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Forecasting and controlling PM2.5 emissions is crucial for environmen-
tal protection and public health. To analyze the Beijing multi-site air qual-
ity dataset on regional and seasonal effects in PM2.5 emissions, which has
large-scale distributed cluster/longitudinal data and high-dimensional covari-
ates, we develop a unified cluster subsampling method for generalized linear
models (GLMs) to downsize the data volume and reduce computational bur-
den. To incorporate the within-subject correlation, a weighted generalized
estimation equations under an informative working correlation structure is
considered and a novel optimal subsampling criterion including both the A-
and L-optimality is proposed. For low-dimensional GLMs, the resulting op-
timal subsample estimators are consistent and asymptotically normal with
explicitly derived asymptotic covariance matrices. For the preconceived low-
dimensional parameter in high-dimensional GLMs, a quasi decorrelated s-
core function is developed to mitigate the effect from nuisance parameter es-
timation. Our proposed method is evaluated by simulation. By applying our
method to the Beijing multi-site air quality dataset, we reveal that the PM2.5
emissions in the south part of Beijing have a U-shaped seasonal effect in the
order of winter, spring, summer, and autumn, and a regional aggregation ef-
fect in winter of the southeastern of Beijing.

1. Introduction.

1.1. Beijing multi-site air quality dataset. Air pollution has serious impacts on environ-
ment, climate change, human health, and economy. It is shown that a major air pollutant is
from PM2.5, which refers to tiny particles smaller than 2.5 microns in diameter. Exposure to
high levels of PM2.5 is linked to increased mortality rates and can exacerbate conditions like
asthma and bronchitis. Forecasting and controlling PM2.5 concentration has been regarded as
one of the most important issues for protecting public health and ensuring cleaner air quality
(Zhang et al., 2012, 2017).

Our study is motivated by the Beijing multi-site air quality dataset (https://archive.ics.uci.
edu/dataset/501/beijing+multi+site+air+quality+data), which comprises emission of PM2.5
and meteorological variables from 12 nationally-controlled monitoring sites in all the urban
and rural districts in Beijing from March 1st, 2013 to February 28th, 2017. Although this
dataset has been analyzed by some researchers (Yan et al., 2021; Li, Liu and Zhao, 2022;
Fan, Lin and Yu, 2024), a thorough statistical analysis of these spatio-seasonal dynamic data
with a high-dimensional covariate vector is not available. To enhance the interpretability of
the model (Chu, Kadane and Davidson, 2010), temperature, pressure, dew point temperature,
wind speed, and their high order terms and interaction terms result in 210 covariates in this
dataset (including a constant term for an intercept).

Keywords and phrases: Generalized linear models, high-dimensional nuisance parameter, optimal distributed
cluster subsampling, quasi score and decorrelated score, within-subject correlation.
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(a) Locations of the 12 monitoring sites (b) Correlation matrices of log PM2.5 emissions

FIG 1. Beijing multi-site air quality dataset

According to geographical location and administrative division, we group the 12 monitor-
ing sites in Beijing into 4 regions, north, south, west, and east, as shown in Figure 1(a), and
consider seasonal PM2.5 effects of spring, summer, autumn, and winter. This adds 6 addi-
tional region and season dummy variables, resulting in a total of 216 covariates in the Beijing
multi-site air quality dataset. A methodology to assess effects of main covariates (region and
season) not statistically affected by a large number of other covariates needs to be developed.

1.2. Challenges in analysis. With the rapid advancement in technology, large-scale da-
ta are stored independently in different sites, known as distributed data, commonly used by
various industries and social organizations to store and manage user records across multi-
ple facilities, ensuring accessibility, security, and scalability for scientific research, treatment
planning, and feedback administration. For the Beijing multi-site air quality dataset, a total
of 420,768 observations are consolidated into four regions with 35,064, 280,512, 70,128, and
35,064 observations, respectively. Other examples include the observational health data sci-
ences and informatics consortium with over 82 clinical databases around the world (Hripcsak
et al., 2015), the communities and crime data stored in different regions designated by the
United States Census Bureau, Walmart’s data from different locations around the world, and
the clinical information of patients stored at different hospitals.

To address the challenge posed by large-scale distributed data with high computational
cost, privacy and security concerns, and administrative management, subsampling techniques
have been developed, which involves selecting a random subset of the entire dataset and
reasonably balancing the need for computational efficiency and the demand for accurate and
representative analysis (Ma, Mahoney and Yu, 2015; Wang, Zhu and Ma, 2018; Li and Meng,
2020; Ai et al., 2021a,b; Meng et al., 2021; Wang and Ma, 2021; Zhang, Ning and Ruppert,
2021; Ma et al., 2022; Zhang et al., 2023; Yu, Liu and Wang, 2023; Han et al., 2023; Ye, Yu
and Ai, 2025; Wu et al., 2024). More literature can be found in reviews by Yao and Wang
(2021), Gao et al. (2022), Li et al. (2024), Yu, Ai and Ye (2024) and references therein. To
process large-scale distributed data, distributed subsampling approaches have been proposed,
where subsamples are taken from each site and then analyzed collectively (Zhang and Wang,
2021; Zuo et al., 2021; Yu et al., 2022). Although the full dataset of Beijing multi-site air
quality is available, distributed subsampling for administrative reasons and/or quick instant
investigations may still be needed.

Unfortunately, no work has been done on distributed cluster/longitudinal data in the liter-
ature, which presents a significant gap in research and application. Cluster/longitudinal data
refer to data collected over a short period of time from the same individual, and have been
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ubiquitous in modern society and scientific fields. The Beijing multi-site air quality dataset
contains 5,844, 46,752, 11,688, and 5,844 clusters in four regions, respectively, with 6 re-
peated observations within each cluster. Figure 1(b) indicates that the longitudinal emission
of PM2.5 (after taking logarithm) is highly correlated within each cluster. For accurately ana-
lyzing cluster/longitudinal data, it is important to consider the correlation within each cluster.
When the full dataset from all sites is available and the dimension of covariate vector is fixed
and small, the classical parameter estimator is a solution to the quasi score equation in a
marginal generalized linear model (GLM) for cluster/longitudinal data with estimated cor-
relation, which is valid regardless of whether the correlation is consistently estimated or not
(Liang and Zeger, 1986; Xie and Yang, 2003; Balan and Schiopu-Kratina, 2005). Since the
full dataset is often not accessible due to reasons previously given, subsampling for distribut-
ed clustered data needs to be developed.

Another challenge is from the rapid increase in covariate dimension with technological
development, which may affect the performance of traditional estimators, let alone for the
subsample estimator. As described in Section 1.1, the Beijing multi-site air quality dataset
contains a total of 216 covariates. Penalization methods on the quasi score equation have
been developed to handle high-dimensional covariates (Wang, 2011; Wang, Zhou and Qu,
2012). Recently, there have been significant interests and widespread attentions in studying
the relationship between the response variable and a covariate sub-vector with a small dimen-
sion, while treating the remaining large number of parameters related with other covariates as
nuisances (Zhang and Zhang, 2014; Ning and Liu, 2017; Fang, Ning and Li, 2020; Li, Li and
Ma, 2021; Cheng et al., 2022). In the Beijing multi-site air quality dataset, the low dimension
sub-vector is formed by region and season dummy variables if their effects are the main fo-
cus, while effects of other covariates can be regarded as nuisances. The key to this approach is
constructing a decorrelated score (for the parameter of interest) uncorrelated with the score of
the high-dimensional nuisance parameter. Under subsampling, Gao, Wang and Lian (2024)
proposed a decorrelated score for low-dimensional parameters of interest. However, the ex-
isting decorrelated score approach cannot be applied to cluster/longitudinal data, because it
is based on likelihood and score, whereas the quasi score equation for cluster/longitudinal
data is only based on a marginal GLM model and a within cluster correlation structure. Con-
sequently, there is a need to construct decorrelated score for cluster/longitudinal data, with or
without subsampling.

1.3. Our approaches and results. In this paper, we aim to address the challenges in the
era of large data volume and high covariate dimension. Our contributions in methodolo-
gy are twofold. First, in Section 2 we develop a distributed cluster subsampling for clus-
ter/longitudinal data. To maintain and incorporate the correlation structure within each clus-
ter, we sample clusters instead of individual observations. To pursue efficient distributed clus-
ter subsampling, we propose an optimal distributed cluster subsampling scheme, which in-
corporates the within-subject correlation for each cluster and includes A- and L-optimality
criteria (Wang, Zhu and Ma, 2018; Wang and Ma, 2021; Ai et al., 2021b) as special cases.
Second, in Section 3 we propose a quasi decorrelated score, which still enjoys an orthogo-
nality property that a decorrelated score possesses. The resulting estimator of the main low
dimensional parameter vector of interest is asymptotically normal and its asymptotic effi-
ciency is not affected by the estimation of nuisance parameter vector with possibly high
dimension. When the full dataset is not available, we apply quasi decorrelated score joint-
ly with distributed cluster subsampling developed in Section 2. Optimal distributed cluster
subsampling schemes are also constructed when quasi decorrelated score is used. Thus, we
extend the optimal decorrelated score subsampling (Gao, Wang and Lian, 2024) to optimal
distributed cluster subsampling via quasi decorrelated score.
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Asymptotic normality of estimators are established under some regularity conditions in
Sections 2 and 3, useful for obtaining optimal distributed cluster subsampling schemes and
for asymptotic inference together with derived consistent estimators of asymptotic covariance
matrices. Simulation results are presented in Section 4 to supplement the theoretical finding.

In Section 5, we analyze the PM2.5 emissions in Beijing and reveal significant regional and
seasonal effects. Specifically, the PM2.5 emissions in south region of Beijing have a U-shaped
effect in the order of winter, spring, summer, and autumn, with the highest effect in winter,
lowest effect in summer, and in-between effects of spring and autumn with higher effect
in spring. Furthermore, there is a regional aggregation effect in winter, i.e., higher PM2.5
emissions in the southeastern part of Beijing, lower PM2.5 emissions in the northwestern
part, and gradually decline from the heart of city towards countryside. Explanations to these
phenomena can be found in Section 5. Understanding how PM2.5 emissions vary by region
and season can help identify which populations are the most at risk during which times of
the year. This can lead to more targeted public health interventions and policies to reduce
exposure and associated health risks. Insights into regional and seasonal variations in PM2.5
can also help the development of more effective air quality regulations and pollution control
strategies tailored to specific areas and times of the year.

The paper is concluded with some discussions in Section 6.

2. Distributed cluster subsampling.

2.1. Review of the quasi score equation. Let Yki = (yki1, . . . , ykimki
)T ∈ Rmki and

Xki = (xki1, . . . ,xkimki
)T ∈ Rmki×p be clustered response and covariate vectors, respec-

tively, from the ith subject in the kth site, where Rd is the d-dimensional Euclidean s-
pace, aT is the transpose of vector a, mki’s are cluster sizes bounded by a fixed constant
m = maxi,kmki, k = 1, . . . ,K , i = 1, . . . , nk, and nk is the number of clusters in site k.
(Xki,Yki)’s are independent, but observations within cluster (Xki,Yki) are correlated with
an unknown correlation matrix corr(Yki |Xki).

We assume that the jth marginal probability density f(y | x) of ykij given xkij , j =
1, . . . ,mki (with respect to a dominating measure ν, e.g., the counting measure for discrete y
or Lebesgue measure for continuous y) follows a generalized linear model (McCullagh and
Nelder, 1989) with canonical link, i.e.,

(1) f(y | x) = h(y) exp{βTxy−ψ(βTx)},

where h(·) and ψ(·) are known functions, ψ is third-order continuously differentiable, and
β is an unknown p-dimensional parameter vector. An unknown dispersion parameter can be
added to model (1) (McCullagh and Nelder, 1989), but we focus on the case of no dispersion
parameter for ease of presentation, as the general case can be treated similarly and the prac-
tical implement issues are discussed in Section 4.1. Note that the density of ykij given xkij
depends on j and site k through the value of xkij .

If the full dataset F = {(Xki,Yki), i= 1, . . . , nk, k = 1, . . . ,K} from all sites with a total
of n=

∑K
k=1 nk clusters is available, and if p is fixed and small, then the customary estimator

β̂F of β is a solution to the following quasi score equation (Liang and Zeger, 1986),

(2)
1

n

K∑
k=1

nk∑
i=1

XT

kiA
1/2
ki (b)R̂−1ki {A

1/2
ki (b)}−1{Yki −µki(b)}= 0, b ∈Rp.

where 0 denotes the vector of zeros, µki(b) = (ψ̇(bTxki1), . . . , ψ̇(bTxkimki
))T, A1/2

ki (b) is
the diagonal matrix of order mki whose jth diagonal entry is {ψ̈(bTxkij)}1/2, ψ̇ and ψ̈ > 0

are the first and second-order derivatives of ψ, and R̂ki is an estimator of the correlation
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matrix corr(Yki |Xki) based on a working model that may be incorrect. Examples of R̂ki

can be found in Section 4.1 and in Liang and Zeger (1986).
Although the full data estimator β̂F is asymptotically valid for estimating β with a fixed

and low p regardless of whether R̂ki’s are consistent or not (Liang and Zeger, 1986), the full
dataset F is often not available as discussed in Section 1, or a quick instant investigation is
needed. Thus, we are motivated to consider the following subsampling technique.

2.2. Optimal subsampling. In this section we focus on fixed and low covariate dimen-
sion p. High covariate dimension is considered in Section 3. To maintain and incorporate
the correlation structure within each cluster, we sample clusters instead of individual obser-
vations; once a cluster is selected, all its observations are extracted together. Specifically, in
distributed cluster subsampling, we take a random cluster subsample of size rk with replace-
ment from {(Xki,Yki), i= 1, . . . , nk} for each site k, where each (Xki,Yki) is selected with
probability πki under the constraint

∑nk
i=1 πki = 1 and independently across k = 1, . . . ,K .

Choices of πki and rk are discussed later.
Let S = {(X∗ki,Y ∗ki), i= 1, . . . , rk, k = 1, . . . ,K} be the subsample, A∗ki and µ∗ki be Aki

and µki, respectively, with (Xki,Yki) replaced by (X∗ki,Y
∗
ki), and π∗ki be the associated

probability of selecting (X∗ki,Y
∗
ki). The distributed cluster subsampling estimator β̂S is a

solution to the following weighted quasi score equation

(3)
1

n

K∑
k=1

rk∑
i=1

X∗Tki A
∗1/2
ki (b)R̂∗−1ki {A

∗1/2
ki (b)}−1{Y ∗ki −µ∗ki(b)}
rkπ
∗
ki

= 0, b ∈Rp,

where R̂∗ki is an estimator of correlation matrix corr(Yki |Xki) based on S , following the
approach of obtaining R̂ki in (2) (see examples in Liang and Zeger (1986) and in Section
4.1). Inverse inclusion probability rkπ∗ki weighting in (3) ensures that the left hand side of (3)
is unbiased under subsampling for (2) with R̂ki replaced by Rki = limit of R̂∗ki.

To establish asymptotic properties of β̂S , we list some regularity conditions. All lim-
its without further specification are obtained as mink≤K nk → ∞ and r → ∞, where

r =
∑K

k=1 rk is the total number of sampled clusters, and d−→ denotes convergence in dis-
tribution.

(A.1) The covariate values vary in a bounded set, n−1
∑K

k=1

∑nk
i=1E(‖Yki‖6+δ) is bounded

for a constant δ > 0, where ‖c‖ denotes the L2-norm of a vector c, and the Fisher infor-
mation matrix J =

∑K
k=1

∑nk
i=1E{XT

kiA
1/2
ki (β)R−1ki A

1/2
ki (β)Xki}/n converges to a pos-

itive definite matrix, whereRki is the limit of estimated correlation matrix corr(Yki |Xki).

(A.2) 0< max
i=1,...,nk,k=1,...,K

λmin(Rki)≤ max
i=1,...,nk,k=1,...,K

λmax(Rki)<∞, where λmin(Rki)

and λmax(Rki) are the minimum and maximum eigenvalues of Rki, respectively.

(A.3) max
i=1,...,nk,k=1,...,K

r/(nrkπki) is bounded in probability.

Assumption (A.1) contains commonly used conditions on the covariates, responses, and
model structure (Wang, Zhou and Qu, 2012; Blazère, Loubes and Gamboa, 2014; Ai et al.,
2021b; Zhang and Wang, 2021; Zuo et al., 2021; Zhang and Jia, 2022). The boundedness
of covariates does not require to know the bounds, and can be achieved by an appropri-
ate transformation that preserves the relationship of covariates and response. In the Beijing
multi-site air quality dataset, each meteorological variable is within a range; for example,
the temperature ranges between −20◦C and 42◦C. For practical implementation, continuous
covariates can be centralized and standardized to reduce heterogeneity. Assumption (A.2) is
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a restriction on the estimated correlation matrix for longitudinal data (Balan and Schiopu-
Kratina, 2005). Assumption (A.3) is typical in survey sampling and can be achieved when
we design a subsampling strategy; all our subsampling plans considered later in this section
satisfy Assumption (A.3). The proof of following result and all other technical proofs are in
the Supplementary Material.

THEOREM 2.1. Suppose that Assumptions (A.1)-(A.3) hold.
(i) With probability tending to 1, for any ε > 0, there exist fixed ∆ε and rε such that for all
r > rε, P

(
‖β̂S − β̂F‖2 ≥∆ε/r | F

)
< ε.

(ii) If, in addition, r/n→ 0, then

(4) (J−1V J−1)−1/2(β̂S −β)
d−→N(0,Ip),

where Id denotes the identity matrix of order d, J is given in Assumption (A.1),

V =

K∑
k=1

nk∑
i=1

[
XT

kiA
1/2
ki (β)R−1ki {A

1/2
ki (β)}−1{Yki −µki(β)}

]⊗2
rkπkin2

,

and c⊗2 = ccT for a vector c.

REMARK 2.1. Theorem 2.1(i) gives a low bound on the L2-distance between the sub-
sample estimator β̂S and the full data estimator β̂F . Theorem 2.1(ii) shows that β̂S − β is
asymptotically normal with mean 0 and asymptotic covariance matrix J−1V J−1. Under
Assumptions (A.1)-(A.3), J−1 is asymptotically well defined and rV converges in probabil-
ity to a positive definite matrix and, hence, J−1V J−1 is of the order r−1. The condition
r/n→ 0 in Theorem 2.1(ii) is typically satisfied when the cluster subsampling is needed. If
r/n→ c > 0, then β̂S − β is still asymptotically normal with mean 0 and a positive definite
covariance matrix. Here, we omit the related discussion since r/n→ c > 0 does not often
occur in subsampling applications.

REMARK 2.2. The results in Theorem 2.1 hold for any given set of subsampling prob-
abilities πki’s and sizes rk’s satisfying Assumption (A.3). A simple subsampling plan is
uniform within each site k, i.e., πki = n−1k for all i, with sizes rk’s proportionally allo-
cated, i.e., rk/nk = r/n for all k. Proportional allocation is frequently applied in sample
surveys. For uniform subsampling with proportional allocation, Assumption (A.3) holds as
r/(nrkπki) = rnk/(nrk) = 1 for all k.

Although uniform subsampling with proportional allocation is simple and Theorem 2.1
is applicable, it is not the most efficient subsampling strategy. The next theorem shows that
we can find an optimal distributed cluster subsampling strategy that minimizes the trace of
asymptotic covariance matrix of the transformation Lβ̂S , where L is a known, fixed, and
nonsingular s× p matrix. Examples of Lβ are a component of β, a linear contrast of com-
ponents of β, L= Ip corresponding to A-optimality criterion (Wang, Zhu and Ma, 2018; Ai
et al., 2021b), and L= J corresponding to L-optimality criterion (Wang and Ma, 2021; Ai
et al., 2021b).

THEOREM 2.2. Suppose that Assumptions (A.1)-(A.3) hold. For all πki’s and rk’s un-
der the constraint that

∑nk
i=1 πki = 1 and

∑K
k=1 rk = r with a pre-chosen r satisfying

r/n→ 0, if the distributed cluster subsampling probability for selecting cluster (k, i) is
πLki = τki/

(∑nk
i=1 τki

)
and subsample size in site k is rLk = r

(∑nk
i=1 τki

)
/
(∑K

l=1

∑nl
i=1 τli

)
with

τki = ‖LJ−1XT

kiA
1/2
ki (β)R−1ki {A

1/2
ki (β)}−1{Yki −µki(β)}‖,
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for i= 1, . . . , nk, k = 1, . . . ,K , then trace(LJ−1V J−1LT), the trace of asymptotic covari-
ance matrix of Lβ̂S , attains its minimum.

REMARK 2.3. The optimality criterion in Theorem 2.2 uses a general L and incorpo-
rates the within-subject correlation for each cluster and, thus, is more general than the ex-
isting ones in (Wang, Zhu and Ma, 2018; Ai et al., 2021b; Wang and Ma, 2021). The compu-
tation complexity of τki for i = 1, . . . , nk and k = 1, . . . ,K is O(np2s+m2ns). To further
calculate πLki for i= 1, . . . , nk and k = 1, . . . ,K , we need O(n) memory in total.

The optimal distributed cluster subsampling scheme in Theorem 2.2 cannot be applied
directly, since τki depends on unknown β and Rki. The situation is similar to the use of
optimal stratified sampling in surveys with sites as strata, where we have to estimate the op-
timal sampling plan based on a pilot study. Therefore, we assume that we first draw an initial
subsample SI = {(X∗Iki ,Y ∗Iki ), i = 1, . . . , rIk, k = 1, . . . ,K} of size rI =

∑K
k=1 r

I

k with pro-
portionally allocated uniform subsampling as previously described, obtain initial estimators
β̂SI

and R̂∗Iki based on the initial distributed cluster subsample SI , and then estimate τki by
replacing β and Rki in τki with β̂SI

and R̂∗Iki based on initial subsample SI , respectively.
After τki is estimated, we draw a distributed cluster subsample with estimated optimal

probabilities and sizes, independent of the initial subsample, and then calculate β̂S using
(3) based on the subsample S . It is shown in the Supplementary Material that β̂S based
on this procedure has the asymptotic distribution given in Theorem 2.1(ii) with minimized
trace of LJ−1V J−1LT. The performance of this optimal distributed cluster subsampling
procedure is checked by simulation in Section 4.1. In particular, it is shown in simulation
that this optimal procedure produces more efficient estimators than those based on uniform
subsampling. Regarding the determination of rI and r, rI ≤ r is usually adopted in practice
since the second-step subsample is more efficient than the first-step subsample. In addition,
r is primarily determined by the desired estimation precision, the cost/time of measuring and
collecting the samples. For example, we consider the trace of asymptotic covariance matrix
is no greater than a prespecified positive constant C0, i.e., trace(LJ−1V J−1LT)≤C0.

For Yki being very close to µki(β̂SI
), the corresponding estimated τ̂ki can be too small. To

protect the quasi score function from being inflated, we propose to truncate τ̂ki at a specified
threshold such as 10−6. To conduct asymptotic inference on β, we can apply Theorem 2.1(ii)
with J−1V J−1 estimated by the consistent estimator Ĵ−1V̂ Ĵ−1, where

Ĵ =
1

n

K∑
k=1

rk∑
i=1

X∗Tki A
∗1/2
ki (β̂S )R̂∗−1ki A

∗1/2
ki (β̂S )X∗ki

rkπ
∗
ki

,

V̂ =

K∑
k=1

rk∑
i=1

1

(nrkπ
∗
ki)

2

[
X∗Tki A

∗1/2
ki (β̂S )R̂∗−1ki {A

∗1/2
ki (β̂S )}−1{Y ∗ki −µ∗ki(β̂S )}

]⊗2
,

and πki’s and rk’s are the given or estimated optimal probabilities and sizes. The performance
of Ĵ−1V̂ Ĵ−1 is checked by simulation in Section 4.1. The above etimation and inference
procedures are summarized in Algorithm S1 in the Supplementary Material.

3. Quasi decorrelated score function. As described in Section 1, estimators β̂F and
β̂S are not suitable for high dimensional β. As an alternative, we focus on the situation
where we are only interested in the coefficient corresponding to a covariate sub-vector z
with a small dimension q� p. That is, x = (zT,uT)T, β = (θT,γT)T, βTx = θTz + γTu,
the q-dimensional θ is what we are interested, u is extraneous although it is related with
y and/or z, and γ is a high dimensional nuisance parameter. In the Beijing multi-site air
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quality dataset, K = 4, n1 = 5,844, n2 = 46,752, n3 = 11,688, n4 = 5,844, mki = 6, and
p = 216. Although the sample cluster size n of the full dataset and r of subsample can be
larger or much larger than p, it is still not good and unnecessary to include all covariates in
estimation. We select a q = 6 dimensional z with regional and seasonal dummy variables,
since our main interest is in analyzing regional and seasonal PM2.5 emissions in Beijing, and
we treat the rest 210 covariates as the extraneous covariates in u, including an intercept term,
temperature, pressure, dew point temperature, wind speed, as well as their high order terms
and interaction terms.

We develop a decorrelated score approach in this section. We first assume that the full
dataset F is available.

For non-cluster data (mki ≡ 1) with log likelihood `(β) of β = (θT,γT)T, where θ is
a q-dimensional parameter vector of interest with a small q and γ is a nuisance parameter
vector with high dimension p− q, the following decorrelated score function of θ is proposed
in Ning and Liu (2017),

(5) s(β,W ) =∇θ`(β)−W T∇γ`(β),

where W = [E{∇γγ`(β)}]−1E{∇γθ`(β)}, ∇a is the partial derivative with respect to a,
and ∇ab = ∇b∇a. The function s(β,W ) in (5) is called decorrelated score because it is
uncorrelated with the score function for nuisance γ, which is equivalent to the orthogonality
property

(6) E{∇γs(β,W )}= 0,

useful in separating the effect of estimating γ from the estimation of θ.
In our problem with cluster data, however, equation (2) is only a quasi score equation,

because the joint distribution of Yki givenXki is not fully specified. Thus, the idea of decor-
related score cannot be directly applied. In the following, we derive a quasi decorrelated score
function. With x= (zT,uT)T and β = (θT,γT)T, the left hand side of (2) is a p-dimensional
vector whose first q components form the quasi score for θ and last p− q components form
the quasi score for γ. With any (p − q) × q matrix W , a q-dimensional quasi score for θ
analogous to (5) is

(7) g(β,W ,R) =
1

n

K∑
k=1

nk∑
i=1

(Zki −UkiW )TA
1/2
ki (β)R−1ki {A

1/2
ki (β)}−1{Yki −µki(β)},

where Xki = (Zki,Uki), Zki ∈ Rmki×q , Uki ∈ Rmki×(p−q), R = (Rki, i = 1, . . . , nk, k =

1, . . . ,K), and Rki’s are limits of R̂ki’s in (2) (not necessary the true correlation matrices).
We propose to use a W in (7) satisfying the following analog of the orthogonality property
(6),

(8) E{∇γg(β,W ,R)}= 0.

The function g(β,W ,R) in (7) satisfying (8) is called a quasi decorrelated score, although
orthogonality property (8) does not necessarily produce a g(β,W ,R) uncorrelated with the
quasi score for nuisance parameter γ.

After some derivation, it can be shown that the following matrix satisfies (8),

(9) W = arg min
ω

K∑
k=1

nk∑
i=1

E‖R−1/2ki A
1/2
ki (β)(Zki −Ukiω)‖2,

i.e.,

W =
[ K∑
k=1

nk∑
i=1

E{UT

kiA
1/2
ki (β)R−1ki A

1/2
ki (β)Uki}

]−1 K∑
k=1

nk∑
i=1

E{UT

kiA
1/2
ki (β)R−1ki A

1/2
ki (β)Zki},
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where ‖C‖ denotes the Frobenious norm for a matrix C .
To use W in (9), we need to estimate β and R. When the full dataset F is available, we

still should not use (2) to estimate β with a high dimension p. We consider the following
lasso type initial estimator of β when full dataset F is available,

β̃F = arg min
b

[ K∑
k=1

nk∑
i=1

mki∑
j=1

{ψ(bTxkij)− bTxkij ykij}
]

+ nλ1‖b‖1,

where λ1 is a penalization parameter for high dimension and ‖ · ‖1 is the L1-norm. With β̃F ,
we estimate R by R̃F = (R̃ki, i= 1, . . . , nk, k = 1, . . . ,K), where R̃ki is estimated correla-
tion using the same method in Liang and Zeger (1986) when F is available. To estimate W
in (9), since the row dimension of W is p− q, we also use a lasso type estimator

W̃F = arg min
ω

{ K∑
k=1

nk∑
i=1

‖R̃−1/2ki A
1/2
ki (β̃F )(Zki −Ukiω)‖2

}
+ nλ2‖ω‖2,1,

where ‖ω‖2,1 is the sum of L2-norms of rows of ω and λ2 is a penalization parameter. The
computation of β̃F , R̃F , and W̃F can be done by R packages glmnet (Hastie, Qian and
Tay, 2021), PGEE (Wang, Zhou and Qu, 2012) and pqr (Cheng et al., 2022).

Based on the full dataset F , the quasi decorrelated score estimator θ̂F of the main param-
eter θ is a solution to

g(ϑ, γ̃F ,W̃F , R̃F ) = 0, ϑ ∈Rq,

where g(θ,γ,W ,R) is g(β,W ,R) in (7) with β = (θT,γT)T and γ̃F is the vector of
last p− q components of β̃F . Note that we adopt a pseudo-type score estimation in which
(γ,W ,R) is substituted by (γ̃F ,W̃F , R̃F ) prior to scoring. We do not re-estimate the nui-
sance parameter γ after we obtain θ̂F . To see the effect of having orthogonality property (8),
by Taylor’s expansion, it is shown in the Supplementary Material that

0 = g(β,W̃F , R̃F ) +∇θg(β,W̃F , R̃F )(θ̂F − θ)

+∇γg(β,W̃F , R̃F )(γ̃F − γ) + a lower order term

= g(β,W ,R) +E{∇θg(β,W ,R)}(θ̂F − θ) + a lower order term,

because of (8). This indicates that the estimation of high dimensional nuisance parameter γ
does not affect the asymptotic distribution of θ̂F , an advantage of using quasi decorrelated
score; see Figure S1 in the Supplementary Material for illustration.

When the full datasetF is not available, we apply the quasi decorrelated score approach to-
gether with distributed cluster subsampling developed in Section 2. Let S = {(X∗ki,Y ∗ki), i=

1, . . . , rk, k = 1, . . . ,K} be a distributed cluster subsampe as described in Section 2, A∗1/2ki
and π∗ki be the same as those in (3),

(10) β̃S = arg min
b

{ K∑
k=1

rk∑
i=1

mki∑
j=1

ψ(bTx∗kij)− bTx∗kij y
∗
kij

rkπ
∗
ki

}
+ nλ1‖b‖1,

R̃∗ki be the correlation estimator based on S and β̃S in (10), using the method in Liang and
Zeger (1986) (see Section 4.2), (Z∗ki,U

∗
ki) =X∗ki, and

W̃S = arg min
ω

{ K∑
k=1

rk∑
i=1

‖R̃∗−1/2ki A
∗1/2
ki (β̃S )(Z∗ki −U∗kiω)‖2

rkπ
∗
ki

}
+ nλ2‖ω‖2,1.
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We approximate quasi decorrelated score g(β,W ,R) in (7) by the subsample and then esti-
mate the main parameter θ of interest by θ̂S , the quasi decorrelated score estimator based on
the subsample S , as a solution to

K∑
k=1

rk∑
i=1

(Z∗ki −U∗kiW̃S )TA
∗1/2
ki (ϑ, γ̃S )R̃∗−1ki {A

∗1/2
ki (ϑ, γ̃S )}−1{Y ∗ki −µ∗ki(ϑ, γ̃S )}

rkπ
∗
ki

= 0,

ϑ ∈Rq , where γ̃S containing the last p− q components of β̃S is used to substituting for γ.
To establish asymptotic properties for θ̂S and θ̂F , we need the following conditions for

high dimensional β.

(A.1†) The covariate values vary in a bounded set, supt≥1 t
−1[E{|ykij − ψ̇(βTxkij)|t}]1/t

is bounded, and JW =
∑K

k=1

∑nk
i=1E{(Zki − UkiW )TA

1/2
ki (β)R−1ki A

1/2
ki (β)(Zki −

UkiW )}/n converges to a positive definite matrix.
(A.4) Elements of β and W vary in a bounded set, β and W are sparse in the sense that
r−1/2 max(s

β
, s

W
) log p log r→ 0, where s

β
is the number of nonzero components of β

and s
W

is the number of nonzero rows of W , and the penalization parameters λ1 and λ2
are chosen to be bounded by r−1/2

√
log p.

(A.5) For any set J ⊂ {1, . . . , p} and any vector v belonging to the cone C(J , α) = {v ∈
Rp : ‖vJ c‖1 ≤ α‖vJ ‖1}, where vJ is the vector containing components of v with indices
in J and J c is the complement of J , there exists a constant C > 0 such that

inf
0 6=v∈C(J ,α)

K∑
k=1

rk∑
i=1

mki∑
j=1

(vTx∗kij)
2ψ̈(βTx∗kij)

nrkπ
∗
ki‖v‖2

≥C.

Assumption (A.1†) is a version of Assumption (A.1) for high dimensional β, which is
stronger than Assumption (A.1) but standard for analyzing high-dimensional generalized lin-
ear models (Wang, Zhou and Qu, 2012; Fang, Ning and Li, 2020). The sparsity condition for
β and W in Assumption (A.4) is assumed in Ning and Liu (2017) and Cheng et al. (2022).
Assumption (A.5) is for lasso type estimation, which gives a restricted eigenvalue condition
(Raskutti, Wainwright and Yu, 2010; Fang, Ning and Li, 2020; Cheng et al., 2022) and the
necessary curvature within a cone.

THEOREM 3.1. Suppose that Assumptions (A.1†) and (A.2)-(A.5) hold.
(i) With probability tending to 1, for any ε > 0, there exist fixed ∆ε and rε such that for
all r > rε, P

(
‖θ̂S − θ‖2 ≥∆ε/r

)
< ε, where θ̂S is the proposed quasi decorrelated score

estimators based on the subsample S .
(ii) If, in addition, r/n→ 0, then

(J−1W VWJ
−1
W )−1/2(θ̂S − θ)

d−→N(0,Iq),

where JW is given in Assumption (A.1†) and

VW =

K∑
k=1

nk∑
i=1

[
(Zki −UkiW )TA

1/2
ki (β)R−1ki {A

1/2
ki (β)}−1{Yki −µki(β)}

]⊗2
rkπkin2

.

Theorem 3.1(ii) actually holds with θ̂S replaced by θ̂F when the full dataset F is available,
with r changed to n in Assumption (A.4), function related with subsampling changed to its
conditional expectation in Assumption (A.5), and rkπki in VW changed to 1. Assumptions
and proofs based on the full dataset are given in the Supplementary Material.
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It is of interest to compare the asymptotic covariance matrices of β̂S and θ̂S , i.e.,
J−1V J−1 in Theorem 2.1 and J−1W VWJ

−1
W in Theorem 3.1, when β̂S follows (4). To pro-

ceed, we block J and V in Theorem 2.1 as

J =

(
JZZ JZU
JT

ZU JUU

)
and V =

(
VZZ VZU
V T

ZU VUU

)
,

where

JZU =
1

n

K∑
k=1

nk∑
i=1

E{ZT

kiA
1/2
ki (β)R−1ki A

1/2
ki (β)Uki},

VZU =

K∑
k=1

nk∑
i=1

ZT

ki

[
A

1/2
ki (β)R−1ki {A

1/2
ki (β)}−1{Yki −µki(β)}

]⊗2
Uki

rkπkin2
,

JZZ and VZZ are JZU and VZU , respectively, with Uki replaced by Zki, and JUU and VUU
are JZU and VZU , respectively, with Zki replaced by Uki. Applying the inverse of a block
matrix and using the fact that W = J−1UUJ

T

ZU by (9), we obtain that JW in Theorem 3.1 is
equal to JZZ − JZUJ−1UUJT

ZU and

J−1 =

(
J−1W −J−1W JZUJ

−1
UU

−J−1UUJT

ZUJ
−1
W J−1UUJ

T

ZUJ
−1
W JZUJ

−1
UU + J−1UU

)
.

Consequently, the first q × q sub-matrix of J−1V J−1, which is the asymptotic covariance
matrix of the first q elements of β̂S as estimators of elements in θ, is equal to

J−1W (VZZ −VZUJ−1UUJ
T

ZU − JZUJ−1UUV
T

ZU + JZUJ
−1
UUVUUJ

−1
UUJ

T

ZU )J−1W = J−1W VWJ
−1
W ,

by the definition of VW in Theorem 3.1 and the fact that W = J−1UUJ
T

ZU . In other words, the
asymptotic efficiency of θ̂S is the same as that of the first q elements of β̂S when β̂S follows
(4), not affected by the estimation of γ. The advantage of quasi decorrelated score appears
when β̂S does not perform well (i.e., result (4) does not hold) due to high dimensionality of
β, in which case θ̂S is still asymptotically normal with the same efficiency as that of β̂S for
low dimensional β. The same conclusion can be obtained when we compare β̂F and θ̂F .

Similar to Theorem 2.2 in Section 2, we have the following result for the optimal distribut-
ed cluster subsampling when quasi decorrelated score is applied. Let L be a known, fixed,
and nonsingular s× q matrix.

THEOREM 3.2. Suppose that Assumptions (A.1†) and (A.2)-(A.5) hold. For all πki’s and
rk’s under the constraint that

∑nk
i=1 πki = 1 and

∑K
k=1 rk = r with a pre-chosen r satisfying

r/n→ 0, if the distributed cluster subsampling probability for selecting cluster (k, i) is πLki =

τki/
(∑nk

i=1 τki
)

and subsample size in site k is rLk = r
(∑nk

i=1 τki
)
/
(∑K

l=1

∑nl
i=1 τli

)
with

τki = ‖LJ−1W (Zki −UkiW )TA
1/2
ki (β)R−1ki {A

1/2
ki (β)}−1{Yki −µki(β)}‖,

i = 1, . . . , nk, k = 1, . . . ,K , then trace(LJ−1W VWJ
−1
W LT), the trace of asymptotic covari-

ance matrix of Lθ̂S , attains its minimum.

Similarly, the optimal τki in Theorem 3.2 has to be estimated by using an initial distributed
cluster subsample as discussed in Section 2. After τki is estimated, we draw a distributed
cluster subsample S with estimated optimal probabilities and sizes, independent of the initial
subsample, and then calculate θ̂S based on S . It is shown in the Supplementary Material
that θ̂S based on this procedure has the asymptotic distribution given in Theorem 3.1(ii) with
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minimized trace of LJ−1W VWJ
−1
W LT. The performance of this optimal distributed cluster

subsampling procedure is checked by simulation in Section 4.2.
To conduct asymptotic inference on θ, we can apply Theorem 3.1(ii) with J−1W VWJ

−1
W

estimated by the consistent estimator Ĵ−1W V̂W Ĵ
−1
W , where

ĴW =

K∑
k=1

rk∑
i=1

(Z∗ki −U∗kiW̃S )TA
∗1/2
ki (β̃S )R̃∗−1ki A

∗1/2
ki (β̃S )(Z∗ki −U∗kiW̃S )

nrkπ
∗
ki

,

V̂W =

K∑
k=1

rk∑
i=1

[
(Z∗ki −U∗kiW̃S )TA

∗1/2
ki (β̃S )R̃∗−1ki {A

∗1/2
ki (β̃S )}−1{Y ∗ki −µ∗ki(β̃S )}

]⊗2
(nrkπ

∗
ki)

2
,

when distributed cluster subsample S is used, and rkπ∗ki in ĴW , (rkπ
∗
ki)

2 in V̂W should be
replaced by 1 when F is used. The performance of Ĵ−1W V̂W Ĵ

−1
W is checked by simulation in

Section 4.2. We summarize the aforementioned procedures in Algorithm S2 in the Supple-
mentary Material.

4. Simulation study. We assess the performance of our methods using simulations from
linear model. We also have similar simulation results under logistic and Poisson models given
in the Supplementary Material. We consider K = 5, mki = 3 for all k and i, nk = 5(k+ 1)×
104, k = 1, . . . ,5, and n=

∑
k nk = 106.

4.1. Distributed cluster subsampling. We first consider p= 7 and quasi decorrelated s-
core is not applied. The simulation studies distributed cluster subsampling in Section 2 with
the uniform and the optimal subsampling schemes. We generate correlated data in cluster
(k, i) according to

(11) Yki |Xki ∼N(Xkiβ, Σy|x),

where β = (1,1,1,1,1,1,1)T is 7-dimensional and Σy|x is 3×3 compound symmetry matrix
with diagonal elements equal to 1 and off-diagonal elements equal to 0.8. The first column
of Xki ∈ R3×7 has all elements equal to 1, corresponding to an intercept effect. For all
(k, i), the three rows ofXki are independent and identically distributed and each row ofXki

excluding the constant first element is generated from the 6-dimensional normal distribution
N(0,Σx/10), where Σx has (t, s)th element equal to 0.2|t−s|, 1≤ t, s≤ 6.

We evaluate and compare the performance of β̂S with four different methods to obtain the
distributed subsample.

(a) The proposed A-optimal distributed cluster subsampling in Theorem 2.2 (L= Ip).
(b) The proposed L-optimal distributed cluster subsampling in Theorem 2.2 (L= J ).
(c) The uniform distributed cluster subsampling with proportional allocation.
(d) The A-optimal individual subsampling scheme proposed by Zhang and Wang (2021) and

Zuo et al. (2021) that ignores the within cluster correlation.

Method (d) is considered to see the advantages of our proposed cluster subsampling. We
consider r = 300,500,700 and 900 as the sizes of distributed cluster subsampling. For A-
and L-optimal schemes, we use an independent initial subsample of size 300.

To check the effect of estimated correlation R̂∗ki, we consider three working models for
correlation structure, the independence model (IND), the first-order autoregressive model
(AR), and the compound symmetry model (CS), where the CS model is correct and the IND
and AR models are incorrect. Under the IND working model, R̂∗ki = Imki

. Under the CS
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working model, all diagonal elements of R̂∗ki are equal to 1 and all off-diagonal elements of
R̂∗ki are equal to

1

σ̂2

K∑
k=1

rk∑
i=1

1

nrkπ
∗
ki

∑
j 6=j′

v∗kijv
∗
kij′

mki(mki − 1)
, v∗kij =

y∗kij − ψ̇(β̂T

S,IND
x∗kij)

{ψ̈(β̂T

S,IND
x∗kij)}1/2

,

where σ̂2 =
∑K

k=1

∑rk
i=1

∑mki

j=1(y
∗
kij − β̂T

S,IND
x∗kij)

2/(nrkπ
∗
kimki) and β̂S,IND

is a solution
of (3) under the IND working model with R̂∗ki = Imki

. Under the AR working model, the
(j, j′)th off-diagonal element of R̂∗ki is φ̂|j−j

′|, where

φ̂=
1

σ̂2

K∑
k=1

rk∑
i=1

1

nrkπ
∗
ki

∑
|j−j′|=1

v∗kijv
∗
kij′

2(mki − 1)
.

We evaluate the performance of methods (a)-(d) in terms of the following quantities: (1)
the average of 7 absolute values of biases of estimated β-components; (2) the summation of 7
estimated variances of β-components, which is equal to the trace of Ĵ−1V̂ Ĵ−1 in Section 2;
(3) the ratio of the average of standard error (se) using Ĵ−1V̂ Ĵ−1 to the average of standard
deviation (sd); (4) the average of 7 coverage probabilities of 95% asymptotic confidence
intervals for β-components. Based on 500 simulation replications, Figure 2 and Table 1 show
the simulated results for these four quantities. The following are our findings.

(1) All estimators have small biases, i.e., the average of absolute values of biases are smaller
than 4%. All estimators are robust against the misspecification of working correlation
model.

(2) In terms of estimated variance, method (b) with L-optimal subsampling is worse than
method (a), because the average of estimated variances is a measure in favor of the A-
optimal scheme. Method (c) based on uniform subsampling is worse than methods (a) and
(b), although it is simpler.
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FIG 2. Summation of estimated variances of β̂S -components (v̂ar) and ratio of the average of standard error (se)
to the average of standard deviation (sd) based on 500 simulations and low dimensional β setting of linear model
in Section 4.1
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TABLE 1
Average of absolute biases of β̂S -components (|bias|) and average of coverage probabilities (CP) of 95%
asymptotic confidence intervals, based on 500 simulations and low dimensional β setting in Section 4.1

Results under linear model (11)

Correlation Method
model r Quantity (a) (b) (c) (d)
IND 300 |bias| 0.0354 0.0361 0.0321 0.0283

CP 0.9489 0.9454 0.9483 0.9446
500 |bias| 0.0316 0.0328 0.0318 0.0335

CP 0.9386 0.9446 0.9471 0.9471
700 |bias| 0.0295 0.0299 0.0346 0.0319

CP 0.9386 0.9426 0.9466 0.9457
900 |bias| 0.0273 0.0304 0.0292 0.0331

CP 0.9400 0.9429 0.9434 0.9383
AR 300 |bias| 0.0094 0.0078 0.0111 0.0283

CP 0.9457 0.9446 0.9449 0.9446
500 |bias| 0.0122 0.0122 0.0156 0.0335

CP 0.9511 0.9497 0.9477 0.9471
700 |bias| 0.0107 0.0124 0.0133 0.0319

CP 0.9426 0.9411 0.9494 0.9457
900 |bias| 0.0081 0.0093 0.0088 0.0331

CP 0.9471 0.9489 0.9520 0.9383
CS 300 |bias| 0.0156 0.0135 0.0133 0.0283

CP 0.9437 0.9463 0.9454 0.9446
500 |bias| 0.0117 0.0123 0.0159 0.0335

CP 0.9526 0.9520 0.9451 0.9471
700 |bias| 0.0137 0.0134 0.0153 0.0319

CP 0.9429 0.9417 0.9477 0.9457
900 |bias| 0.0131 0.0108 0.0103 0.0331

CP 0.9423 0.9511 0.9497 0.9383

(3) Under IND model, our proposed method (a) using A-optimal subsampling scheme can
be slightly worse than method (d), which also uses A-optimal subsampling. This is be-
cause the cluster subsampling method using incorrect IND working model cannot take
advantage of within-cluster correlation information. Under the AR or CS model, method
(a) is much better than method (d), although the AR model is still incorrect. Under the AR
model even method (c) is better than method (d).

(4) In terms of CP, all methods produce results close to 95%. Variance estimator Ĵ−1V̂ Ĵ−1

for methods (a)-(c) generally perform well.
(5) As the CS model is correct, the estimators using CS as working model have smaller

variances than those under wrong working models. Although the AR model is incorrect,
it still leads to substantially lower variances compared with the IND working model. This
indicates that it is important to model the correlation even though the working model may
not be correct, rather than to ignore the correlation entirely.

The findings from simulation agree with our theoretical results in Theorems 2.1 and 2.2.

4.2. Distributed cluster subsampling with quasi decorrelated score. Our second simula-
tion considers a q = 4 dimensional parameter θ of interest and a p− q = 900 dimensional
nuisance parameter γ. Thus, distributed cluster subsampling is applied with the quasi decor-
related score approach in Section 3. We generate correlated data in cluster (k, i) according
to

(12) Yki |Xki ∼N
(
Zkiθ+Ukiγ, Σy|x

)
,
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where θ = (1,1,1,1)T, γ has first three elements equal to 1 and rest equal to 0, and Σy|x is
the same as that in Section 4.1. The first 4 columns of Xki ∈ R3×904 are columns of Zki ∈
R3×4 and the rest p− q = 900 columns of Xki are columns of Uki ∈R3×900, where the first
column of Uki have all elements equal to 1, corresponding to an intercept effect. Each row
of Xki excluding the constant fifth element is generated from the 903-dimensional normal
distribution N(0,Σx/10), where Σx has (t, s)th element equal to 0.2|t−s|, 1≤ t, s≤ 903.

We evaluate and compare the performance of θ̂S based on the quasi decorrelated score
approach and methods (a)-(c) in Section 4.1 to obtain the distributed cluster subsample, with
L= Iq in the A-optimal distributed cluster subsampling and L= JW in the L-optimal dis-
tributed cluster subsampling. In addition, we include an oracle method knowing that the last
897 components of γ are zeros so that estimation focuses on 7 coefficients including com-
ponents of θ without decorrelating, using A-optimal distributed cluster subsampling. This
is called the oracle method and is added to see the effect of decorrelation in our proposed
estimators.

We consider r = 300,500,700 and 900 as the sizes of distributed cluster subsampling. For
A- and L-optimal schemes, we use an independent initial subsample of size 300. Estimation
of the correlation matrix is carried out the same as in Section 4.1 under 3 working models,
IND, AR, and CS, with β̂S,IND

replaced by lasso estimator β̃S in (10) that is also based on
IND working model. We evaluate the performance of methods (a)-(c) and the oracle method
in terms of the following quantities: (1) the average of 4 absolute values of biases of estimated
θ-components; (2) the summation of 4 estimated variances of θ-components, which is equal
to the trace of Ĵ−1W V̂W Ĵ

−1
W in Section 3; (3) the ratio of the average of standard error using

Ĵ−1W V̂W Ĵ
−1
W to the average of standard deviation; (4) the average of 4 coverage probabilities

of 95% asymptotic confidence intervals for θ-components.
Based on 500 simulation replications, Figure 3 and Table 2 show the simulated results for

these four quantities and we have the following findings.
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FIG 3. Summation of estimated variances of θ̂S -components (v̂ar) and ratio of the average of standard error
(se) to the average of standard deviation (sd) based on 500 simulations and high dimensional β setting of linear
model in Section 4.2
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TABLE 2
Average of absolute biases of θ̂S -components (|bias|) and average of coverage probabilities (CP) of 95%
asymptotic confidence intervals based on 500 simulations and high dimensional β setting in Section 4.2

Results under linear model (12)

Correlation Method
model r Quantity (a) (b) (c) oracle
IND 300 |bias| 0.0351 0.0364 0.0471 0.0076

CP 0.9460 0.9500 0.9330 0.9256
500 |bias| 0.0203 0.0354 0.0376 0.0075

CP 0.9470 0.9570 0.9510 0.9476
700 |bias| 0.0227 0.0311 0.0267 0.0026

CP 0.9420 0.9490 0.9510 0.9516
900 |bias| 0.0221 0.0237 0.0179 0.0054

CP 0.9455 0.9315 0.9540 0.9416
AR 300 |bias| 0.0340 0.0326 0.0251 0.0040

CP 0.9505 0.9585 0.9520 0.9415
500 |bias| 0.0180 0.0251 0.0210 0.0025

CP 0.9505 0.9555 0.9535 0.9516
700 |bias| 0.0149 0.0195 0.0233 0.0023

CP 0.9455 0.9510 0.9505 0.9436
900 |bias| 0.0160 0.0202 0.0141 0.0034

CP 0.9540 0.9485 0.9470 0.9275
CS 300 |bias| 0.0282 0.0307 0.0279 0.0070

CP 0.9525 0.9485 0.9480 0.9476
500 |bias| 0.0190 0.0237 0.0227 0.0020

CP 0.9450 0.9535 0.9510 0.9436
700 |bias| 0.0156 0.0225 0.0221 0.0056

CP 0.9540 0.9405 0.9465 0.9435
900 |bias| 0.0167 0.0204 0.0150 0.0026

CP 0.9505 0.9470 0.9480 0.9355

(1) All estimators have small biases. All estimators are robust against the misspecification
of correlation model as the biases are all small.

(2) In terms of estimated variance, our proposed method (a) using decorrelation and A-
optimal subsampling scheme can be slightly worse or better than the oracle method, which
also uses A-optimal subsampling. This is because the oracle method aims at minimizing
the asymptotic variance of β rather than θ, although it uses the information that β is 7-
dimensional and doesn’t estimate the high dimensional nuisance parameter. Method (b)
with decorrelation and L-optimal subsampling is still worse than method (a). Method (c)
based on decorrelation and uniform subsampling is the worst, although sampling is sim-
ple.

(3) In terms of CP, all methods produce results close to 95% except for a few cases where
CP values are below 93%, even for the oracle method. Variance estimator Ĵ−1W V̂W Ĵ

−1
W

for methods (a)-(c) generally perform well.
(4) The performance of estimators relative to the working models IND, AR, and CS are

similar to that in Section 4.1.

The average computational time for the subsampling methods and full dataset are placed
in the Supplementary Material.

5. Analysis of Beijing multi-site air quality dataset. We illustrate our proposed meth-
ods and analyze the effects of region and season variables Zki on PM2.5 emissions. Fol-
lowing the notation in Section 3, we are interested in estimation of a 6-dimensional θ =
(θ1, θ2, θ3, θ4, θ5, θ6)

T, where θ1, θ2, and θ3 are the effects for regions north, west, and east
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versus baseline south, respectively, and θ4, θ5, and θ6 are the effects for seasons spring, sum-
mer, and autumn versus baseline winter, respectively. We consider the linear regression in
(12) with Yki being the logarithm of PM2.5 emissions,Xkiβ =Zkiθ+Ukiγ, andUki being
an intercept term and 209 centralized and standardized extraneous covariates. In this appli-
cation, the full dataset is available. In addition to the quasi decorrelated score with the full
dataset, we also apply the method with distributed cluster subsampling as described in Sec-
tion 3. This gives us an opportunity to check how quasi decorrelated score with subsampling
preforms, compared with the full dataset analysis.

We consider an initial subsample of size rI = 100 and four choices of r = 100,500,1,000,
and 1,500, which give r/n = 0.14%, 0.71%, 1.43%, and 2.14%, respectively. Since data
within each cluster is correlated as shown in Figure 1(b), we adopt AR and CS correlation
models. Before data analysis, about 2% of missing values are imputed by the before-and-
after method in Fan, Lin and Yu (2024). In subsamples, the proportion of sampled imputed
values is still around 2% for any r used. The results from statistical analysis depend on the
imputation method, regardless of whether full data or subsamples are used. However, the
effect is not serious since the proportion of missing values is small.

Table 3 presents the point estimates and standard errors (se’s) of θ using the full dataset
and optimal subsample methods (a) and (b) described in Section 4.2 based on four choices
of r. Estimates and se’s based on uniform subsample (method (c)) are not shown in Table
3 but given in the Supplementary Material, since the simulation results in Section 4 show
that uniform subsample is less efficient than methods (a) and (b). The estimates based on
subsample with r = 100 can be very different from those based on r = 500, 1,000, and 1,500,
indicating that r as small as 100 (only 0.14% of the full dataset size and even smaller than the
number of covariates p= 216) is not appropriate. For subsample with r = 500, 1,000, 1,500,
conclusions about significance of regional and seasonal covariates effects are the same as
those of full dataset analysis, although magnitudes of estimates may not be always close. The
following are our findings and conclusions from analysis of this dataset with any r ≥ 500 or
the full dataset.

The effects θ1, θ2, and θ3 are negative at significance level 0.05, although θ3 is only
marginally significant from 0. From a regional perspective, it can be seen that PM2.5 e-
missions in region south during winter are more serious than those in regions north and west,
but comparable to those in region east, which indicates an aggregation effect in south gradu-
ally decline from the heart of city towards countryside. An explanation to this phenomenon is
that region south (e.g., Dongsi and Gucheng) has high population density, dense industries,
and heavy vehicle emissions, while two mountains, Yanshan and Taihang, are around the
north and west of Beijing such that the air pollutants emitted from region south are not easily
diffused to regions north and west.

The effects θ4, θ5 and θ6 are significantly negative at level 0.05. Moreover, it can be seen
that |θ̂5| is the largest, |θ̂6| is larger than |θ̂4|, and their se’s are comparable. From a season-
al perspective, the emission of PM2.5 in region south during winter is significantly higher
compared to spring, summer and autumn. Our result also indicates that the emission of P-
M2.5 in region south is the highest in winter, lowest in summer, and much higher in spring
compared with autumn, which shows a U-shaped variation. Some explanations are: Beijing
citizens consume enormous amounts of coal for heating in cold and dry winters; the rainy
summer season is beneficial to the diffusion and deposition of air pollutants; in spring, the air
pollutants are generated by fireworks during the spring festival and construction activities;
and in autumn, coal/biomass combustion are increased.

Our analysis confirms significant regional and seasonal effects in PM2.5 emissions. The
significant increase in PM2.5 during winter in region south suggests stricter controls on
coal/biomass combustion and industrial activities should be taken to reduce the emissions.
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TABLE 3
Point estimates and standard errors (se’s) using full dataset and subsampling methods (a) and (b) in Section 5

Method
Correlation Full dataset (a) (b)

model n= 70,128 r = 100 500 1,000 1,500 r = 100 500 1,000 1,500

AR θ̂1 -0.1912 -0.4579 -0.2650 -0.2792 -0.2663 -0.5362 -0.2893 -0.2724 -0.2913
se 0.0118 0.2118 0.1084 0.0784 0.0671 0.2290 0.1257 0.0790 0.0734
θ̂2 -0.2219 -0.4245 -0.2672 -0.2455 -0.2384 -0.4786 -0.3190 -0.3651 -0.2799
se 0.0087 0.1912 0.0991 0.0726 0.0626 0.1767 0.0931 0.0669 0.0656
θ̂3 -0.0570 -0.2219 -0.1801 -0.1552 -0.0698 -0.2551 -0.2274 -0.1034 -0.0813
se 0.0114 0.2084 0.1184 0.0857 0.0707 0.2270 0.1243 0.1047 0.0698
θ̂4 -0.3420 -0.3342 -0.4466 -0.6247 -0.5499 -0.4781 -0.5657 -0.6229 -0.5181
se 0.0081 0.1441 0.0822 0.0658 0.0555 0.1389 0.0817 0.0634 0.0521
θ̂5 -1.1883 -1.1554 -1.2916 -1.3433 -1.3100 -1.0299 -1.4079 -1.4254 -1.3591
se 0.0105 0.1802 0.1061 0.0837 0.0660 0.1955 0.1114 0.0797 0.0677
θ̂6 -0.7198 -0.5798 -0.7157 -0.8551 -0.8229 -0.6865 -0.8050 -0.8821 -0.8819
se 0.0091 0.1550 0.0837 0.0641 0.0562 0.1304 0.0753 0.0586 0.0502

CS θ̂1 -0.1458 -0.4520 -0.2697 -0.2776 -0.1850 -0.6169 -0.3104 -0.2434 -0.2474
se 0.0118 0.2189 0.1088 0.0800 0.0688 0.2423 0.1193 0.0957 0.0773
θ̂2 -0.1806 -0.4441 -0.2627 -0.2995 -0.1847 -0.5446 -0.2896 -0.2718 -0.2521
se 0.0087 0.1935 0.0981 0.0763 0.0634 0.1775 0.0936 0.0672 0.0593
θ̂3 -0.0197 -0.2814 -0.1785 -0.0812 -0.0520 -0.2956 -0.2232 -0.0507 -0.0526
se 0.0115 0.2124 0.1110 0.0835 0.0689 0.2205 0.1274 0.0920 0.0837
θ̂4 -0.3282 -0.3060 -0.4376 -0.4949 -0.4168 -0.4351 -0.5021 -0.5153 -0.3978
se 0.0085 0.1433 0.0818 0.0676 0.0621 0.1407 0.0801 0.0685 0.0616
θ̂5 -1.3755 -1.2535 -1.3933 -1.4552 -1.3894 -1.0760 -1.4424 -1.5231 -1.3670
se 0.0112 0.1954 0.1082 0.0879 0.0772 0.1930 0.1137 0.0865 0.0822
θ̂6 -0.7542 -0.5336 -0.7021 -0.7970 -0.7454 -0.7015 -0.7354 -0.8272 -0.7790
se 0.0094 0.1502 0.0832 0.0655 0.0617 0.1325 0.0759 0.0651 0.0608

To reduce the PM2.5 emissions in region south during winter, energy-saving policies and
end-of-pipe control measures can be applied compared with the other regions. Our results
help the development of more effective air quality regulations and pollution control strate-
gies tailored to specific areas and times of the year and lead to more targeted public health
interventions and policies to reduce exposure and associated health risks.

Some of our conclusions are similar to the reports in Fan, Lin and Yu (2024) and Li, Liu
and Zhao (2022). But our results are more statistically reliable since decorrelated quasi s-
core is applied to handle high dimensionality of covariate. Furthermore, our analysis based
on subsamples reveals that subsampling with an appropriate r (e.g., r ≥ 500) can be used to
achieve almost the same purpose as the full dataset analysis but saves amount of computation,
although computational saving is not the only reason for distributed subsampling (other rea-
sons are privacy, security, and administrative management as discussed in Section 1.2). The
computational time for the full dataset is about 510 seconds, and for subsamples (including
calculation of optimal subsampling probabilities and sampling) are about 8, 14, 20, and 28
seconds with r = 100, 500, 1,000, and 1,500, respectively, using R (version 4.1.0) based on
Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz with memory 125 GB.

6. Discussion. To investigate regional and seasonal PM2.5 effects using the Beijing
multi-site air quality dataset, we choose the baseline level as region south and winter. Similar
analyses can be carried out by choosing other baselines and/or other covariates of interest.
Other statistical methods can also be applied and studied; for example, the quadratic infer-
ence function (Qu, Lindsay and Li, 2000) instead of the quasi score equation, the longitudinal
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quantile regression or generalized partial linear models instead of the linear GLM for mean
effects of covariates, and Poisson subsampling (Yu et al., 2022) as a better way to deal with
the memory constraint problem in distributed cluster subsampling. When there is a non-
negligible proportion of missing values and outliers, methods of handling missing values and
outliers in distributed subsampling and quasi decorrelaed score deserve further research.
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SUPPLEMENTARY MATERIAL

Supplement to “Distributed subsampling and quasi decorrelated score for cluster da-
ta: an application to Beijing multi-site air quality”. The Supplementary Material provides
additional details, simulations, technical lemmas, and proofs for theorems.

Code. R code for the simulation study and real data analysis is provided.
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