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The causal effects of continuous treatments are often characterized
through the average dose response function, which is challenging to esti-
mate from observational data due to confounding and positivity violations.
Modified treatment policies (MTPs) are an alternative approach that aim to
assess the effect of a modification to observed treatment values and work
under relaxed assumptions. Estimators for MTPs generally focus on esti-
mating the conditional density of treatment given covariates and using it to
construct weights. However, weighting using conditional density models has
well-documented challenges. Further, MTPs with larger treatment modifica-
tions have stronger confounding and no tools exist to help choose an appro-
priate modification magnitude. This paper investigates the role of weights
for MTPs showing that to control confounding, weights should balance the
weighted data to an unobserved hypothetical target population that can be
characterized with observed data. Leveraging this insight, we present a ver-
satile set of tools to enhance estimation for MTPs. We introduce a distance
that measures imbalance of covariate distributions under the MTP and use it
to develop new weighting methods and tools to aid in the estimation of MTPs.
Using our methods we study the effect of mechanical power of ventilation on
in-hospital mortality.

1. Introduction. Understanding the causal effects of changes in doses or otherwise con-
tinuous values of a treatment is important in many scientific disciplines. A typical approach
to quantifying the causal effect of varying a continuous treatment is to estimate the causal
average dose response function (ADRF), which is the expected potential outcome as a func-
tion of all possible or likely treatment values. In our motivating application, the treatment
is the mechanical power of a ventilator applied to patients in intensive care who have acute
respiratory distress syndrome. In this setting, the ADRF is the expected in-hospital mortality
as a function of the power of ventilation. While the ADRF provides an intuitive way to eval-
uate the causal effect of a continuous treatment, its estimation requires one to assume that
every individual could hypothetically receive all possible values of the treatment, which is
often unlikely in practice as some values may be clinically unlikely or impossible for subsets
of the population. For example, in mechanically-ventilated patients with acute respiratory
distress, ventilation guidelines restrict the values of mechanical ventilation settings based on
measures of the patient’s condition, making it impossible in practice for some patients to
receive some ranges of settings. Thus, use of the ADRF in this setting may not have clini-
cal meaning. Moreover, confounding is exacerbated in causal ADRF estimation because the
characteristics of subjects with a higher treatment value may differ substantively from those
with a lower value. For example, ventilation guidelines suggest explicit actions be taken with
regards to mechanical ventilation settings based on patient characteristics, inducing strong

Keywords and phrases: Continuous Treatments, Covariate Balance, Balancing weights, Causal Inference, Ob-
servational Studies.


https://imstat.org/journals-and-publications/annals-of-applied-statistics/

2

and complex confounding. Additionally, the performance of causal ADRF estimators is of-
ten poor (i.e. cannot attain root-n consistency nonparametrically), even with flexible, doubly
robust methods (Kennedy et al., 2017).

Alternative definitions of causal effects in this setting have been introduced in part to
help alleviate some of these problems while still providing clinically useful results. One of
the alternatives is to imagine a hypothetical world where the treatment may be a random
or deterministic function of the observed treatment value (Stock, 1989; Robins, Hernan and
Siebert, 2004). Mufioz and Van Der Laan (2012) proposed stochastic interventions which
focus on the effect of assigning each subject’s intervention based on a random draw from
a given distribution depending on their own characteristics. Haneuse and Rotnitzky (2013)
further proposed modified treatment policies (MTPs) which generalize the idea of stochastic
interventions. Each subject’s counterfactual treatment under a given MTP is defined as a
function of their baseline characteristics and their observed values of the treatment without
the MTP (the “natural” value of the treatment); the MTP thus imagines a slight manipulation
of each individual’s treatment value from their actual values. The estimand is then defined
as the expected potential outcome under the specified manipulation. For example, in our
motivating application, one could estimate the effect of slightly reducing the mechanical
power of ventilation, compared with standard of care, on in-hospital mortality among patients
in the intensive care unit (ICU) with acute respiratory distress (Neto et al., 2018).

MTPs can help policymakers evaluate hypotheses about the treatment and generate practi-
cal interventions that can be later tested via experiments. Another advantage of MTPs is that,
by imagining counterfactual worlds where the treatment is modified slightly from reality, the
corresponding counterfactual world is not substantially different from reality, making posi-
tivity hold by construction. This further allows for studying interventions that do not differ
starkly from current practice, potentially helping clinical uptake of findings. MTPs are an
attractive tool for causal inference as they can be quite general and can be used in a wide va-
riety of settings. For example, Diaz et al. (2021) generalized MTPs to time-varying treatment
settings and Diaz and Hejazi (2020) developed stochastic interventions for causal mediation
analysis.

Confounding is a major hurdle in causal inference from observational studies, both for
standard estimands and for MTPs. Weighting approaches to confounding control re-weight
each subject to balance the distribution of the covariates and do not require the use of out-
come information. Traditionally, weights are generated through inverse-probability weight-
ing (IPW) which models the treatment assignment mechanism given covariates and inverts it.
However, the performance of IPW relies critically on the choice of the propensity score model
and model misspecification can result in severe bias (Kang and Schafer, 2007). Alternative
weighting methods have been proposed to mitigate this issue in the setting of estimating stan-
dard causal effects of discrete-valued treatments by using weights that encourage (Imai and
Ratkovic, 2014) or enforce (Hainmueller, 2012) balance of pre-specified moments of covari-
ates. Particularly relevant to our article is the work by Huling and Mak (2024) who consider
weights that minimize the energy distance between the weighted empirical distribution of
the intervention groups and the joint population, aiming to balance the full joint distributions
of covariates. This nonparametric distributional balancing approach has been shown to work
empirically well with minimal need for careful modeling decisions.

Several challenging issues remain unresolved for weighting methods for MTPs. Exist-
ing weighting methods for MTPs have focused on the estimation of the conditional density
of treatment given the covariates, also known as the generalized propensity score (GPS);
weights are a ratio of the GPS at two different values. Mufioz and Van Der Laan (2012) and
Haneuse and Rotnitzky (2013) both proposed weighting estimators based on estimation of
the GPS. Diaz et al. (2021) proposed weights based on direct modeling of the density ratio.
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These methods show great promise, but their success hinges on accurately specifying the con-
ditional density or density ratio model. Yet, estimating a conditional density is highly chal-
lenging especially with an increasing number of covariates (Huling, Greifer and Chen, 2023).
Even slight misspecification of the estimated density function from the truth can impact the
performance of the IPW-style estimators of the ADRF (Naimi et al., 2014); these issues per-
sist in the estimation of MTPs. As the role of covariate balance has not been explored for
MTPs, no balancing weight methods exist for them, excacerbating these challenges. More-
over, the impact of weights on finite sample performance is not yet fully understood and no
diagnostic tools are available to assess the performance of a given set of weights or to un-
derstand whether a given set of weights is likely to yield an unconfounded comparison for
a given dataset. As MTPs involve investigating the effect of a shift of treatment values from
their observed values, larger shifts are likely to yield analyses with more confounding and
with more potential for positivity violations. Yet no tools exist that can assess what range
of shifts in a class of MTPs are “safe” (i.e. have confounding that can be fully adjusted us-
ing a given weighting method) for a given application. Clear guidance is thus needed for
practitioners to determine an appropriate magnitude of the MTP shift.

In this work, we introduce distance-based tools that provide solutions to the aforemen-
tioned issues. Based on the extension of the identification result of the modified treatment
policy from Haneuse and Rotnitzky (2013), we clearly define the form of the target counter-
factual population for an MTP (i.e., MTP-shifted population) and provide a clear mathemat-
ical expression of it. Even though the target population is purely hypothetical, we show its
distribution can be estimated using the observed data, a fact used extensively in our methods.
This builds the connection between the complex problem of MTPs and stochastic interven-
tions and the well-understood problem of covariate balancing. By examining the role of the
weights in finite sample error of a generic weighting estimator, we present a novel error de-
composition to show that the estimation error of a weighted estimate for the causal effect of
MTP is directly related to the imbalance of the weighted empirical distribution (referring to
the empirical distribution of the weighted observed sample) and the MTP-shifted empirical
distribution. We provide a measure of this distance with a modification of the energy distance
(Székely and Rizzo, 2013), a computationally simple measure of the distance between two
multivariate distributions, however other distributional measures can also be used. It has been
used to measure distributional imbalance in the context of categorical treatments (Huling and
Mak, 2024) and to quantify dependence between continuous treatments and confounders
(Huling, Greifer and Chen, 2023). In this paper, we provide 1) a novel testing framework
for the assessment of a feasible range of shifts for a class of MTPs for arbitrary weighting
methods for a given dataset and 2) methods for comparison of different weighting methods
for MTPs. Finally, we introduce energy balancing weights for MTPs, a weighting approach
for MTP estimation which reduces distributional imbalance to the target population, reducing
sensitivity of findings to model misspecification of the conditional density function. Although
this paper primarily focuses on MTPs, we show that our error decomposition, methods, and
setup are straightforwardly extended to stochastic interventions (Kennedy, 2019; Diaz and
Hejazi, 2020; Hejazi et al., 2023), allowing the use of our methods for a far broader class
of settings beyond MTPs. See Section 2.3 and Supplementary Material Section 3 for more
detail. We conclude our manuscript with an analysis of the impact of changes to mechanical
power of ventilation from current practice on in-hospital mortality.

2. Setup.

2.1. Causal framework for modified treatment policies (MTPs). Consider data {X;, 4;,Y;}7 ,
collected from an observational study, where X; € X C R? denotes a p-dimensional vector
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of pre-treatment covariates for subject 7, A; € A C R denotes the received value of the treat-
ment, and Y; € R denotes the outcome. Here we assume A; is a continuous treatment variable
(e.g., the taken dose of a treatment for individual 7). We adopt the potential outcome frame-
work in which we assume that for each subject 7, there exists a potential outcome Y,* defined
as the outcome that subject ¢ would have if subject ¢ is intervened on to take the treatment
at value A = a. An MTP analysis starts with an analyst-specified treatment policy ¢(x,a)
that inputs patient characteristics and observed treatment values and outputs a modified value
of the treatment. The goal of an MTP analysis is to estimate the mean potential outcome
1 = E[Y9X:4)] under this policy; this can then be contrasted with the average observed
outcome E[Y 4] = E[Y] to understand whether the policy improves or harms outcomes on
average. To ensure Y, is well-defined (i.e, Y;* is unique for a given treatment level a and
subject ), we assume the following consistency condition:

* (AO Consistency): For any subject 4 in the population, if A; = a then ¥; =Y;*.

One of the main strengths of MTPs is that they can satisfy the positivity assumption by
construction. In many scientific applications, it is not realistic for some patients to have ex-
treme values of treatment, e.g. extremely low mechanical power of ventilation for patients
who have serious respiratory symptoms (see Section 8 for the case study). As such, calcu-
lating the causal effect of an arbitrary treatment value a may not be meaningful since this
treatment value may not be feasible or applicable to the entire population. Alternatively, as
in the work of Haneuse and Rotnitzky (2013), MTPs can be justified with a much weaker
assumption on positivity (see assumption Al below). Specifically, by carefully designing the
MTP ¢(x,a), we can be more confident that for subject ¢ with covariate x; and observed
treatment a;, there is a positive density to observe a subject with the same covariate x; and
treatment value ¢(x, a).

MTPs are pertinent to clinical practice, as they can provide insight into how modifica-
tions to clinical practice could have changed patient outcomes. By considering the effects
of a collection of MTPs, researchers can gain insights into the underlying mechanisms that
lead to different outcomes and identify potential strategies for improving patient outcomes.
For example, to evaluate a care policy that encourages a slight reduction in intensity of me-
chanical ventilation, we could estimate the causal effect of the MTP ¢(x,a) = a — 2 which
reduced mechanical power for all subjects by 2 Joules/min compared with current standards.
The MTP could be further refined to modify the amount of reduction differently for people
with different characteristics or prior ventilation patterns.

For any (z,a) € (X,.A), where (X, .A) is the joint support of X and A, we can define
E(Y4®2)| X = x, A= a) to be the expected potential outcome averaging over all subjects
who have X = @, A = a. The mean potential outcome of the MTP ¢(x,a) is then the mean
of the conditional average potential outcome E(Y 4(®®)| X =z, A = a) over the entire pop-
ulation, i.e.,

(1) pud = / E[Y9®D| X =z, A= a]dFx a(z,a)
(X,A)

where F'x 4(x,a) is the distribution function of (X, A). In order to make the integral well-
defined, we follow Haneuse and Rotnitzky (2013) to assume the continuity of E[Y %(®:2)| X =
x,A =a] over (z,a) € (X,.A) and continuity of Pr(A|X = x) over € X. In order to
estimate the causal effect from observational data, ;9 needs to be causally-identifiable. In
other words, we need to express u? as a function of the distribution of (Y, X, A). From
Haneuse and Rotnitzky (2013), u? can be identified with the following assumptions:

* (Al Positivity): If (z,a) € (X, .A) then (x,q(x,a)) € (X, A).
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* (A2 Conditional exchangeability of related populations) For each (x,a) € (X, A), leta’ =
q(x,a),then Y| X =x,A=aand Y| X = x, A = o’ have the same distribution.

The positivity assumption states that for each subject in the population, it is always possible
to find some other subjects who have the same covariates and receive the modified treatment.
The second assumption state that the potential outcome of the modified treatment will not
be affected by the original treatment allocation. In other words, subjects with X = & who
received treatment a could have received treatment ¢(x, a). The difference between A2 and
the usual no-unmeasured confounders assumption is that the latter is much stronger, as it
requires the subjects with X = x who received treatment a could have received any possible
dose a’ € A, where Ay :={a: (x,a) € (X,.A)} be the support of A given X = .

In order to have a closed-form derivation of our proposed estimator, we further require the
MTP to have a piecewise differentiable inverse function.

* (CI1 Piece-wise smooth invertibility): For each x € X, there exists a partition {/; » }JJS)
of A, where ¢(x, -) is smooth and invertible within the partition. Specifically, let ¢;(zx, -)
denote the function ¢(x, -) on the I; 5 part. Then ¢;(z, -) has differentiable inverse function
hj(z,-) on the interior of I 5, such that h;(x,¢;(x,a)) =a

Under Condition C1, for a given T € X, the MTP q(a: a) can be expressed as the sum of

the functions {g;(zx, a)} 1 on each interval {I]T,}] 1), q(xz,a) = Z;’g) Ijz(a)gj(z,a)

where [; ;(a) be the 1ndlcator function s.t. I z(a) =1if a € I 5 and I »(a) = 0 otherwise.
Condition C1 is important, as it allows us to cleanly express the expected potential outcome
under the MTP as a function of the observed data distribution. With C1, we have the following
identification result that extended from Haneuse and Rotnitzky (2013),

2) Mq:/ Z/h( E(Y|X =, A = a)dFx.(x, hj(, a)).

The proof is in the Supplementary Material Section 7.

2.2. Novel error decomposition for weighted MTP estimators. We present a novel error
decomposition that allows a clear inspection of the role of sample weights in finite sample
errors when estimating p¢ using weighting methods. This decomposition provides insights
that enable us to provide a measure of confounding bias as a function of the sample weights.
This measure then allows us to provide tools that compare weights and further tools to assess
when a given MTP is so far from the observed treatments that measured confounding is
excessive and/or too difficult to control with weights.

Denoting p(x,a) = E(Y|X =x, A=a), we have Y; = (X, A;) + €; where ¢, = Y; —
w(X;, A;) is the error term with mean zero. We can express the estimand (2) as

(3) ul :/ p(x,a)dFy 4(x,a), where
(X,A)

(4) FY j(x,a)= ZI, i(®,a))Fx a(®, hj(z,a))

and Fx a(x,a) is the CDF of (X ,A). In the Supplementary Materials Section 7.2, we
prove that F§ ,(x,a) is the CDF of (X,¢(X, A)), as long as ¢(x,a) has the property that
lim 5 4y —oco ¢(®, @) = —00 and lim 4 4)—,00 q(x, a) = co. The significance of (3) will be
made clear in our error decomposition below.



In this paper, we focus on weighted estimators of ¢ which do not require one to use
outcome information, allowing the analyst to conduct objective causal inference. A weighting
estimator with arbitrary sample weights w = (wq, ..., w,) can be expressed as:

szYtL— szﬂ XzyA szez

For the following, we further require that ) ;" | w; = nsothat F}, 4y x,4 = 1 Z? Twil (X; <
x, A; < a) can be interpreted as a weighted empirical CDF of the the covarlates and treatment
values. Now, we can express the error of a weighted estimator /i, with arbitrary weights as:

(5) ﬂgu - Auq = / M(ma a)d(Fn,w,X,A - FS,X,A)(ma CL)
(X,A)

error due to confounding

1 n
(6) [ @l - P )+ Y wie
(X,A) o ’ et

TV
sampling error

where F! y (@,a) = 2 Y71 123 1 Lx, (A)I(X; < x,q;(X;, Ai) < a) is the empiri-
cal estimator of the shlfted distribution FX 4- The error decomposition emphasizes the im-
portance of sample weights in mitigating bias. The second term is sampling error. The third
term is affected by the variance of the weights, however, it always has mean 0. Thus, bias can
be mitigated by minimizing the first term f(X,A) p1(x, a)d(Fyw x4 — Fl x 4)(x,a) which
depends on the distance between the two distribution functions and the form of the outcome
function u(x, a)

Note that F? nx A(®, a) is the empirical CDF of the MTP-shifted random variable
(X,q(X,A)) and F, o x a(@,0) = 23" w,[(X; < x, 4; < a) is the weighted em-
pirical CDF of random variable (X, A). Thus, the term f(X,A) p(x, a)d(Fpawx,A —
Fg’ x,4) (%, a) depends on both the weights w and the pre-specified modified treatment pol-
icy q(«,a). Larger shifts on the MTP will tend to lead to the larger difference between the
distribution of (X, ¢(X, A)) and (X, A) which can make the confounding bias term larger,
generally speaking.

The significance of the error decomposition above is that both the key distributional terms,
Fpw,.x,A(x,a) and ng x4 (@, a), contributing to the error term in (5) are entirely functions
of the observed data. Thus, while the outcome function is unknown, it is possible to compare
Fyw,x,A(x,a) with Fg} x4 (@, a) to characterize bounds on bias due to measured confound-
ing.

2.3. Extension to stochastic interventions. Although our paper is focused on the modi-
fied treatment policy effect, most of the assertions can be easily extended to the context of
stochastic intervention which is an alternative causal framework for estimating the effect of
continuous intervention (Mufioz and Van Der Laan, 2012; Diaz et al., 2021; Kennedy, 2019).
Instead of fixing the shifted intervention ¢(X, A) to a single, deterministic value, stochastic
interventions take the shifted intervention value as a random draw from a modified interven-
tion distribution. In Supplementary Material Section 3, we establish an error decomposition
result analogous to (5) for the estimation of the stochastic intervention effects. As a result,
all of our proposed tools are directly applicable to stochastic interventions, allowing for a far
more general use of our methods.
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3. Weighted Energy Distance for MTPs. With the key component of confounding bias
in weighted estimates of the causal effect of an MTP, the next step is devoloping an outcome-
agnostic manner measure or bound of the magnitude of (5) for a given set of weights. Doing
so would enable evaluation of a set of weights in the specific context of a given MTP for a
given dataset. A challenge in quantifying the bias term is that it depends on 1) an unknown
mean function and 2) the distance between a weighted and an MTP-shifted distribution. Since
the bias component f(?aA) (@, a)d(Fnw,x,4 — Fy x 4)(,a) is an integral over the dif-
ference of the two empirical distributions, a metric that can measure the distance between
these two distributions can be used for this purpose. In this paper, we adopt the energy dis-
tance (Székely and Rizzo, 2013; Huling and Mak, 2024), a metric based on powers of the
Euclidean distance, for use in estimating weights that minimize the key component of the
confounding bias. Although there are other measures of distributional distance, we focus on
the energy distance due to its simplicity and lack of need for tuning parameters, making it
a widely applicable tool for a broad range of investigators. However, other distances can be
used in its place, such as the maximum mean discrepancy (MMD) which is the distance of
two distributions embedded to the reproducing kernel Hilbert spaces (RKHS). MMDs with
the distance kernel have been shown to be equivalent to the energy distance when it is calcu-
lated with a semimetric of negative type (Sejdinovic et al., 2013). In Supplementary Material
Section 2.2, we show an MMD formulation as an alternative measure.

Following Huling and Mak (2024), we generalize the energy distance (see Supplementary
Material Section 2.1 for the definition) to the weighted energy distance which measures the
distance between the weighted empirical CDF F;, o, x 4 and the MTP-shifted empirical CDF

Fo x40
5(Fn7w,X,A’ Fg X, A)

n n J(Xk)

n2{zxzz S L, (Awil|(X s, A7) — (X (X A2
=1 k=1 j=1
=Y wiwg (X, Ai) = (X, Ap) |2
i=1 k=1
)
J(X:) n J Xk)

oy (DT, (AW (61005 (X5, A0) = (K (X A0 -
i=1 j=1 k=1 j’

Since the MTP-shifted empirical CDF F? , , can be viewed as the empirical CDF for the
sample {X;, ¢(X, A;)};, we can define its empirical characteristic function as

®)

n J(X.) n
1 1 .
Pn.x.a(t = DY Ix (A exp(it” (X, (X, Ai))) = - > exp(it” (X4, Q)
i=1 j=1 i=1

where @Q; = q(X;, A;). Székely and Rizzo (2013) and Huling and Mak (2024) demonstrate
that the energy distance is some (predefined) norm about the two distribution’s characteristic
functions. We extend the result from Huling and Mak (2024) and prove that, in the context of
MTP, the defined weighted energy distance is a distance between the intended distribution,
ie.,

©) EFnx s Fle )= [ lonmaxalt) = x sOF it
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where w be a vector of weights such that Y " ,w; =n and w; > 0 for Vi, v(t) =
1/(Cqllt| Hiﬁ), Cy is a constant, d = p+ 1 is the dimension of the variate (X, A), ¢}, x 4(t)
is the characteristic function of F;i x40 and ©na X, At) = %Z?Zl w;et” (XoA) g the
weighted empirical characteristic function (ECHF) of sample {X;, A;}7" ;. Therefore, the
weighted energy distance can be used to determine whether the weighted distribution is ap-
proaching the MTP-shifted distribution (i.e., the empirical distribution of (X, ¢(X, A))).

The following shows that the weighted energy distance converges to the energy distance
between the limiting CDF and the MTP-shifted CDF I ;1(, A

THEOREM 3.1.  Assume limy,,_,oc ¥ w, x A(t) = @x,4(t) almost surely for Vt, where
Ox A(t) is some integrable characteristic function with associated CDF Fx 4. Then we
have almost surely
(10) lim E(Fnw,x.4,F x 1) = E(Fx .4, Fx 4)-

We now build the connection between the key error term (5) and the energy distance.
Suppose that 11(-) € H where H is the native space induced by the radial kernel ®(-) = —||-||2
on (X, A), for any weights w satisfying Z?:l w; =n, w; > 0, then from the results of Mak
and Joseph (2018) and Huling and Mak (2024), we have

2
(11) [ /( )u(w)d(FZ,X,A—Fn,w,x,Axw,a) < Cal(Fy x s Frw x,4);
AX

where 0 < C,, = (i, pt) is a constant depending only on p(x,a); here, (-) is the inner product
in H.

Since (5) is the key component of the bias, this result therefore connects the bias with the
distributional balance. It states that under the condition that the conditional mean function
u(x, a) belongs to H, the key component of the bias is bounded by the energy distance. Here
we emphasize that H contains a wide class of functions. For extended discussion and details
of the specific form of the native space, readers can refer to Mak and Joseph (2018).

Of import for practical use, we note that the weighted energy distance depends on the
scales of both X and A. Therefore, in order to make the distance unaffected by the mea-
surement scale of X or A, we suggest standardizing covariates and treatment to have unit
variance.

4. Using weighted energy distance for MTPs. In this section, we introduce several
important tools that facilitate and enhance the application of MTP techniques. In particu-
lar, these tools help provide critical and rigorous guidance on important decisions necessary
within the MTP framework. Each of the tools is based on the weighted energy distance due
to its connection with estimation bias for MTPs. The first tool centers on determining a rea-
sonable range of treatment policies that can be reliably addressed with a given weighting
approach. The second involves assessing arbitrary weighting approaches in their ability to
control for measured confounding for a specific dataset and MTP, enabling researchers to
determine the most effective weighting method for confounding control.

4.1. A framework for choosing a feasible MTP scale for a given weighting method.
When exploring the causal effect of an MTP, the magnitude of the modification then de-
termines how different the treatment under the MTP is compared with assigned treatments
in reality. Larger magnitudes or scales of an MTP’s modification to treatment values may
allow researchers to explore a wider variety of effects, yet more extreme policies differ more
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FIG 1. An illustration of our method for selecting a feasible MTP scale based on four simulated datasets. The
X-axis represents the MTP scale, with larger values of T indicating larger shifts in the treatment value. The blue
curve shows the energy distance after weighting, while the green curve represents the calculated permutation
threshold. The yellow area of the plot indicates values of T for which the weighted energy distance exceeds
the permutation threshold, indicating uncontrolled measured confounding. The estimation error is plotted as
a function of T (red curve). The error tends to increase substantially when employing MTP magnitudes with
identified risk of bias.
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starkly from reality, making confounding more severe and thus more difficult to control ade-
quately. Thus, the scale of the intervention or modification must be chosen carefully. In this
section we develop a formal hypothesis testing framework to provide explicit guidance for
this choice.

From the error decomposition in Section 2.2, bias operates only through the term (5) which
depends on the difference between the weighted empirical CDF for the observed population
and the MTP-shifted empirical CDF for the target population. If the MTP scale is too large, a
given set of weights or weighting approach may not properly balance these two populations
to have the same distribution, leading to a greater potential for bias in the estimator. To
address this issue, we propose a method based on the weighted energy distance to identify
a scale of intervention for a given class of MTPs for which a given weighting approach can
adequately balance the two populations and thus adequately control for confounding. By
doing so, researchers can ensure that the MTP scale is not too large to be estimated well,
reducing potential for bias.

In the ideal scenario that the balancing weights perfectly balance the observed population
{w;- (X, A;)} to the MTP-shifted population { X ;, ¢(X;, A;) }~; for an MTP, measured
confounding is completely controlled for. Thus, denoting Fyy, x 4 (X, a) = E[F), » x a(x,a)]
our method therefore focuses on the following null and alternative hypotheses:

Ho: Fyx a(x,a) = Fx 4(x,0) Y(x,a) € (X, A) vs. Hy : Fiy x,4(X,0) # Fx 4(X,a).
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Rejecting H| indicates that the given balancing weights do not perfectly balance the observed
population’s joint distribution of covariates and treatment to that of the counterfactual MTP-
shifted population; thus, the alternative hypothesis represents scenarios where confounding
has not been adequately controled, because the given weights are inadequate for confounding
control for the given MTP. Some weighting methods may work well for smaller MTP mag-
nitudes, but fail when the MTP’s modification is more extreme. Carrying out a test to assess
the above hypotheses is especially challenging, as unlike Rizzo and Székely (2016) where
they use the energy statistic to test the equal distribution of two independent samples, in our
scenario, the observed sample and the MTP-shifted sample are pair-to-pair correlated (since
they are derived from the same sample points). To handle this issue, we randomly partition the
sample data { X;, A;}!" ;| into two subsamples { X, , Ay, }Zfl and {X j,, Ay, }Zfl where [
and J are complementary index sets with equal size, without loss of generality. We use the
first subsample to form the weighted observed subsample wy, - { X1, , Ay, }Zi 21 and the sec-

ond to form the MTP-shifted subsample {X ;,,q(X s, A]k)}Zi 21 Due to the random sam-
pling, we have that f(X’A) Fowx al@,a)dFx 4 = f(X,A) Fr/omw,x,,4, (T,a)dFx 4 and
Fy .= f(X,A) Fl x a(®,a)dFx 4 = f(X,A) Fg/2’XJ7AJ(:1:,a)dFX7A. We can then use the
permutation test described in Lehmann, Romano and Casella (1986) Section 15.2 using
the weighted observed subsample and the MTP-shifted subsample. Since for any ki # ko,
(X1,,,Ar,) and (X, Ap, ) are independent, our partition ensures that the two samples
are mutually independent, thus satisfying the “randomization hypothesis” required in Theo-
rem 15.2.1 from Lehmann, Romano and Casella (1986) under permutation.

We use the weighted energy distance between the two subsamples as the test statistic
T =E(Fy/2mw,,%:,A; Fg/Z,XJ,AJ)' (Székely, Rizzo and Bakirov, 2007) have shown that, for
two independent samples, this test statistic converges in distribution to a quadratic form of
independent standard normal random variables under the null hypothesis of equal distribution
and tends to infinity stochastically under the alternative hypothesis. From the Theorem 15.2.1
in Lehmann, Romano and Casella (1986), the permutation test will have level o under Hy.
The critical value for the hypothesis testing is determined by the permutation randomization
described in the following algorithm:

Determining whether the MTP scale is feasible for a given weighting approach

Input: Data { X ;, A;}7_{, MTP g, and balancing weights w.
Randomly partition the data into two parts indexed as I and J and calculate the test statistic:

— q
T= 6(Fn/27w17XIvAI ’ Fn/Q,XJ,AJ)
. 1 n/2 n/2
Combine the data as {w;, X, A;}1L = ({wlk,XIk,Alk}kil,{ka,XJk,q(XJk,AJk)}kil)
where wj, =1fork=1, /2.
For b =1 to B-th iteration:
Randomly partition the combined data into two parts indexed as / b and J°

Calculate the test statistic: T, = E(F L5 - L F U e
b ( n/2=w1b7XIb7A]b7 n/27wa7XJb7AJb)

End For

Calculate the critical value TP as the upper 0.95th quantile of the permutation sample {Tb}le.
Reject Hy if TP < T..

We illustrate this new approach through a simulated example using our novel energy bal-
ancing weights (described in more detail in Sections 5 and 6). Simulated data are generated
using the first condition of our simulation experiments described in Section 7 with n = 200
and dimensionality p = 10. We adopt the shift function ¢(x,a) = 7¢(x,a) where G(x,a) is
the shift function we used in our simulation study and 7 ranges from [0, 10] in increments of
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FIG 2. The histogram depicts the association between the rank of estimation error and the rank of weighted
energy distance using the same data as in Figure 2. The x-axis of each plot is the rank of each method in terms
of performance. The figure shows that, in most cases, the method with the lowest weighted energy distance yields
the best performance.

3 4

0.1 and controls the magnitude of our MTP. Larger values of 7 represent the larger discrepan-
cies from the original treatment. For each 7, we calculate the weighted energy distance as the
test statistic, the error of the energy balancing weights estimator, and the 95% upper quantiles
of the permutation sample. Figure 1 displays four general scenarios with different random
seeds. The energy distance for the energy balancing weights increases with a larger MTP
scale 7; along with this increase, the absolute error of the estimator also increases mostly
monotonically. The vertical dashed line indicates the intersection of the energy distance (the
test statistic) and the permutation threshold of the null distribution, to the right of which the
values of 7 are large enough that there is evidence that the weights do not adequately control
for confounding. We can see that for 7 values to the left of the vertical lines, the estimation
error is generally small, indicating that this procedure is a reasonable criterion for choosing
a feasible MTP scale.

We also conduct a full simulation study to verify correct type I error rate control under Hy
and further explore alternative permutation strategies for the test. These results are presented
in the Supplementary Material Section 4.1.

4.2. Evaluation of arbitrary weights for a given MTP and dataset. In the previous sec-
tion, we evaluate different MTP scales with a fixed weighting method. Similarly, we can also
use the weighted energy distance to evaluate the performance of different weighting methods
for a fixed MTP. Since smaller weighted energy distances indicate a better balance between
the weighted sample and the shifted sample, a natural criterion is to select the method that
yields the smallest weighted energy distance. We demonstrate this approach to weight se-
lection using the simulation results with sample sizes n = 800 and covariate dimensionality
p = 80 under the first simulation scenario described in Section 7.

Figure 2 displays the distribution of the rank of the absolute estimation error for a given
dataset compared with the rank of the weighted energy distance for the four weighting meth-
ods. From this, the weighting method with the smallest energy distance (rank 1) tends to
perform best in most cases. In the Supplementary Material Section 4.2, we further explore
the validity of this method under broader conditions.

5. Energy balancing weights for MTP estimation. As demonstrated in the error de-
composition in Section 2.2, weighted distributional imbalance is a critical component of the
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estimation bias of weighted estimators for MTPs. Further, we showed in (9) and Theorem
3.1 that the weighted energy distance characterizes weighted distributional imbalance. In this
section we propose a new set of weights designed as the optimizer of this measure. By min-
imizing the distance between the weighted empirical distribution and target distribution, our
proposed weights, which we call energy balancing weights (EBWs), control for confounding
in a robust and flexible manner. Specifically, these weights minimize the energy distance be-
tween the observed sample and the MTP-shifted sample. Thus, the energy balancing weights
balance the weighted empirical distribution to the MTP-shifted empirical distribution.

Extensively highlighted in the weighting literature, extreme weights can inflate the vari-
ance of the estimator (Li, Morgan and Zaslavsky, 2018; Chattopadhyay, Hase and Zu-
bizarreta, 2020). To ensure root-n consistency of our energy balancing estimator, it is nec-
essary to impose a restriction to avoid extreme weights. One approach is to introduce an
additional penalization term for the sum of squared weights, resulting in penalized energy
balancing weights. In this section, we introduce the penalized energy balancing weights w?,.
Under mild conditions, we show these weights result in root-n consistency in estimating the
mean potential outcome under an MTP.

5.1. Penalized energy balancing estimator. The penalized energy balancing weights ac-
count for the magnitude of the weights in addition to the weighted energy distance. Specifi-
cally, we define the penalized energy balancing weights w?}, with a user-specified parameter
A >0 as follows:

(12) wh e argmin E(F, w x4, F nXA QZw s.t. szfn w; > 0.
w=(w1,...,wn)

In the Supplementary Material Section 5.2, we showed that (12) is equlvalent to a quadratic
optimization problem that can be solved efficiently by the existing algorithms. The cor-
responding penalized energy balancing estimator is then u » = =n! Yo 'wp Y;. Analo-
gous to Huling and Mak (2024), we prove the following propertles of the energy balancing
weights. Theorem 5.1 shows that the penalized energy balancing weights make the weighted
empirical CDF of the observed data converge to the true MTP-shifted CDF.

THEOREM 5.1.  Assume the assumptions in the previous theorems hold. Let wh be the
penalized energy balancing weights. Then, we have limy, o0 Fy, v x a(®,a) = F5 ,(x,a)
almost surely for every continuity point (x,a) € X. Furthermore, the following holds almost
surely

(13) lim &(Fpun,x,4.F2 x 4) =0,

n—oo

We now show that the penalized energy balancing estimator achieves root-n consistency.

THEOREM 5.2. Assume the conditions in Theorem 2. Let H be the native space induced
by the radial kernel ®(.) = —||.||2 on (X, .A). Suppose the following mild conditions hold:

o CP-1: p(-,-) €H

o CP-2: Var [u(X,A)] < oo

e CP-3: Var [Y|X = x, A = a] are bounded over (xz,a) € (X, A).

o CP-4: E[g2(W,W',W" W] < 0o where W, W' ,W" W" " F% 4 be a vector

of (X, A) and, with h(w) = ;ﬁiigmg the kernel function g(.) is defined as:

g(w,w’,w" w") = h(w)||w — w"[[z + h(w)||w" - w

= h(w)h(w)||[w — w'||z — [[w"” —w"||2

///||2
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Then, the proposed penalized EBW estimator [iy .,» is root-n consistent in that

(14) \/IEXAY o — )] = Op(n1/2),

Theorem 5.2 shows that the penalized energy balancing weights yield a root-n consistent
estimate of 9 under mild conditions on the data-generating process even though the energy
balancing weights are not shown to be consistent for the true density ratio weights in any
sense.

We briefly comment on the conditions required for Theorem 5.2. Condition CP-1 requires
that the outcome regression function be contained in the native space H. As demonstrated
in Huling and Mak (2024), this condition is a smoothness assumption on the true outcome
regression function p(ax,a). CP-2 requires that the outcome regression function have finite
variance and CP-3 requires that the conditional variance function be bounded. These two
conditions are both mild and fairly weak in practice. CP-4 is a requirement that certain mo-
ments of the covariates and treatments be bounded.

The selection of A can be important in practice, as it determines the trade-off between
bias and variance. Larger \ values result in estimators with reduced variance but increased
bias, due to greater imbalance between the two distributions after weighting. In this context,
bias cannot ever be exactly characterized, so choosing an optimal value for A is a major
challenge in practice. However, as bias is related to the imbalance of covariates, we can at
least characterize what range of values of A still result in acceptable covariate balance. Based
on the method proposed in Section 4, which tests whether the weights effectively balance
the two distributions, one approach for choosing A is to select the largest A for which the
permutation test indicates no significant imbalance remains after weighting.

6. Augmented energy balancing estimator. Augmented estimator is a widely-used ap-
proach in the causal inference literature that combine balancing weights and an estimated
outcome model to improve the estimation of a causal effect, potentially increasing efficiency
and reducing sensitivity to model misspecification. In this context, we propose an augmented
version of the energy balancing estimator that incorporates an estimated outcome model.
Because the energy balancing weights were shown to yield consistent estimates of 9 with-
out the need for an outcome regression model, this allows the analyst to utilize an outcome
regression model primarily for the purpose of variance reduction.

Let /i(x,a) be an estimate of the outcome regression function p(x,a). The augmented
estimator is constructed by subtracting [, [, fi(z,a)d(F,] x 4 — Fnwe x,4)(x, a) from the
weighted estimator ﬂfﬂﬁ =" , w?Y;. The resulting augmented energy balancing estimator
is

g = wn // z,a)d nXA —Fyur.x a)(T,0)

15
(15) 1 X

*ZU} Y, — u(XZ,A +n I, X’L?Q](X’UA))
1

=1 j=

In the second form, the weighted residuals can be view as a bias correction term for the
outcome regression-based estimate of the MTP effect. We show its asymptotic normality and
propose a statistically-valid and computationally-efficient multiplier bootstrap for inference.

6.1. Asymptotic normality. In this section we demonstrate the asymptotic distribution of
augmented energy balancing estimator /1% . The required conditions for asymptotic normal-
ity are:
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CA-1: [i(x,a) is such that 1 — € H.

CA-2: wy, satisfy 1 <wi < BN 1/3 for some constant B where N is the total sample size.
CA-3: max; E(|¢;|?) < oc.

CA-4: [i(x,a) is a consistent estimator of p(x,a).

Condition CA-1 requires that the outcome regression model minus the true outcome regres-
sion model be contained in the native space H. This condition somewhat limits the com-
plexity of the error function of the estimated outcome regression model. Condition CA-2 has
been used before in the literature; see Athey, Imbens and Wager (2018); Huling, Greifer and
Chen (2023). This condition can be imposed directly in the weight optimization procedure
without changing the empirical performance of the weights or any of the asymptotic results
of the weights, as in Huling, Greifer and Chen (2023). It should be noted that, if we use the
penalized energy balancing weights, this condition will no longer be needed as adding the
penalty term in the optimization problem helps to sufficiently restrict the variability of the
weights. Condition CA-3 indicates that the error term has finite third moments, and condi-
tion CA-4 requires consistency of the outcome regression model; CA-4 is only required for
studying the asymptotic distribution of [&G. With these conditions, we have the following
theorem:

THEOREM 6.1. Under Conditions CAI1-CA4, let J, = n'/?(i%, — p9) and J} =
[Var(u(X,AN]Y2F + on=1/? > i wiGj where F,Gh,...,Gp are independently and
identically distributed standard normal random variables independent of X 1, ..., X , A1, ..., An
and €1, ...,€y. Let V¥, and 1}, be the corresponding characteristic functions of Jy, and J.

Then as n — 0o, |y (t) — ¥k (t)| — 0,t € R where 1} (t) is twice differentiable, and
(16) limsup Var(J,,) < Var(u(X,Q)) + %V,

where 1(X,Q) = Zji)f) I x (A)u(X,q;(X, A)) is the conditional mean under the MTP

q 2
andV = E (%) + D is the variance of the Radon-Nikodym weights plus a positive

number.

Theorem 6.1 demonstrates that the energy balancing weights, when paired with a consis-
tent outcome regression model, achieve asymptotic normality and may be efficient, however,
an exploration of the conditions under which efficiency is guaranteed requires additional ex-
ploration.

6.2. Inference. The asymptotic normality of our augmented estimator ﬂ%G allows us to
use a standard bootstrap method to estimate its uncertainty and conduct statistical inference
for the estimator. However, in practice, the standard nonparametric bootstrap method has
some limitations. First, it can be computationally intensive because both the penalized energy
balancing weights and the outcome regression estimator must be re-computed during each
bootstrap iteration r = 1, ..., R. This can be especially time-consuming for large values of R
(e.g., R =10000).

We thus propose a multiplier bootstrap method originally presented by Wu (1986) that
allows for quick computation. Similar to Matsouaka, Liu and Zhou (2023) (which they name
a wild bootstrap), the method perturbs the influence function of the estimator to estimate its
variance. The influence function for our augmented estimator is

fg{ A(X7A) X
pi = m(ﬁ‘ — (X, A)) + D Lx (A X, q5( X, Ai) — .
' ’ i=1
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We estimate the influence function by plugging in the estimators /%, (X, A), and w! for
their population counterparts:

J(X,)
(17) pi =wl(Yi— (X, Ai)) Z (X, q5( X3, A)) —

Even though w! does not necessarily estimate the true inverse propensity score, we show

that the following procedure is still valid. Then, the multiplier bootstrap estimator 3 can be
constructed as displayed in Algorithm 6.2. A 95% Wald-type confidence interval of /1?40 can

be calculated as 1%, +1.96 x n1/2351/2,

Multiplier bootstrap
Forr=1tor=R
Generate the random variate £ = (£1,...,&n) with §; ~exp(1) fori=1,...,n
Compute g = =371 &i-
Calculate $1/2 = IQR(G9)/(20.75 — 20.25) where IQR(GY) is the interquartile range of {g¥ }
and zg 75 — 20.25 = 1.349 be the interquartile range of standard normal distribution.

Here, we prove the validity of the proposed multiplier bootstrap in the following theorem.

THEOREM 6.2. Under Conditions CAI-CA4, and G} defined in Algorithm 1, we have
that ¢} = ﬁzzll &ipi = n'2(0% o — p9) asn — oo

Theorem 6.2 shows that one can estimate the asymptotic distribution of 4%, using the
multiplier bootstrap procedure in Algorithm 1. An advantage of the multiplier bootstrap pro-
cedure over the standard bootstrap is that the weights and outcome regression model only
need to be estimated once, not R times, resulting in a substantial computational speedup.

7. Simulation studies. In this section, we study the empirical properties of the proposed
energy balancing weights and further to assess their relative performance to other commonly
used estimators for MTPs. The aim of the simulation study is to evaluate the performance of
our proposed estimators under different simulation conditions.

7.1. Data generating mechanisms. We have two main simulation conditions: a mod-
erately complex data-generating mechanism (simulation study # 1) and a highly complex
(simulation study # 2) data-generating mechanism. For each simulation setting, we vary
the following settings: the sample size (n = 100,200,400, 800), the number of covariates
(p = 10,20,40,80) for each individual, and the treatment type. This allows us to inspect the
joint effects of dimensionality and increasing sample size on the empirical performance of all
methods. We replicate all simulation experiments under two different conditions on the treat-
ment variable: one condition where the treatment is continuously-distributed, and the other
where the treatment has discrete, but countably infinite, support. Here, we briefly illustrate
the data-generating mechanism. Readers are referred to Section 6.1 of the Supplementary
Material for a detailed description of the data-generating mechanism. 1) The covariates are
generated randomly following either a uniform distribution or a binomial distribution. 2) The
treatment mean for a participant follows a cubic function of the covariates. 3) The moderately
complex simulation condition assumes the outcome is a function of a quadratic term of the
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treatment times a cubic term of the covariates. The highly complex simulation condition fur-
ther assumes interaction terms of the covariates. 4) The MTP function ¢ shifts the treatment
more aggressively when the observed treatment is small. We emphasize that the estimation
error (i.e., the observed sample mean effect minus the true MTP effect) is designed to be
relatively stable with the increase of the number of covariates p, so that the complexity of the
data-generating processes does not explode with dimension.

7.2. Estimands and estimators under evaluation. In each simulation replication, the es-
timand of interest is the mean potential outcome under the MTP. We evaluate three pro-
posed energy balancing weight methods, including the penalized energy balancing weights
described in Section 5.1, an unpenalized version of the energy balancing weights, and a
kernelized energy balancing weights approach using the Gaussian kernel (see Supplemen-
tary Material Section 2.2). The penalty factors A for the penalized energy balancing weights
are set to be A = 1 for all simulation scenarios.Various alternative estimators for balancing
weights are considered, such as the naive, unadjusted method that assigns equal weights to
all subjects, density ratio weights (IPW) with generalized propensity score estimated using
a Poisson density (for the discrete intervention settings), and the classification method pro-
posed by (Diaz et al. (2021) Section 5.4) with classification models estimated by either 1)
logistic regression or 2) a random forest. The corresponding augmented estimators for each
weighting method are implemented using the same outcome model, the ensemble method
SuperLearner (Van der Laan, Polley and Hubbard, 2007), which incorporates the lasso regu-
larized generalized linear models (SL.glmnet). Also included is a targeted minimum-loss
based estimator (TMLE) method (Diaz et al., 2021) with all nuisance parameters estimated
using SuperLearner.

7.3. Simulation results. In every simulation scenario, the true causal effect is determined
using Monte Carlo with a sample size of 100,000. For each simulation setting, we repeat the
experiment independently 1,000 times, applying each comparator method, allowing for the
calculation of the mean squared error (MSE), bias, and coverage rate for 95% confidence
intervals. The coverage rate is calculated based on Wald-type intervals with SE for each
estimator estimated by the non-parametric bootstrap with 100 replications. Additionally, we
also use the multiplier bootstrap method proposed in Section 6.2 for the augmented energy
balancing estimator. The simulation results are displayed in Figures 3 and 4. Since the results
of the two simulation studies are similar, we only display the MSE and coverage rate for the
95% confidence interval for the first simulation study. Readers can refer to Supplementary
Material Section 6.2 for the results of the highly complex setting.

In all simulation conditions, our three energy balancing methods (energy balancing, penal-
ized energy balancing, and kernel energy balancing method) consistently outperform other
methods in terms of both the bias and the coverage rate, indicating their robustness and abil-
ity to handle various situations. This pattern holds both for pure weighting (not augmented)
estimators and for augmented estimators. The penalized energy balancing weights exhibit
slightly worse performance in terms of bias compared to the energy balancing weights, which
is probably due to the additional penalty term in the estimation. The kernel energy balanc-
ing weights (using the MMD described in the Supplementary Material Section 2.2) have the
smallest bias in most cases when the sample size is relatively small; however, their perfor-
mance varies significantly among different conditions and the bias does not improve as much
with the increase of the sample sizes. This unstable performance may be due to the choice
of bandwidth parameters in the Gaussian kernel function, which is the median heuristic that
is known to not necessarily perform well in all scenarios. Therefore, although we believe
the kernel energy balancing method has the potential to be very flexible and perform well
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in practice, its performance may depend critically on the choice of tuning parameters. Con-

sequently, we recommend using penalized energy balancing methods that are more stable
across different conditions.
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FI1G 3. Simulation results in terms of the logarithm of the absolute value of bias across different sample sizes,
type of treatment/intervention variable, and the dimensionality of covariates. The data-generating mechanism is
moderately complex (simulation # 1). Balancing methods are displayed in different colors and shapes of points.
Weighted estimators are displayed in solid lines and the augmented estimators are in dashed lines.

The augmented energy balancing estimator generally has a smaller bias with a similar
MSE (See Supplementary Material Figure 5) in most of the simulation conditions, which
indicates the benefit of the inclusion of the outcome model. Although using the same outcome
model, the augmented estimators with other balancing weights perform significantly worse
than the energy balancing estimators. The coverage rate results (Figure 4) align with our
observations for bias and MSE. All three energy balancing methods exhibit good coverage
rate performance. Owing to its small bias, the coverage rate for the kernel energy balancing
method approaches 95% most closely.

8. Analysis of Mechanical Ventilation Data. Critically ill patients often require me-
chanical ventilation to support their breathing. The ventilator delivers a controlled amount
of air (tidal volume) at a specific pressure and rate to ensure adequate gas exchange in the
lungs. In order to overcome the resistance of the airway and expand the thorax wall, the ven-
tilator needs to transfer a certain amount of energy to the patient’s respiratory system (Neto
et al., 2018; Neto, Amato and Schultz, 2016; Cressoni et al., 2016). Mechanical power (MP)
is a comprehensive parameter that quantifies the amount of energy transferred to the patient’s
respiratory system during each breath. It takes into account tidal volume, respiratory rate,
peak airway pressure, and positive end-expiratory pressure (PEEP) (Gattinoni et al., 2016).
Excessive ventilatory settings can result in ventilator-induced lung injury (VILI), which can
worsen the patient’s clinical condition and increase the risk of mortality (Neto, Amato and
Schultz, 2016; Cressoni et al., 2016). Previous research has suggested that factors like high
tidal volume, high airway pressures, and high respiratory rates could be associated with an
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FIG 4. Simulation result for the 95% coverage rate across different sample sizes and dimensionality of covariates.
The data-generating mechanism is moderately complex (simulation # 1). The red dashed line indicates nominal
95% coverage. Different weighting methods are displayed in different colors and shapes of points. Weighted
estimators are displayed in solid lines and the augmented estimators are in dashed lines. The multiplier bootstrap
method is displayed in a larger size of the red points.

increased risk of lung injury and poor outcomes (Nieman et al., 2016). However, these indi-
vidual factors do not capture the overall impact of ventilation settings on the lungs. Mechani-
cal power can provide a more comprehensive assessment of the risk associated with different
ventilatory settings.

A recent study (Neto et al., 2018) examined data from the high-resolution database,
the Medical Information Mart for Intensive Case (MIMIC-III) (Johnson et al., 2016). The
MIMIC-III data contain information on critically ill patients who required mechanical ven-
tilation in the intensive care unit (ICU). All included patients received invasive ventilation
for at least 48 consecutive hours. Time-varying variables were collected at 8-hour intervals
for the entire 48-hour period. (Neto et al., 2018) defined the exposure as the mean between
the highest and lowest value of MP in the second 24 hours and concluded that high MP is
independently associated with higher in-hospital mortality. In this case study, we reanalyze
data from Neto et al. (2018) to explore the causal relationship between a postulated MTP of
MP and in-hospital mortality.

We excluded patients with zero MP in Joules/min or extreme MP values (MP greater than
150 Joules/min) from the analysis. The exposure of interest is the mean value between the
highest and lowest MP during the second 24 hours. The potential confounding variables we
aim to balance are measured during or prior to the first 24 hours. As in Neto et al. (2018),
our primary focus is on the in-hospital mortality of the included participants. The dataset
contains a total of 5,011 participants with 97 identified covariates; among these covariates
are many of the important factors such as the PaO2/FiO2 Ratio that are used in guidelines for
determining mechanical ventilator settings. We use the following MTP to explore the causal
effect of MTP that decreases the MP value based on its original value. This MTP reduces MP
for individuals with high MP more aggressively, as earlier studies have indicated potential
harms of high MP. The shifted MP value ¢(x,a) is defined as g(x,a) =a if 0 < a < 5,
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g(z,a) =a—57if 5 <a <10, g(x,a) =a— 107 if 10 < a < 20, g(x,a) = a — 157 if
20 < a <40, g(x,a) = a — 307 if 40 < a. Here a is the original MP value and 7 is the
parameter that controls the magnitude of the MTP (a larger value of 7 results in a more
dramatic decrease of MP).

With the 7 ranging from O to 1 for the MTPs, our analysis results are displayed in Figure
5. We adopt the unpenalized version of the energy balancing estimator. To identify a range
of the shift magnitude 7 for which confounding control via our energy balancing weights is
feasible, we calculate the sampling variation of the energy distance under the corresponding
MTP as described in Section 4.1. The upper 95% percentiles of the permutation sample are
plotted with smoothed lines in the figure. Again, this value represents the intrinsic tails of
variation of the energy distance when the two distributions are identical (i.e., the population
is perfectly balanced). If the actual energy distance after balancing is larger than these upper
bounds, the validity of the hypothesis that the population is balanced after weighting becomes
questionable. The energy distance between the weighted sample and the target sample under
the MTP is displayed as the blue curve for each value of 7. From the results, all MTPs with 7
range between [0, 1] have energy distances below the 95% permutation threshold, indicating
that the shifts are within a reasonable range and have a low risk of bias due to measured
confounding after weighting.

The red curve in Figure 5 represents the estimated potential in-hospital mortality rate un-
der the MTP. The pink curves around it are the pointwise upper and lower bound for the 95%
confidence interval of the difference between the observed mortality and the estimated mor-
tality under the MTP using the non-parametric bootstrap. To make the confidence interval
more visually apparent, we have centered it around the estimated mortality under teh MTP.
From Figure 5, we can see that the MTP results in a significant reduction in mortality even
when the shift of treatment is small. When the MTP shift increases, it is more challenging to
balance the distributions of covariates, which makes the confidence interval wider. However,
the overall trend still shows that the mortality rate decreases with increases in the MTP shift.
From Figure 5, as 7 ranges between O to 1, the energy distances after balancing are consis-
tently lower than the permutation thresholds, suggesting that measured confounding has been
adequately controlled after weighting. This strengthens the validity of the result that a lower
MP than is used in practice would likely decrease in-hospital mortality.

Compared to the results from (Neto et al., 2018; Hong et al., 2021), we adopted an MTP
analysis, strengthening the evidence about the potential harms of high MP due to the weak-
ened assumptions under which our MTP estimators operate. Our set of tools provides a more
convincing conclusion in terms of 1) the permutation test confirms that the measured con-
founding is not an issue after covariate balancing, and 2) the causal effect is significant even
when the shift of MP is small, which further confirms the overall trend in our results.

9. Discussion. Estimating causal effects of treatments from observational data is partic-
ularly challenging due to confounding. This issue is further compounded when the treatment
takes continuous values. An MTP analysis is well-suited for this scenario and defines a hy-
pothetical intervention on a treatment variable based on the baseline characteristics and the
observed treatment value. However, the choice of the hypothetical intervention in an MTP is
still subjective and it faces the dilemma that, 1) if the definition of MTP is too conservative
(i.e., the shift of the intervention is very small), the causal effect of the MTP may be too small
to have material clinical implications and on the other hand 2) if the definition of MTP is too
aggressive, then the observed population and the population under MTP will be intrinsically
different, which makes confounding a major issue again, negating many of the conceptual
and practical benefits of MTPs. There is a lack of methods that can measure the magnitude
of the potential for measured confounding and help to define a reasonable MTP that can be
reliably estimated from the data at hand.
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FIG 5. Exploring different magnitudes of MTP shifts to mechanical power of ventilation. The X-axis represents
the T value which controls the amount of the MTP shift. For each MTP shift, the blue curve displays the energy
distance of the penalized energy balancing weights described in Section 5. The black line represents the 95%
Permutation Threshold estimated using the method described in Section 4.1. The red curve along with the pink
curves is the estimated mortality and the corresponding 95% bootstrap confidence interval.

In this paper, we demonstrate the connection between the estimation bias of weighted
estimators of the causal effect under an MTP and weighted distributional imbalance. By ex-
plicitly defining the target population under MTP, we propose an error decomposition that
highlights the role of covariate balance as a critical component of the estimation bias. We
then introduce a distance, based on the weighted energy distance of Huling and Mak (2024),
that explicitly characterizes this imbalance. As a result, the performance of any arbitrary set
of weights in controlling for confounding for MTPs can be gauged through the weighted en-
ergy distance. Two methods are proposed to enhance the estimation of MTP effects: 1) we
propose a method for assessing the performance of various balancing weights according to
their weighted energy distance; this approach enables researchers to choose different balanc-
ing techniques suitable for specific datasets, 2) we then propose a method to detect whether
the MTP shift is too large for a balancing method. We use a permutation method to measure
the variability of the energy distance under the null hypothesis of no measured confound-
ing. Comparing this with the energy distance after applying the balancing weights enables an
assessment of whether the weights can effectively balance the covariates under the current
MTP and thereby control for measured confounding. This comparison also sheds light on the
extent of confounding challenges associated with an MTP paired with a given dataset. For the
proposed permutation test, it is important to note that, as with all statistical tests, the power to
reject the null hypothesis (and conclude that the two populations are unbalanced) decreases
with smaller sample sizes. Therefore, we recommend that researchers relax the permutation
threshold to 90% or lower when sample sizes are small. Since there is no strong reason to
strictly control the type I error rate to a small level in such cases, lowering the threshold can
increase the power to detect imbalance after weighting.

Our second contribution is a novel covariate balancing weight method based on the energy
distance. These energy balancing weights are generated by minimizing the weighted energy
distance, thereby minimizing a measure of distributional imbalance and thus potential for
bias. We additionally propose an augmented energy balancing estimator that integrates an
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outcome model with the balancing weights to help further reduce variance in the estimates.
We establish the validity of our methods by demonstrating the root-n consistency of these
estimators and further asymptotic normality of the augmented estimator. Through simulation
studies involving both moderately complex and highly complex scenarios, we showcase the
stability and performance of our methods in terms of bias, mean squared error (MSE), and
coverage rate across various conditions, reflecting their capacity to handle diverse real-world
situations.

We further proposed a multiplier bootstrap method to estimate the uncertainty of the aug-
mented energy balancing estimator. The multiplier bootstrap approach offers a more com-
putationally efficient means for statistical inference compared to the classical nonparametric
bootstrap, as it does not require calculating weights within each bootstrap iteration. We prove
the large-sample properties of this multiplier bootstrap and, through simulation, illustrate its
similarity to the nonparametric bootstrap in terms of the coverage rates.

There remain some statistical properties that warrant further exploration. The first is to
show whether the energy balancing weights converge to the true density ratio, as doing so
may enable clearer studies of the potential efficiency of our proposed estimators. Secondly,
as suggested in the simulation study, the coverage rate for the energy balancing estimator and
the penalized energy balancing estimator is approximately 95%, implying that both estima-
tors exhibit asymptotic normal distribution. However, establishing the asymptotic distribution
for the estimators using EBWs and penalized EBWs is highly challenging. Moreover, our
methods can be extended by incorporating alternative distance measures in the estimation of
energy balancing weights and studying their corresponding statistical properties. While this
paper has focused on a broad set of tools for dealing with measured confounding, unmeasured
confounding is always a possibility for any observational data analysis. To our knowledge,
as of yet no tools to help assess sensitivity of findings to unmeasured confounding exist in
the context of MTPs and we believe this is a critical area of future work, as it would help
further enhance MTP analyses. Finally, for treatments that take ordinal values but are not
continuous, our method (along with the corresponding R code) can be applied directly with-
out modification. An ordinal treatment with finite support inherently satisfies the ‘piece-wise
smooth invertibility’ condition outlined in Section 2, making it applicable to all theoretical
results presented in this manuscript. However, for ordinal treatments with infinite support,
this condition does not hold as stated, though it may be possible to extend our results to such
cases.
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