK)|+ |Ihook(ϕK)− Ihook(ϕ)|

= |Ihook(ϕλ(K))− Ihook(ψK)|+ (1− θK) |Ihook(ϕK)|+ |Ihook(ϕK)− Ihook(ϕ)| .

Finally, choosing K large enough we can make the last two terms smaller than ε/3 and later
letting n grow large we can find nε such that the first term is smaller than ε/3. This completes
the proof of the proposition.

The following proposition discusses continuity for the functional V(q) defined in (4.8).

PROPOSITION 4.7. Fix y ∈ R, and ϕ ∈ Y1. Take any sequence {yn}n≥1 such that yn→
y. Take any sequence {ϕn}n≥1 in Y1 such that ϕn→ ϕ in L1. Then,

(4.21) V(q)(yn;ϕn)−−−−−→
n→+∞

V(q)(y;ϕ)
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PROOF. Using the fact that |[a]+ − [b]+| ≤ |a− b|, we deduce that∫ ∞

0

∣∣[ϕn(z)− z − yn]+ − [ϕ(z)− z − yn]+
∣∣dz ≤ ∫ ∞

0
|ϕn(z)− ϕ(z)|dz→ 0.

Thus it suffices to show∫ ∞

0

∣∣[ϕ(z)− z − y]+ − [ϕ(z)− z − yn]+
∣∣dz→ 0.(4.22)

Note that |[ϕ(z)−z−y]+− [ϕ(z)−z−yn]+| → 0 pointwise. Set w := y∧min{yn | n≥ 1}.
Using the fact that |[a]+ − [b]+| ≤ [a]+ ∨ [b]+ we deduce that

|[ϕ(z)− z − y]+ − [ϕ(z)− z − yn]+| ≤ ϕ(z) + [−z −w]+,

which is integrable. Thus by dominated convergence theorem, we arrive at (4.22).

4.3. Existence of lower-tail rate function F . In this section we use probabilistic argu-
ments to show the existence of a lower-tail rate function for the first row of shifted cylindric
Plancherel measure (Theorem 4.8). The rate function is given by F defined in (4.10). For the
unshifted measure, we shall provide sharp lower-tail estimates for the first row in Proposi-
tion 4.10. The existence of the rate function for the unshifted ones requires further argument
involving convex analysis which we postpone to later subsections.

THEOREM 4.8. Let h be the height function of the q-PNG with intensity Λ = 2(1− q)
and droplet initial condition. Let λ/ρ∼ PcPlan(t(1−q)), χ∼ q-Geo(q), and S ∼ Theta(q,1)
all independent from h. For all x ∈ R we have
(4.23)

− lim
t→∞

1

t2
logP(h(0, t) + χ+ S ≤ xt) =− lim

t→∞

1

t2
logPcPlan(t(1−q))(λ1 + S ≤ xt) =F(x).

PROOF. The first equality in (4.23) is a consequence of Theorem 2.5. We focus on proving
that the limit exists and is given by F(x). From Theorem 2.12 (with θ =

√
2(1− q), ζ = 1,

and s= ⌊xt⌋), we have

P(h(0, t) + χ+ S ≤ xt) = EPlan(t)

( ∞∏
i=1

1

1 + q⌊xt⌋+i−λi

)
.

Hence it suffices to analyze the right-hand side of the above equation. This analysis essen-
tially follows the idea of Varadhan’s lemma. For clarity, we divide the proof into two steps.
In Step 1 we prove the theorem assuming a technical estimate (4.27), which in turn is proven
in Step 2.
Step 1. Fix any x ∈ R and ε > 0. Since F is obtained by minimizingW(q) (see (4.10)), get
κ∗, ϕ∗ (depending on ε) such that

W(q)(κ∗, ϕ∗;x)≤F(x) + ε.

Due to Proposition 4.2 we may choose κ∗ so that κ∗ ≤ κ∗ defined in Proposition 4.2.
Lower Bound. Fix an M > max{κ∗,F(x), e2}. Using tail estimates for Poisson random
variable X ∼ Poi(t2) we have

PPlan(t)

(
|λ|>Mt2

)
= PPoi(t2)

(
X >Mt2

)
≤ e−Mt2 .(4.24)

We claim that

EPlan(t)

( ∞∏
i=1

1

1 + q⌊xt⌋+i−λi
1|λ|≤Mt2

)
≤ e−t2F(x)+O(t).(4.25)
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Combining the above claim with (4.24), by the choice of our M we see that

lim inf
t→∞

− 1

t2
logEPlan(t)

( ∞∏
i=1

1

1 + q⌊xt⌋+i−λi

)
≥F(x),

which verifies the lower bound. Let us now focus on proving (4.25). We expand the expecta-
tion of the q-product over the Plancherel measure
(4.26)

EPlan(t)

( ∞∏
i=1

1

1 + q⌊xt⌋+i−λi
1|λ|≤Mt2

)
≤ EPlan(t)

( ∞∏
i=1

1

1 + qxt+i−λi
1|λ|≤Mt2

)

=
∑

n∈Z∩[0,Mt2]

e−t2 t
2n

n!

∑
λ⊢n

(fλ)2

n!

∞∏
i=1

1

1 + qxt+i−λi
.

We will produce estimates of the various factors appearing in the summation on the right-
hand side of (4.26). Fix a partition λ with |λ| ≤Mt2. We claim that
(4.27)
∞∏
i=1

1

1 + qxt+i−λi
= e−nV(q)(xt/

√
n;ϕλ)+O(t),

∞∏
i=1

1

1 + q⌊xt⌋+i−λi
= e−nV(q)(⌊xt⌋/

√
n;ϕλ)+O(t)

where n= |λ| the size of the partition λ and V(q) and ϕλ are defined in (4.8) and (4.7) respec-
tively. The error term O(t) appearing above depends only on M and x. We assume (4.27) for
the moment and complete the proof of the theorem. Setting n = κt2, from Proposition 4.1
and the approximation of the density of the Poisson distribution, we have

(4.28)
(fλ)2

n!
= e−t2κ(1+2Ihook(ϕλ))+O(t log t), e−t2 t

2n

n!
= e−t2(1−κ+κ logκ)+O(log t)

respectively. Combining the above two estimates with (4.27), we are able to write

r.h.s. of (4.26)≤
∑

κ∈ 1

t2
Z∩[0,Mt2]

∑
λ⊢κt2

e−t2W(q)(κ,ϕλ;x)+O(t)

≤ e−t2F(x)+O(t)
∑

n∈Z∩[0,Mt2]

pn ≤ e−t2F(x)+O(t).

Above, pn denotes the number of partitions of n defined in (2.4). The second inequality uses
the fact that F is the minimizer of theW(q) functional and the third inequality uses the bound
pn ≤ eC

√
n from (2.5). This proves (4.25).

Upper Bound. For the upper bound we set n= ⌊κ∗t2⌋ and take λ(t) ⊢ ⌊κ∗t2⌋ so that Propo-
sition 4.6 holds for ϕ= ϕ∗. We use the immediate lower bound:

EPlan(t)

( ∞∏
i=1

1

1 + q⌊xt⌋+i−λi

)
≥ e−t2 t

2n

n!

(fλ
(t)

)2

n!

∞∏
i=1

1

1 + q⌊xt⌋+i−λ
(t)
i

.

Taking logarithms on both sides, dividing by −t2, and using the asymptotics from (4.27) and
the second equality from (4.28) we get

− 1

t2
logEPlan(t)

( ∞∏
i=1

1

1 + q⌊xt⌋+i−λi

)
≤ (1− n

t2 +
n
t2 log

n
t2 )−

1
t2 log

(
1
n!(f

λ(t)

)2
)

+ n
t2V

(q)(⌊xt⌋/
√
n;ϕλ(t))) +O(1/t).
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Since n/t2→ κ∗ and ⌊xt⌋/t→ x, combining Propositions 4.6 and 4.7 we have that

limsup
t→∞

− 1

t2
logEPlan(t)

( ∞∏
i=1

1

1 + q⌊xt⌋+i−λi

)
≤ (1− κ∗ + κ∗ logκ∗)− κ∗(−1− 2Ihook(ϕ∗)) + κ∗V(q)(x/

√
κ∗;ϕ∗)

=W(q)(κ∗, ϕ∗;x)≤F(x) + ε.

Since ε > 0 is arbitrary, taking ε ↓ 0 produces a matching upper bound.
Step 2. In this step we prove (4.27). We shall only prove the first estimate in (4.27), the
argument for the second one is exactly the same. Let us write

∞∏
i=1

1

1 + qxt+i−λi
= exp

{
−

∞∑
i=1

f(i/
√
n)

}
, where f(y) := log

(
1 + qxt+y

√
n−λ⌈

√
ny⌉
)
.

We rely on the following two estimates:

√
n

∫ ∞

0
f(y)dy−

∞∑
i=1

f(i/
√
n) =O(t),(4.29)

√
n

∫ ∞

0
f(y)dy− nV(q)(xt/

√
n;ϕλ) =O(1),(4.30)

where the error termO(t) depends onM,x as well. Recall that n= |λ| ≤Mt2. (4.27) follows
from the above two estimates.
Proof of (4.29). Observe that f is decreasing. Hence the left-hand side of (4.29) is positive.
It thus suffices to look for an upper bound for the same. Observe that

√
n

∫ ∞

0
f(y)dy−

∞∑
i=1

f(i/
√
n) =

n∑
i=1

√
n

∫ i/
√
n

(i−1)/
√
n
(f(y)− f(i/

√
n))dy

=

∞∑
i=1

√
n

∫ i/
√
n

(i−1)/
√
n
log

[
1 +

qxt+i−λi(qy
√
n−i − 1)

1 + qxt+i−λi

]
dy

=

∞∑
i=1

∫ 1

0
log

[
1 +

qxt+i−λi(q−z − 1)

1 + qxt+i−λi

]
dz

≤ q−1
∞∑
i=1

qxt+i−λi

1 + qxt+i−λi
,(4.31)

where in the last line we use the inequality log(1+ z)≤ z for each term in the summand. We
now split the above sum into two parts:

∞∑
i=1

qxt+i−λi

1 + qxt+i−λi
=

[
k∑

i=1

+

∞∑
i=k

]
qxt+i−λi

1 + qxt+i−λi
.

For the first sum, we bound each term by 1 and get that the sum is at most k. Note that for
each i, we have λi ≤ 1

i (λ1+ · · ·+λi)≤ n/i. Thus, for each term in the second sum, we have
qxt+i−λi

1+qxt+i−λi
≤ qxt+i−n/i ≤ qi−kqxt+k−Mt2/k. Now if we choose k = ⌈t(

√
x2 + 4M −x)⌉, this

ensures xt+ k−Mt2/k ≥ 0. Then the right-hand side is at most O(t).
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Proof of (4.30). Using the elementary inequality: [v]+ ≤ log(1 + ev) we obtain
√
n

∫ ∞

0
f(y)dy ≥ nηq

∫ ∞

0
[ϕλ(y)− y− xt/

√
n]+ dy.

We thus focus on proving
√
n

∫ ∞

0
f(y)dy ≤ nηq

∫ ∞

0
[ϕλ(y)− y− xt/

√
n]+ dy+O(1).(4.32)

For each k ≥ 1, define ak := log(1 + qxt+k−λk) and bk := log(1 + qxt+k−1−λk). Note that

b1 ≥ a1 ≥ b2 ≥ a2 ≥ b3 ≥ a3 ≥ · · · .
Making the change of variable u= log(1 + qxt+y−λk) we get

(4.33)

√
n

∫ k/
√
n

(k−1)/
√
n
f(y)dy =

∫ k

k−1
log(1 + qxt+y−λk)dy

=
1

ηq

∫ bk

ak

ueu

eu − 1
du=

1

ηq

b2k − a2k
2

+
1

ηq

∫ bk

ak

u

eu − 1
du.

Note that 0 ≤ bk − ak ≤ ηq , and
∑

k≥1

∫ bk
ak

u
eu−1 du ≤

∫∞
0

u
eu−1 du = π2

6 . Summing over
k ≥ 1 on both sides of (4.33) and applying these inequalities we get

√
n

∫ ∞

0
f(y)dy ≤ π2

6ηq
+

1

2

∑
k≥1

(bk + ak).(4.34)

We now partition the index set N into three sets:

I1 := {k ∈N : xt+ k− λk ≤ 0}, I2 := {k ∈N : xt+ k− 1− λk ≥ 0}, I3 := N \ (I1 ∪ I2).

Note that the cardinality of I3 is at most 1, and if k ∈ I3, we have ak, bk ≤ log(1 + q−1). For
I2, using the log(1 + x)≤ x inequality, we observe that∑

k∈I2

ak =
∑
k∈I2

log(1 + qxt+k−λk)≤
∑
k∈I2

qxt+k−λk ≤ 1

1− q
,

and
∑

k∈I2 bk ≤
1

1−q similarly. For I1, using the log(1 + x)≤ x inequality, we note that∑
k∈I1

[ak − ηq(λk − k− xt)] =
∑
k∈I1

log(1 + qλk−k−xt)≤
∑
k∈I1

qλk−k−xt ≤ 1

1− q
,

and
∑

k∈I2 bk − ηq(λk − k + 1 − xt) ≤ 1
1−q similarly. Inserting these bounds back in the

right-hand side of (4.34) we get
√
n

∫ ∞

0
f(y)dy ≤O(1) + η

∑
k∈I1

1

2

(
(λk − k+ 1− xt) + (λk − k− xt)

)
=O(1) + η

∑
k∈I1

1

2

(
(λk − k+ 1− xt)2 − (λk − k− xt)2

)
=O(1) + η

∑
k∈I1

√
n

∫ k/
√
n

(k−1)/
√
n
(λ⌊y

√
n⌋+1 − y

√
n− xt)dz

≤O(1) + nη

∫ ∞

0
[ϕλ(y)− y− xt/

√
n]+ dy.

This proves (4.32), completing the proof.
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Next, we provide an approximation for the lower-tail rate function of the cylindric
Plancherel measure that will be useful throughout. For t > 0 and a≥ 0 we define

(4.35) Tt(a) :=−
1

t2
log

 sup
ρ⊂λ
λ1≤at

PcPlan(t(1−q))(λ/ρ)

 .

As a convention we set Tt(a) :=∞ for a < 0.

PROPOSITION 4.9. For each t > 0, Tt(a) is nonnegative and decreasing in a. Moreover,
for all t > 0 we have Tt(0) = 1− q.

PROOF. The fact that Tt is nonnegative and decreasing follows immediately from the
definition of Tt(a). Notice that

sup
ρ⊂λ
λ1=0

PcPlan(t(1−q))(λ/ρ) = PcPlan(t(1−q))(∅/∅) = e−t2(1−q).

− 1
t2 log of the left- and right-hand sides of the above equality yields Tt(0) = 1− q.

PROPOSITION 4.10. There exists a constant C = C(q) > 0 such that for all a ≥ 0 we
have

(4.36) e−t2Tt(a) ≤ PcPlan(t(1−q))(λ1 ≤ at)≤ e−t2Tt(a)+C·t.

PROOF. The lower bound in (4.36) is obvious from the definition of Tt(a). We focus on
the upper bound. Let us set θ := 1

2ηq so that eθ = q−1/2. Set M := max{3,3θ−1}. By a union
bound we have

(4.37)
PcPlan(t(1−q))(λ1 ≤ at)≤ PcPlan(t(1−q))(|λ/ρ|>Mt2) + PcPlan(t(1−q))(|ρ|>Mt2)

+ PcPlan(t(1−q))(λ1 ≤ at, |λ/ρ|<Mt2, |ρ|<Mt2).

We shall now bound each of the three terms above separately. Recall that by (2.22) , |λ/ρ| ∼
Poi(t2(1− q)), hence Markov inequality yields

(4.38)
PcPlan(t(1−q))(|λ/ρ|>Mt2)≤ e−Mt2EPoi(t2(1−q))[e

|λ/ρ|]

= e−Mt2+t2(1−q)(e−1) ≤ e−t2 .

Furthermore by (2.23) we have

PcPlan(t(1−q))(|ρ|>Mt2)≤ e−Mθt2E[eθ|ρ|]≤C exp
(
−Mθt2 +

t2(1−q)2
√
q

1−√
q

)
≤Ce−t2

(4.39)

For the last term in (4.37) observe that

PcPlan(t(1−q))(λ1 ≤ at, |λ/ρ|<Mt2, |ρ|<Mt2)

≤ PcPlan(t(1−q))(λ1 ≤ at, |λ|, |ρ|< 2Mt2)

=
∑
ρ⊂λ

λ1≤at,|λ|,|ρ|≤2Mt2

PcPlan(t(1−q))(λ/ρ)

≤ e−t2Tt(a)

( ∑
n∈Z∩[0,2Mt2]

pn

)2

≤ e−t2Tt(a)+Ct.
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where in the last line we used the well known pn ≤ eC
√
n bound. Inserting the above bound

along with the bounds in (4.38) and (4.39) back in (4.37) yields

PcPlan(t(1−q))(λ1 ≤ at)≤ e−t2Tt(a)+Ct + (C + 1)e−t2 .

Since Tt(a)≤ 1−q by Proposition 4.9, e−t2Tt(a) dominates e−t2 . Thus adjusting the constant
C we derive the upper bound in (4.36). This completes the proof.

PROPOSITION 4.11. We have limt→∞ Tt(x) = 0 for all x≥ 2.

PROOF. Utilizing the upper bound in (4.36) and the relation (2.13) (θ =
√
2(1− q) and

x= 0) we deduce

e−t2Tt(2)+Ct ≥ P(λ1 ≤ 2t)≥ P(χ= 0)P(h(0, t)≤ 2t) = (q; q)∞ · P(h(0, t)≤ 2t).

Taking − 1
t2 log both sides and then taking limsupt→∞ we obtain

limsup
t→∞

Tt(2)≤ limsup
t→∞

− 1

t2
logP(h(0, t)≤ 2t).

From the fluctuation result of q-PNG height function [1], we have that

lim
t→∞

P(h(0, t)≤ 2t) = P(TWGUE ≤ 0)> 0.

As Tt is nonnegative, this implies limt→∞ Tt(2) = 0. The conclusion for general x≥ 2 fol-
lows from monotonicity.

4.4. Convexity of rate function F . The scope of this subsection is to prove convexity of
the lower-tail rate function F for the edge of the shift-mixed cylindric Plancherel measure.
The starting point of our argument is the celebrated Okounkov inequality. Indeed, Schur
functions enjoy remarkable log-concavity properties, a version of which was first conjectured
by Okounkov in [85]. This conjecture was later proved and refined in [66] by Lam, Postnikov,
and Pylyavskyy. We report this result next, and then use it to establish a certain asymptotic
midpoint convexity of the family of functions Tt in Proposition 4.13.

PROPOSITION 4.12. [66, Theorem 12] For any pair of skew-partitions λ/µ, ν/ρ we
have

s⌈λ+ν

2
⌉/⌈µ+ρ

2
⌉s⌊λ+ν

2
⌋/⌊µ+ρ

2
⌋ ≥s sλ/µsν/ρ.

where for any two symmetric functions A,B, A≥s B means that the difference A−B pos-
sesses an expansion in the basis of Schur functions with positive coefficients. Here the oper-
ations +, /2, ⌊·⌋, ⌈·⌉ on partitions are performed coordinate-wise.

The following proposition establishes a certain asymptotic midpoint convexity of the fam-
ily of functions Tt.

PROPOSITION 4.13. Let a,a′ ∈ R. Then, for all ε > 0, there exists tε such that for all
t > tε we have

(4.40) Tt
(
a+ a′

2
+

1

t

)
≤ 1

2

(
Tt(a) + Tt(a′)

)
+ ε.
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PROOF. As Tt(x) = +∞ for x < 0, we may assume a,a′ ≥ 0. Without loss of generality
assume 0≤ a≤ a′. By the Okounkov’s inequality (Proposition 4.12) we have, for any pair of
skew partitions λ/µ, ν/ρ we have

(4.41) max

{(
s⌈λ+ν

2
⌉/⌈µ+ρ

2
⌉

)2
,
(
s⌊λ+ν

2
⌋/⌊µ+ρ

2
⌋

)2}
≥ sλ/µsν/ρ,

whenever the Schur functions are evaluated at some positive specialization. Let λ+ν
2 /µ+ρ

2 be

the skew partition that maximizes the left-hand side of (4.41) and set ∆ := |µ+ρ
2 | −

|µ|+|ρ|
2 .

Taking the exponential specialization with parameter γ := t(1− q) in all the Schur functions
(see (2.10) and (2.11)) we obtain that

PcPlan(t(1−q))

(
λ+ ν

2

/
µ+ ρ

2

)
= e−t2(1−q)q

|µ|
2
+ |ρ|

2

(
sλ+ν

2
/µ+ρ

2

)2
q∆

≥ e−t2(1−q)q
|µ|
2
+ |ρ|

2 sλ/µsν/ρ q
∆

=
√

PcPlan(t(1−q)) (λ/µ)
√

PcPlan(t(1−q)) (ν/ρ) q
∆.

Note that λ1 ≤ at and ν1 ≤ a′t implies that the first row of λ+ν
2 has length ≤ (a+a′)t

2 + 1.
Taking − 1

t2 log of both sides of the previous inequality and optimizing over the choice of
λ/µ with λ1 ≤ at and ν/ρ with ν1 ≤ a′t we find

Tt
(
a+ a′

2
+

1

t

)
≤− 1

t2
logPcPlan(t(1−q))

(
λ+ ν

2

/
µ+ ρ

2

)
≤ 1

2

[
Tt(a) + Tt(a′)

]
+
log q∆

t2
,

Since ∆≤ 1, taking t large enough, we get the desired result.

For the next proposition, we introduce the operation of infimal convolution between two
real-valued functions g,h as

(g⊕ h)(x) := inf
y∈R
{g(y) + h(x− y)} .

The infimal convolution is the analog of the integral convolution g ∗ h in the (inf,+) algebra
and it is a common object in convex analysis. We use the notion of infimal convolution in the
following result.

PROPOSITION 4.14. Let x ∈ R and define the function g(x) = x2

2 ηq . Then we have

(4.42) F(x) = lim
t→∞

(g⊕Tt) (x).

PROOF. By Proposition 4.2, F(x) = 0 for x≥ 2. On the other hand, we have for x≥ 2,

0≤ lim inf
t→∞

(g⊕Tt) (x)≤ limsup
t→∞

(g⊕Tt) (x)≤ g(0) + lim
t→∞
Tt(x) = 0

by Proposition 4.11. Hence (4.42) holds for x ≥ 2. Let us fix any x < 2. Suppose λ/ρ ∼
PcPlan(t(1−q)) and S ∼Theta(q; 1). For each i≥ 0, let us set

yi := argmax
{

P(S = yt)P(λ1 ≤ (x− y)t) : y ∈ 1
t Z∩ [x− i, x]

}
,

and define

(g⊕iTt)(x) := inf
y∈ 1

t
Z∩[x−i,x]

{g(y) + Tt(x− y)}.
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We shall only consider y2 and y3 in our proof. Observe that

(4.43)
P(λ1 + S ≤ xt)≥ P(S ∈ [xt− 3t, xt], λ1 + S ≤ xt)

≥ P(S = y3t)P(λ1 ≤ (x− y3)t),

and

(4.44)
P(λ1 + S ≤ xt)≤ P(S ∈ [xt− 2t, xt], λ1 + S ≤ xt) + P(S ≤ (x− 2)t)

≤ 2t · P(S = y2t)P(λ1 ≤ (x− y2)t) + P(S ≤ (x− 2)t).

Using (4.36) and the explicit law (2.25) (with ζ = 1) of the random variable S we obtain the
estimates

P(S = yit)P(λ1 ≤ (x−yi)t) = e−t2(g⊕iTt)(x)+O(t), P(S ≤ (x−2)t) = e−t2g(x−2)+O(t).

Inserting these estimates back in (4.43) and (4.44), we obtain

e−t2(g⊕3Tt)(x)+O(t) ≤ P(λ1 + S ≤ xt)≤ e−t2(g⊕2Tt)(x)+O(t) + e−t2g(x−2)+O(t).

From Theorem 4.8 we know that λ1 + S satisfies a lower-tail LDP with speed t2 and rate
function F . Taking the − 1

t2 log of all terms in the previous chain of inequality and letting t
tend to +∞, we thus obtain

(4.45) limsup
t→∞

min{(g⊕2 Tt) (x), g(x− 2)} ≤ F(x)≤ lim inf
t→∞

(g⊕3 Tt) (x).

Note that (g ⊕ Tt)(x)≤ (g ⊕2 Tt)(x). Since (g ⊕ Tt)(x)≤ g(x− 2) + Tt(2) and Tt(2)→ 0
as t tends to∞ via Proposition 4.11, from the first inequality in (4.45) we deduce that

limsup
t→∞

(g⊕Tt) (x)≤F(x).(4.46)

For x≤ 2, we claim that

lim
t→∞
|(g⊕3 Tt)(x)− (g⊕Tt)(x)|= 0.(4.47)

Owing to the second inequality in (4.45), the above claim forces F(x) ≤ lim inft→∞(g ⊕
Tt)(x) for x ≤ 2. Combining this with (4.46) verifies (4.42) for x ≤ 2. Thus we are left to
show (4.47) for x≤ 2.

Fix any ε > 0 and x≤ 2. Since g(y)→∞ as |y| →∞ and supt>0,y≥0 |Tt(y)| ≤ 1− q, we
may find a sequence {zt}t such that supt |zt|<∞ and

g(zt) + Tt(x− zt)− (g⊕Tt)(x)≤ ε.

Clearly, zt ≤ x for all t. Let z be any limit point of the sequence {zt}t. We have

g(zt) + Tt(x− zt)− ε≤ (g⊕Tt)(x)≤ g(x− 2) + Tt(2).

Taking subsequential limit and using Proposition 4.11 we obtain g(z) ≤ g(x − 2). Since
x < 2, we have z ≥ x− 2. Note that Tt(t−1⌊tzt⌋) = Tt(zt). Since all limit points of {zt} are
in [x− 2, x] for all enough t we can ensure t−1⌊tzt⌋ ∈ 1

t Z∩ [x− 3, x]. Thus,

(g⊕3 Tt)(x)− g(⊕Tt)(x)≤ |g(zt)− g(t−1⌊tzt⌋)|+ ε.

Taking limsupt→∞ on both sides and noticing that ε is arbitrary, we arrive at (4.47).

Armed with the asymptotic midpoint convexity of Tt from Proposition 4.13 and the point-
wise convergence result from Proposition 4.14, we can now prove certain properties of F .
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THEOREM 4.15. The lower-tail rate function F is convex, continuous on the entire real
line and takes finite real values.

PROOF. The rate function F is decreasing and to prove its convexity it is sufficient to
show that F is midpoint convex. For this we take x,x′ ∈ R and we will show that

F
(
x+x′

2

)
≤ 1

2(F(x) +F(x
′)).

We are going to use the characterization (4.42) of F as a limit of g⊕Tt. By the definition of
infimal convolution, fixed x,x′ and an arbitrary small number ε > 0 we can find u, v,u′, v′

such that u+ v = x, u′ + v′ = x′ and

g(u) + Tt(v)≤ (g⊕Tt) (x) + ε, g(u′) + Tt(v′)≤ (g⊕Tt) (x′) + ε.

Let u′′ = (u+ u′)/2 and v′′ = (v+ v′)/2. By Proposition 4.13 we get, for t large enough

Tt(v′′ + 1
t )≤

1
2

(
Tt(v) + Tt(v′)

)
+ ε.

Clearly we also have g(u′′)≤ 1
2(g(u)+g(u

′)) and noticing that u′′+v′′ = 1
2(x+x

′) we have

(g⊕Tt)
(
x+ x′

2

)
≤ g(u′′ − 1

t ) + Tt(v
′′ + 1

t )

= g(u′′ − 1
t )− g(u

′′) + g(u′′) + Tt(v′′ + 1
t )

≤ g(u′′ − 1
t )− g(u

′′) +
1

2
(g(u) + g(u′)) +

1

2

(
Tt(v) + Tt(v′)

)
+ ε

≤ g(u′′ − 1
t )− g(u

′′) +
1

2

(
(g⊕Tt) (x) + ε+ (g⊕Tt) (x′) + ε

)
+ 2ε.

Now, using (4.42) and the fact that g is continuous we obtain that

F
(
x+x′

2

)
≤ 1

2(F(x) +F(x
′)) + 3ε.

Since ε is arbitrary, this proves the midpoint convexity of F . In addition to convexity, since
F is non-negative, decreasing, and has parabolic behavior for x ≤ xq via Proposition 4.4,
it follows that F(x) ∈ R for all x ∈ R. Finally, it is well known that a real-valued convex
function is continuous.

4.5. Proof of Theorem 1.3 and Theorem 1.5. In this section we prove Theorem 1.3. In
Theorem 4.8 we derived the lower-tail rate function of h(0, t)+χ+S and in Proposition 4.10

we obtain sharp estimates for the lower-tail probability of h(0, t)+χ d
= λ1 in terms of Tt. We

would first like to show that Tt converges pointwise. This will enable us to show the existence
of the lower-tail rate function of h(0, t) + χ. Using a deconvolution lemma (Lemma 4.18),
we can then obtain the lower-tail rate function of h(0, t).

To show the convergence of Tt, the following equicontinuity-type result is crucial.

PROPOSITION 4.16. For any ε > 0, there exists δ > 0 and tε > 0 such that

|Tt(x)−Tt(y)| ≤ ε,

for all t≥ tε and for all x, y ∈ [0,2] with |x− y| ≤ δ.

PROOF. Let x < y and assume y − x = δ. By the midpoint convexity stated in Proposi-
tion 4.13, for any fixed ε′, there exists tε′ such that

2Tt(x)≤ Tt(x− δ− 1
t ) + Tt(x+ δ) + ε′,
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for any t > tε′ , which implies

(4.48) Tt(x)−Tt(x+ δ)≤ Tt
(
x− δ− 1

t

)
−Tt(x) + ε′.

Consider a non-negative integer k such that

kδ+
k(k+ 1)

2t
≤ x < (k+ 1)δ+

(k+ 1)(k+ 2)

2t
.

Then, iterating (4.48) we obtain

Tt(x)−Tt(y)≤ Tt
(
x− kδ− k(k+ 1)

2t

)
−Tt

(
x− (k− 1)δ− k(k− 1)

2t

)
+ kε′

≤ Tt(0)−Tt(2δ+ 2k+1
t ) + kε′.

(4.49)

Next, we estimate the term Tt(0)− Tt
(
2δ + 2k+1

t

)
. Combining (4.15), Proposition 4.9 and

Proposition 4.14, we know that there exists xq such that

F(xq) = Tt(0) + g(xq) = lim
t→+∞

inf
y∈[0,2]

{Tt(y) + g(xq − y)} ,

where g(y) = ηqy
2/2. This implies that for any fixed ε′′ we can pick tε′′ such that

−ε′′ ≤ inf
y∈[0,2]

{Tt(y) + g(xq − y)} − Tt(0)− g(xq)≤ ε′′

for all t > tε′′ . Then, for any y ∈ [0,2] we have

(4.50) 0≤ Tt(0)−Tt(y)≤ ε′′ + g(xq − y)− g(xq) = ε′′ + y(y− 2xq)≤ ε′′ +My,

where M =−2xq + 2. Combining the estimates (4.49), (4.50) we arrive at the bound

(4.51) 0≤ Tt(x)−Tt(y)≤ ε′′ + 2Mδ+
M(2k+ 1)

t
+ kε′,

which holds for any t >max{tε′ , tε′′}. It is now clear that the right-hand side of (4.51) can
be made arbitrarily small, since k < 2/δ and ε′, ε′′ are independent of δ. Moreover, we can
also allow |x− y|< δ using the fact that Tt is decreasing. This completes the proof.

We now state two real analysis lemmas that will allow us to deduce the lower-tail rate
functions first for h(0, t)+χ and then for h(0, t). Their proofs are deferred to the supplement
material [29].

LEMMA 4.17. Let hn : R→ [0,∞] be a family of decreasing functions such that

• hn(x) = +∞ for x < 0, and there exists M > such that hn(x) ∈ [0,M ] for x≥ 0 and
supx≥2 hn(x)→ 0 as n→∞.

• For all ε > 0, there exists δ > 0 and nε > 0 such that for all n≥ nε and for all x, y ∈
[0,2] with |x− y| ≤ δ we have

|hn(x)− hn(y)| ≤ ε.

• Every subsequential limit of {hn} is convex.

Let g(x) = x2

2 ηq . Assume that (hn ⊕ g)(x) converges pointwise to a proper, lower-
semicontinuous convex function f(x). Then hn(x) converges pointwise to

h(x) = (f ⊖ g)(x) := sup
y∈R
{f(x− y)− g(y)}.

Moreover we have f = g ⊕ h, the function h is continuous on [0,∞), and the function f is
differentiable with derivative f ′ being ηq-Lipschitz.
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LEMMA 4.18. Let G : R→ [0,1] be a decreasing function with the property that

lim
x→∞

1

x2
logG(−x) = 0, lim

x→∞

1

x2
logG(x) =−∞.

Fix an open set O ∈ R. Suppose g : O→ R is a continuous function. Let {Xt}t≥1 be a se-
quence of random variables satisfying

lim
t→∞

1

t2
logE

[
G(Xt − xt)

]
= g(x)(4.52)

for all x ∈O. Then for all x ∈O we have

lim
t→∞

1

t2
logP

(
Xt ≤ xt

)
= g(x).

PROOF OF THEOREM 1.3. Fix µ ∈ (0,2). Recall Tt from (4.35). We would like to apply
Lemma 4.17 with ht = Tt to deduce that limt→∞ Tt(µ) exists. Note that {Tt} satisfies the
three conditions of Lemma 4.17. Indeed, the first condition follows from Proposition 4.9 and
Proposition 4.11, whereas the second one follows from Proposition 4.16. The third one is a
consequence of Proposition 4.13. Since by Proposition 4.14 we have g ⊕ Tt→F pointwise
and F is proper, lower semicontinuous and convex by Theorem 4.15, we thus have that

Tt(µ)−−−→
t→∞

Φ−(µ) := sup
y∈R
{F(y)− g(µ− y)}(4.53)

and Φ− is continuous on [0,∞). Due to the properties of Tt established in Propositions 4.9,
4.11 and 4.13, we readily have that Φ− is decreasing, non-negative and convex with Φ−(µ) =
+∞ for µ < 0, Φ−(0) = 1− q, and Φ−(µ) = 0 for µ≥ 2. But by the lower-tail estimate of
λ1 in (4.36) we have thus shown that

− lim
t→+∞

1

t2
logPcPlan(t(1−q))(λ1 ≤ µt) = Φ−(µ).

Recall that h(0, t) +χ
d
= λ1 from Theorem 2.5. To remove χ, we appeal to Lemma 4.18. For

every fixed q ∈ (0,1) consider the function Gq : R→ [0,1] defined as

Gq(y) := P(χ≤−y),

where χ∼ q-Geo(q). We claim thatGq satisfies the conditions in Lemma 4.18. Clearly,Gq is
decreasing. Since Gq(y) = 0 for all y > 0, the right tail condition in Lemma 4.18 is satisfied
trivially. Since limx→∞Gq(−x) = 1, the left tail condition also holds. Thus Gq satisfies the
conditions in Lemma 4.18. The utility of Gq function is that it allows us to write

P(h(0, t) + χ≤ µt) = E[Gq(h(0, t)− µt)].

Since Φ− is continuous on [0,∞), invoking Lemma 4.18 with G=Gq and g =Φ−, we see
that h(0, t) satisfies a lower-tail LDP with the same rate function Φ− and speed t2. This
completes the proof.

PROOF OF THEOREM 1.5. A few of the properties of F are already proven in Proposi-
tion 4.4 and Theorem 4.15. The remaining properties of F claimed in Theorem 1.5 follow
from Lemma 4.17.

5. Further approaches to the lower-tail. In this section, we outline two possible ap-
proaches to the explicit characterization of the lower-tail rate function.



LARGE DEVIATIONS FOR q-PNG 55

5.1. Non rigorous approach to characterization of F : nonlinear differential equations.
In [21], starting from a discrete Riemann-Hilbert characterization of the Fredholm determi-
nant (3.9), the authors derived a differential-difference equation for the quantity

Q(t, s) := PcPlan(t(1−q))(λ1 + S ≤ s),

which reads

(5.1) ∂2t logQ(t, s) +
1

t
∂t logQ(t, s) + 4 = 4

Q(t, s+ 1)Q(t, s− 1)

Q(t, s)2
.

When s is of order t, from the Large Deviation Principle (4.23) we have approximation

(5.2) logQσ(t, s) =−t2F(s/t) + o(t2),

where we recall that the function F is given by the variational problem (4.10). Plugging this
approximation in (5.1), assuming that the function F is twice differentiable (which we did
not prove), we find a closed equation for F as

(5.3) −4F(x) + 3xF ′(x)− x2F ′′(x) + 4 = 4e−F ′′(x),

where x= s/t.
Motivated by the fluctuation result (1.1) we expect that at x= 2, the behavior of F is given

by F(2) = F ′(2) = F ′′(2) = 0, since FGUE(s)∼ e−
|s|3

12 for s→−∞. A quick check shows
that these conditions also determine F ′′′(2). In fact deriving twice both sides of (5.3) we get

−xF ′′′(x) +F ′′′′(x)
(
4e−F ′′(x) − x2

)
− 4F ′′′(x)2e−F ′′(x) = 0,

which evaluated at x = 2 and assuming F(2) = F ′(2) = F ′′(2) = 0 leaves us with
F ′′′(2)(1 + 2F ′′′(2)) = 0. This forces, once we exclude constant solutions, F ′′′(2) = −1

2 .
These considerations motivate imposing the boundary conditions

F(2) =F ′(2) =F ′′(2) = 0 and F ′′′(2) =−1
2 .

In general, these boundary conditions do not guarantee uniqueness. We look for a one-
parameter family of solutions to this problem of the following particular form. Let us write

F(x) =
∫ x

2
dy

∫ y

2
dz logG(z),

in which case G(x), which needs to be positive for x > 0, solves the differential equation

G
(
4G′′ + x2(G′)2

)
= 8(G′)2 + xG2

(
xG′′ + G′

)
with boundary conditions G(2) = 1,G′(2) =−1

2 . In the following proposition, we introduce
a one-parameter family of solutions G.

PROPOSITION 5.1. For any c ∈ (0,+∞] and x ∈ (0,2) let G = Gc(x)> 1 be solution of
the equation

(5.4) log(G) =


2c√
c2−4

arctanh

(
cx
√

(c2−4)G−
√

(c2−4)2Gx2+16(c2−4)

(c2−4)x
√
G−
√

(c2−4)c2Gx2+16c2

)
if c ̸= 2,+∞

2− x
√
G if c= 2

log
(

4
Gx2

)
if c=+∞,

where √ is the principal branch of the square root. Then, Gc(x) solves the system

(5.5)

{
G
(
4G′′ + x2(G′)2

)
= 8(G′)2 + xG2 (xG′′ + G′) x ∈ (0,2)

G(2) = 1, G′(2) =−1
2 , G′′(2) = 1

2 −
1
4c2 .
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PROOF. Using the implicit function theorem we can verify that the implicitly defined
function Gc is in fact the solution of the desired differential system.

REMARK 5.2. When 0< c <+∞, the function G of (5.4) is defined on a larger interval
(x̃c,0) for x̃c < 0 and hence it solves the differential system (5.5) on a larger interval.

Leveraging these explicit solutions for the differential system for the function G we are
able to obtain solutions of the system (5.3) with the condition on the fourth derivative of F .

COROLLARY 5.3. Fix c > 0 or c=+∞ and consider the function Gc defined in Equa-
tion (5.4). Then, the function

(5.6) Fc(x) :=

∫ x

2
dy

∫ y

2
dz logGc(z),

solves the differential system

(5.7)

{
4F(x)− 3xF ′(x) + x2F ′′(x)− 4 + 4e−F ′′(x) = 0 x ∈ (0,2),

F(2) =F ′(2) =F ′′(2) = 0, F ′′′(2) =−1
2 , F ′′′′(2) = 1

4 −
1
4c2 .

REMARK 5.4. We can check that the function f(x) = ηq

2 x
2 + (1− q), which by virtue

of (4.15) coincides with the lower-tail rate function F(x) for x≪ 0 is in fact a solution of
the differential equation (5.3).

REMARK 5.5. In the particular case where c = +∞, the function G∞ is explicit and
given by G∞(x) = 2/x. Then, integrating twice as in (5.6) we obtain

F∞(x) = 1− 2x+
3x2

4
+

1

2
x2 log

(
2

x

)
,

which coincides with the lower-tail rate function of the PNG [74, 100, 35].

REMARK 5.6. In the study of the lower-tail rate function of the KPZ equation, an anal-
ogous idea to that discussed in this subsection was developed by Le Doussal in [70]. The
probability distribution of the KPZ equation with droplet initial condition obeys a variant of
the Kadomtsev–Petviashvili equation, as found in [89], which when scaled as in (5.2) gives
rise to a first order non-linear differential equation whose solution matches the lower-tail rate
function mathematically derived in [108, 19].

We end this subsection considering the case where c = 2 in the relation (5.4). Here the
function G can be written in terms of Lambert’s W function as

G(x) = 4

x2
W
(ex
2

)2
,

so that, integrating twice the logarithm of G we obtain the explicit expression

1− x2W
(ex
2

)
− 6x2

4W
(
ex
2

) − x2

4W
(
ex
2

)2 +
5

2
x2.

As a function of x the above expression can be connected in C1 manner to a parabola of the
form 1− q+ ηq

2 x
2 as

(5.8) F2(x) =


1− q2 + log q−1

2

2 x2 x < xq2
1− x2W

(
ex
2

)
− 6x2

4W( ex

2 )
− x2

4W( ex

2 )
2 + 5

2x
2 xq2 ≤ x≤ 2

0 x > 2,
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FIG 10. A plot of the piecewise defined function F2(x) of (5.8). The red curve corresponds to the parabolic
region of the curve, while the blue curve represents the region where xq2 ≤ x≤ 2.

where values q2, xq2 can be found numerically and they are q2 ≈ 0.00003724, xq2 ≈−0.1867.
A plot of the function F2 is given in Figure 10. We conjecture this behavior to be general, i.e.
that the lower-tail rate function F , for any q ∈ (0,1), possesses three behaviors: one where it
is identically 0 for x > 2, one where it assumes the form prescribed by (5.6) for x ∈ [xq,2]
and finally, for x < xq it is equal to 1− q+ ηq

2 x
2. The values of c,xq are determined by q and

they are unique if we require that F is C1. At the moment we cannot prove this statement as
we are not able to prove that the rate function Φ− is C2 in its domain of definition.

5.2. Potential theoretic approach to the minimizer ofW(q). We propose another possible
way of finding the exact form of the lower-tail rate function F(x), by solving an energy
minimization problem, closely related to the variational characterization (4.10). Recall the
functional W(q)(κ,ϕ;x) defined in (4.9). Consider first a “de-Poissonized" variant of the
functionalW(q) and the associate variational problem as

(5.9) W(q)(ϕ;x) := 1+ 2Ihook(ϕ) + V(q)(x;ϕ), U(x) := inf
ϕ
{W(q)(ϕ;x)}.

The function F(x) can be deduced from U(x) through a further minimization problem:

F(x) = inf
κ>0
{κU(x/

√
κ) + κ logκ+ 1− κ}.

A promising observation is that the functionalW(q)(ϕ;x) takes a special form, known as the
logarithmic energy (associated with certain external fields). To elaborate on this, first, we use
the following alternative representation due to Logan and Shepp [74, eqs. (2.9)-(2.11)] of the
hook functional Ihook:

(5.10) 2Ihook(ϕ) = log 2− 1

2

∫
R

∫
R
log |s− t|ϕ′(s)ϕ′(t)dsdt− 2

∫
R
ϕ
′
(t)(t log |t| − t)dt.

Recall that the notation ϕ was defined in (4.1). On the other hand, a simple integration by
parts implies that the functional V(q) can be expressed as

(5.11) V(q)(ϕ;x) =−ηq
∫

R
[t− x]+ϕ

′
(t)dt.

Combining (5.10) (5.11) with (5.9) we recast the problem of minimizing the q-deformed
hook functional W as that of minimizing the functional Jη,x : Y1 −→ R defined by

(5.12) Jη,x(h) =−1
2

∫
R

∫
R
log |s− t|h′(s)h′(t)dsdt−2

∫
R
h′(t) (t log |t| − t+ η[t− x]+)dt,
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with η > 0 and x ∈ R. The functional Jη,x(h) is, up to a scaling factor 1
2 , the logarithmic

energy [94] associated to the measure dh := h′(t)dt, with the external field given by

Vext(t;η,x) :=−4(t log |t| − t+ η[t− x]+).

Finding the minimizer (known as the equilibrium measure) of certain logarithmic energy
functionals is a well-studied problem in potential theory literature and has applications to
random matrix theory and many other mathematical physics problems. One has the follow-
ing standard necessary condition for a function h0 ∈ Y1 to be the minimizer (see e.g. [93,
Theorem 1.16] and [74]): Defining

p(t) :=−
∫

R
h′0(s) log |s− t|ds− 2(t log |t| − t+ η[t− x]+) + λt,

where the parameter λ ∈ R is the Lagrange multiplier. Then for a minimizer h0, the function
p must satisfy the following Euler-Lagrange type equations:

p(u) is


= 0, if sign(u) · h′0(u) ∈ (−2,0)
≤ 0, if h′0(u) + sign(u) = 1

≥ 0, if h′0(u) + sign(u) =−1.

Taking a (weak) derivative of p we see that on {u : sign(u)h′0(u) ∈ (−2,0)}, one must have

(5.13)
1

π
P.V.

∫
h′0(y)

y− u
dy =− 2

π
log |u| − 2η

π
1[x,+∞)(u)−

λ

π
,

where P.V. stands for the Cauchy principal value. We are not able to solve the Cauchy integral
equation (5.13) explicitly. The main difficulty is due to the fact that we do not know a priori
the form of the support of h′0. An ansatz of the form supp(h′0) = ∪ki=1(ai, bi) leads to highly
transcendental relations on the endpoints which are not straightforward to solve (see [112, 10]
for solutions to simpler versions of the above problem). We hope to explore this direction in
a future work.

We end this subsection by remarking that solving certain energy-minimization problems
similar to that of (5.12) is also the starting point for a nonlinear steepest descent analysis
of the Riemann-Hilbert problem (as mentioned earlier, the relevant RHP for q-PNG was
introduced in [21]). Indeed, such analysis usually starts with finding a so-called g-function as
a conjugating factor such that the transformed RHP behaves properly at∞. The construction
of such g-functions is a potential-theoretic problem that we expect to be rather involved for
the q-PNG case.

Riemann-Hilbert methods have long been used as a powerful tool for studying the tail be-
haviors of Fredholm determinants, especially in the oscillating regimes, see e.g. [6, 34]. More
recently, a similar but more involved analysis has been implemented for finite-temperature
models, see [19, 20, 22]. The discrete nature of the RHP associated with q-PNG seems to
lead to additional technical difficulty for a suitable nonlinear steepest descent analysis.
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SUPPLEMENTARY MATERIAL

Supplement to “Large deviations for the q-deformed polynuclear growth”.
The supplementary material contains the proofs of the two lemmas, Lemmas 4.17 and 4.18,
that are skipped in Section 4.5.
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