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Transcriptome-wide association studies (TWAS) are powerful tools for
identifying gene-level associations by integrating genome-wide association
studies and gene expression data. However, most TWAS methods focus on
linear associations between genes and traits, ignoring the complex nonlinear
relationships that may be present in biological systems. To address this limi-
tation we propose a novel framework, QTWAS, which integrates a quantile-
based gene expression model into the TWAS model, allowing for the dis-
covery of nonlinear and heterogeneous gene-trait associations. Via compre-
hensive simulations and applications to both continuous and binary traits,
we demonstrate that the proposed model is more powerful than conventional
TWAS in identifying gene-trait associations.

1. Introduction. Over the past twenty years, genome-wide association studies (GWAS)
have collectively identified tens of thousands of genetic variants associated with various com-
plex traits and diseases. However, most of these variants are located in non-coding regions
of the genome, making it difficult to interpret their functional roles. Since it is assumed that
most functional genetic variants exert their effects on traits through their influence on gene
expression, directly linking gene expression levels to phenotypes can provide a better under-
standing of the underlying biological mechanisms and identify potential therapeutic targets
more effectively (Tang et al., 2021; Li et al., 2021). The main challenge to such transcrip-
tomic studies is that gene expression levels are not easily available in large-scale disease
studies. To overcome this, several approaches have been developed to impute or predict gene
expression levels based on DNA sequence data. One of the most widely adopted approaches
is the transcriptome-wide association studies (TWAS) (Gusev et al., 2016; Gamazon et al.,
2015; Zhao et al., 2021; Wainberg et al., 2019). TWAS leverages large-scale data on both
genotype and gene expression across various human tissues as available in projects such
as the Genotype-Tissue Expression (GTEx) project (GTEx Consortium, 2020) to learn the
relationship between gene expression and genetic variation (Gusev et al., 2016; Gamazon
et al., 2015; Zhao et al., 2021; Wainberg et al., 2019). By integrating this model with GWAS
data, TWAS links predicted gene expression levels to traits of interest, providing insights into
gene-trait associations.

As illustrated in Figure 1, TWAS combines two distinct models – a gene expression model
(Model A) that models gene expression as a function of expression quantitative trait loci
(eQTLs, i.e., genetic variants that are associated with gene expression), and a GWAS model
(Model B ) that captures the associations between a trait and individual genetic variants.
The two models are estimated separately and then combined to infer associations between
genetically regulated gene expression levels and phenotypes (Model C). For example, the
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FIG 1. Quantile TWAS and classical linear TWAS models. Model A: a model for SNP-gene expression association
(eQTL model based on GTEx data). Model B: a model for SNP-Trait associations (GWAS model). Model C: a
model for expression-trait association (TWAS model).

widely-used PrediXcan (Gamazon et al., 2015) first uses a sparse linear model such as elas-
tic net or lasso to estimate the cis-eQTL effects on gene expression and then imputes gene
expression levels. Then, in the second step, it formally tests the association between imputed
gene expression (genetically regulated gene expression levels) and the trait of interest. How-
ever access to individual-level GWAS data is often restricted due to privacy concerns and
data-sharing limitations. Instead, GWAS summary statistics (estimated effect sizes and their
standard errors) are more readily available. These summary statistics not only facilitate easy
access to GWAS results but also allow researchers to integrate data from multiple GWAS, re-
sulting in more powerful analyses. Along this direction, S-PrediXcan (Barbeira et al., 2018)
extends PrediXcan to situations where only GWAS summary statistics are available. More
recently, Gusev et al. (2016) and Nagpal et al. (2019) employed Bayesian gene expression
models, while UTMOST (Hu et al., 2019) introduced a multi-task learning approach to jointly
model gene expression across tissues. Given the practicality of working with summary statis-
tics, our proposed framework also focuses on scenarios where only GWAS summary statistics
are accessible.

Current TWAS methodologies rely on the assumption that both the gene expression model
(Model A, SNP-gene expression association) and the GWAS model (Model B, SNP-trait as-
sociation) follow linear relationships. However, multiple lines of evidence suggest substantial
heterogeneity in gene expression patterns, driven by genetic variation, cellular and molecu-
lar diversity, and environmental, demographic, and technical factors (Leek and Storey, 2007;
Somel et al., 2006; Budinska et al., 2013). Moreover, how eQTLs regulate gene expression
can be highly context-dependent, influenced by factors such as gene-gene interactions and
gene-environment interactions (GEI) (Umans et al., 2021), leading to heterogeneous eQTL
effects. Therefore, linear and mean-based gene-expression models can be inadequate for cap-
turing the complexity of SNP-gene expression relations. Recent work by Lin et al. (2022)
considered a quadratic gene expression model in TWAS, and observed improved power in
identifying gene-trait association.

Our strategy is based on quantile regression (Koenker and Bassett, 1978) which models
conditional quantiles across multiple quantile levels, and is an effective approach to capture
heterogeneous genetic associations (Song et al., 2017; Wang et al., 2022). The flexibility of
quantile regression allows it to more effectively capture the variability in gene expression
patterns driven by genetic and environmental factors (Wang et al., 2024). In our proposed
Quantile TWAS (QTWAS) framework, we use quantile regression along with a quantile-
specific variable screening scheme to model the entire conditional distribution of gene ex-
pression given the underlying genotype profile, which helps capture the heterogeneity in
eQTL-regulated gene expressions.

As we demonstrate in Appendix Section 3.1, when SNP-gene expression associations
are non-linear, heteroskedastic, or exhibit heavy tails, the resulting gene-trait associations
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(Model C) can become non-linear even if the GWAS associations themselves are linear. This
type of non-linearity has not been adequately explored in existing TWAS literature. Allow-
ing potentially nonlinear gene-trait associations could enhance the detection power, provide
more nuanced insights into gene-trait associations and help refine targeted interventions. Our
proposed QTWAS framework addresses this gap, by designing a new integration strategy
that combines the conditional quantiles of genetically regulated gene expression with GWAS
summary statistics to effectively capture non-linear TWAS associations (Model C in Figure
1). By doing so, we observe significantly improved power in detecting gene-trait associations.

Our approach differs from existing TWAS methods in two fundamental ways. First, we
employ quantile regression with quantile-specific screening to model the full conditional dis-
tribution of gene expression. Second, our unique integration of conditional gene expression
quantiles with GWAS summary statistics accommodates non-linear TWAS associations. We
also establish a theoretical framework and develop rigorous statistical inference tools. Our nu-
merical studies indicate that by relaxing the assumption of linear gene-trait associations, QT-
WAS outperforms the traditional linear model-based TWAS in terms of statistical power. We
applied the proposed QTWAS framework to summary statistics from several GWAS datasets,
including continuous traits (low-density lipoprotein) from the UK Biobank and binary traits
(schizophrenia) where we confirm the increased power of QTWAS over traditional TWAS ap-
proaches. In particular, we show that the unique genes identified by QTWAS have functional
enrichments among gene sets relevant for the corresponding traits/diseases, and furthermore
these genes are more likely to exhibit heterogeneity in the eQTL model (Model A in Figure
1), further highlighting the advantages of the QTWAS approach.

2. Methodology.

2.1. Notations and background. We denote by X the gene expression level of a target
gene, by Y the trait/phenotype, and by Z = (Z1, · · · ,Zp)> a vector of p genetic variants. For
now we assume that Y is continuous but will relax this assumption later. SNPs Z1, · · · ,Zp are
discrete random variables with possible values of 0,1,2, signifying the number of reference
alleles at a locus. As with other TWAS methods we focus on cis-QTLs, i.e. SNPs located
within ±1Mb from the target gene, as such regions encompass most of the identified eQTLs
for a gene (GTEx Consortium, 2020). Possible confounders in genetic association studies
including race and ethnicity, principal components (PCs) of genotype data, and probabilistic
estimation of expression residuals (PEER) factors are normally used as covariates in linear
regression models to remove their effects (Stegle et al., 2012; Hu et al., 2019; Stegle et al.,
2010). Without loss of generality, we assume that these confounding effects on phenotypes
Y and gene expression X have been removed. Furthermore, we use C to represent other
covariates that are uncorrelated to Z , such as age, gender, and other postnatal non-genetic
factors.

As we introduced in Section 1, TWAS aims to identify the gene (X) - trait (Y ) associ-
ations by integrating two separate models – a GWAS model for SNP-trait association, and
a gene expression model capturing SNP-gene expression relationships. Since we rely solely
on GWAS summary statistics, we inherit the GWAS linear model from which the summary
statistics are derived. Specifically, a typical GWAS study assumes the following model:

Genotype−Trait (Model B) : Y = α0 +ZjβGWAS,j +C>η+ e,(1)

where α0 is the intercept, βGWAS,j and η are the coefficients regarding the jth SNP and
covariates, and e is the random error. We use the GWAS summary statistics, including the
estimated βGWAS,j and their standard errors derived from this model.
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To fully capture the heterogeneity in genotype - gene expression relationships, we model
the conditional quantile of gene expression X , denoted as QX(τ | Z,C), as:

Genotype−GeneExpression (Model A) :

QX(τ | Z,C) = α0(τ) +C>α(τ) +Z>β(τ) for all τ ∈ (0,1),(2)

where α0(τ), α(τ), and β(τ) are quantile-specific intercepts and slopes for covariates and
genotypes, respectively. Using the GTEx data for a specific tissue, {Xi,Zi,Ci}ni=1 with sam-
ple size n, we can estimate Model (2) by solving

(α̂0,τ , α̂τ , β̂τ ) = arg min
α0,τ ,ατ ,βτ

n∑
i

ρτ (Xi − α0,τ −Ciατ −Ziβτ ),

where ρτ (u) = |u|{(1 − τ)I(u < 0) + τI(u > 0)} is the quantile regression check func-
tion with u ∈ R, and I(·) is an indicator function. In the later section 2.4.2, we introduce a
quantile-specific screening procedure to further improve the prediction accuracy.

2.2. Generalized gene-trait association model. Observed gene expression is influenced
by both genetic and environmental factors. In TWAS, the focus is on the association be-
tween a trait and genetically regulated gene expression, which is denoted as XZ in this paper.
By isolating the genetically regulated component, we reduce the noise introduced by environ-
mental and other non-genetic influences. Consequently, we increase the power to detect gene-
trait associations that are directly mediated by genetic variation. In a linear gene expression
model, XZ can be explicitly written as E(XZ |Z) =

∑p
j=1Zjβj . With the assumption that

Z and C are independent, which will be discussed in detail in Section 2.2.1, our proposed
quantile gene expression model below (3) implicitly assumes that the conditional distribu-
tion of XZ given Z is Z>β(τ), and β(τ) is unspecified. As mentioned in the Introduction,
when the relationship between gene expression and eQTLs is heterogeneous, the gene-trait
associations could be complex and non-linear. To account for this complexity, we propose a
generalized and additive gene-trait association model:

New Gene−Trait (Model C) : Y = g1(XZ) + g2(C) + εy,(3)

where g1(·) and g2(·) are unknown functions. The primary function of interest is g1(·) which
allows for a nonlinear association between Y and XZ . Note that g1(·) = 0 corresponds to no
gene-trait association between X and Y . When both g1 and g2 are linear functions eq, (3)
degenerates to the linear model in traditional TWAS, e.g. S-PrediXcan; see Appendix Section
1 for a review of traditional linear model based TWAS approaches.

2.2.1. Model Assumptions. There are several key assumptions underlying conventional
TWAS. These assumptions are also assumed in the proposed QTWAS. The first assumption
is that the SNP set (Z1, · · · ,Zp) is independent of the covariates C . This assumption is natu-
rally guaranteed as most covariates are postnatal and related to environmental (non-genetic)
factors. It enables the separation of the genotype-contributed gene expression, denoted as
XZ , from the other factors, making it possible to focus on testing the association between the
trait Y and XZ in the gene-trait models.

The second assumption is that the SNP set (Z1, · · · ,Zp) only affects Y through X . This
assumption implies the conditional independence between Y and XZ given Z , which leads
to valid TWAS inference (Barbeira et al., 2018; Hu et al., 2019). However, this assumption
can be invalidated in practice by horizontal pleiotropy (van der Graaf et al., 2024; Barfield
et al., 2018), the scenario where a genetic variant may have an independent effect on multiple
traits. Horizontal pleiotropy can lead to false positive discoveries in TWAS associations if the
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genetic variant has an independent effect on both the gene expression and the trait through
different mechanisms. Recently, TWAS approaches that remove this assumption have been
proposed (Dong et al., 2020; Zhao et al., 2024; Deng and Pan, 2021). In Section 5, we outline
strategies to remove this assumption for QTWAS as well.

The last assumption is on model transferability, in the sense that the eQTL effects on gene
expression are the same in both reference (GTEx) population and GWAS population. This
assumption may not hold perfectly in reality due to differences in populations and environ-
mental effects.

2.2.2. Inference on Gene-Trait association. For each gene-trait pair, we aim to test a
global hypothesis H0 : g1(·) = 0, indicating no gene-trait association. Although g1(·) is
unknown and cannot be fully estimated without having individual-level GWAS data, we
can approximate it using a piece-wise linear function over quantile regions of XZ . We
can show that the local slopes can be estimated and inferred by combining the condi-
tional quantile function of gene expression and GWAS summary statistics. Specifically, let
Ak = {QXZ (τk),QXZ (τk+1)} represent the interval between the τkth and τk+1th quantiles
of XZ , with ∪kAk covering the full range of XZ . The approximation of g1(·) is given by

g1(XZ)≈
K∑
k=1

γkXZI{XZ ∈Ak},(4)

where I(·) is an indicator function. Then testing the gene-trait association is equivalent to
testing the null hypothesis:

H0 : γk = 0 for k = 1, ...,K; Ha : at least one γk 6= 0.

One can view γk as a population minimizer such that γk = arg minγ EY (Y −γkXZ)2I{XZ ∈
Ak}. Thus, the slope coefficient γk summarizes the local gene-trait association within a quan-
tile sub-region of XZ , which can be written as

(5) γk =
cov(XZ , Y |XZ ∈Ak)
var(XZ |XZ ∈Ak)

, for k = 1, ...,K.

The above eq. (5) implies that Ak cannot be too small; otherwise, the estimation of var(XZ |
XZ ∈Ak) will be highly unstable. Meanwhile, Ak cannot be too large as that would lead to
a poor estimation of the unknown function g1(·) according to eq. (4). Our recommendation
for choosing Ak empirically is discussed in Section 2.4.

2.2.2.1. Estimating γk through model integration. γk can be estimated by leveraging a con-
ditional quantile process model of the gene expression and GWAS summary statistics. We
first decompose the covariance cov(XZ , Y |XZ ∈Ak) in eq. (5) by the law of total variance:

cov(XZ , Y |XZ ∈Ak) = E{cov(XZ , Y | Z,XZ ∈Ak)}

+cov{E(XZ | Z,XZ ∈Ak),E(Y | Z,XZ ∈Ak)}.(6)

The second model assumption outlined in Section 2.2.1 implies the conditional independence
Y ⊥⊥XZ | Z , which further implies E{cov(XZ , Y | Z,XZ ∈ Ak)} = 0, and E(Y | Z,XZ ∈
Ak) = Z>βGWAS, where βGWAS is the SNP-level effect size.

For any continuous random variable X , its quantile function denoted as QX has the prop-
erty that QX(U)

dist.
= X , where U is Uniform (0,1) random variable, and dist.

= represents
equality in distribution. Therefore, under Model (3), the distribution of gene expression X
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can be expressed as a convolution of a genotype-related random variable Z>β(U) and the
remainder term, R(U) = α0(U) +C>α(U) +Qε(U). Together with the assumption of inde-
pendence between X and the covariates C , we conclude that

XZ
dist.
= Z>β(U),

i.e. the genotype-related gene expression XZ has the same distribution as Z>β(U). There-
fore, it is easy to derive that E(XZ | Z,XZ ∈ Ak) =

∫ τk+1

τk
Z>β(u)du = Z>βAk , where

βAk :=
∫ τk+1

τk
β(u)du. Accordingly, the estimator for βAk is given by β̂Ak =

∫ τk+1

τk
β̂(τ)dτ ,

where τk and τk+1 define the range of Ak. Together with the estimated β̂GWAS from the
GWAS models, we can estimate γk by

γ̂k =
ĉov(Z>βAk ,Z

>βGWAS)

v̂ar(XZ |XZ ∈Ak)
=
β̂>AkΣ̂Z β̂GWAS

σ̂2XZ∈Ak
,(7)

where σ̂2XZ∈Ak is the variance of imputed gene expression in the region Ak and acts as an
estimate of σ2XZ∈Ak := var(XZ |XZ ∈Ak). Additionally, Σ̂Z is the sample estimate of the
covariance matrix of Z , with its true value given by

ΣZ := var(Z) = diag{σ1, · · · , σp}DZdiag{σ1, · · · , σp},

where σj stands for the standard deviation of the jth SNP and DZ is the linkage disequilib-
rium (LD), which describes the correlation structure of the genotypes Z . The LD matrix,DZ ,
can be estimated using data from the GTEx project or other external reference datasets.The
standard deviation σj for each SNP can be estimated based on its minor allele frequency.

2.2.2.2. Constructing test statistics for the quantile-stratified gene-trait association.. The
standard errors of γ̂k can be estimated by

se(γ̂k) =

√
var(εy)

NGWASvar(XZ |XZ ∈Ak)
≈ σ̂Y√

NGWASσ̂XZ∈Ak
,

where σ̂Y is the estimated standard deviation of trait Y , and NGWAS is the sample size of
GWAS data. In the formula above, we approximate var(εy) using σ̂Y , since the variance of
the trait explained by a single gene is typically minimal (Hu et al., 2019; O’Connor et al.,
2017).

The ratio Zk = γ̂k/se(γ̂k) naturally forms a Wald-type test statistic for testing H0 : γk = 0
as below

Zk =
γ̂k

se(γ̂Ak)
≈
√
NGWAS

σ̂Y σ̂XZ∈Ak
β̂>AkΣ̂Z β̂GWAS,(8)

where β̂GWAS,j’s are estimated from separate marginal linear regression models (eq. (1)), and
thus, they are correlated due to the linkage disequilibrium (LD) structure among the SNPs Z .
Denote ∆ = 1

σ̂2
XZ∈Ak

β̂>AkΣ̂Z β̂Ak , then we have, under H0 : γk = 0,

∆−1/2Zk ≈N (0, I) ,

because
√
NGWAS

σ̂Y
∆1/2β̂GWAS ≈ N(0, I) under the null hypothesis of no SNP-trait associa-

tions (Hu et al., 2019).

The p-value for testing γk = 0 in each regionAk can be computed as pk = 2Φ(−|∆−1/2Zk|),
where Φ(·) is the standard normal CDF. Finally, we combine all pk’s from K regions by the
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Cauchy combination method (Liu and Xie, 2020), which offers a convenient analytical solu-
tion to combine p-values from correlated tests. Alternative methods for combining p-values
could also be implemented, such as Fisher’s combination method or the minimum p-value
(Dudoit et al., 2003). However, these methods often rely on the assumption of independence
among p-values (which is unrealistic in our setting because of correlations across quantile
regions) or require computationally intensive approximations. In Figure 2, we summarize the
flowchart of QTWAS. We provide further discussion on selecting K and other implementa-
tion details in Section 2.4.
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2.3. From linear models to generalized linear models. Although the derivation of the
QTWAS test statistics above assumes a linear GWAS model with a continuous Y , the same
derivation applies to generalized linear models with any link function. We denote the GWAS
data as {Yi,Zi,Ci}NGWAS

i=1 , where Zi = (Zi1, . . . ,Zip) represents genotype data while Ci =
(Ci1, . . . ,Ciq) represents covariates. Assume there is an arbitrary link function h(·), such that
E(Yi | Zij ,Ci) = h(α0 +ZijβGWAS,j +Ciη) and E(Yi |XZ,i,Ci) = h(g1(XZ,i) + g2(Ci)).
Common link functions include h(x) = exp(x)/(1 + exp(x)) for logistic regression, h(x) =
x for linear regression, h(x) = exp(x) for loglinear models.
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We can treat the GWAS summary statistics from generalized linear models as if they were
estimated from linear regression with pseudo-response Y ∗i . Specifically, we can define two
models

Model B : Y ∗i = h−1{E(Yi | Zij ,Ci)}+ ε∗i = α0 +ZijβGWAS,j +Ciη+ ε∗i ,

Model C : Y ∗i = h−1{E(Yi |XZ,i,Ci)}+ e∗i = g1(XZ,i) + g2(Ci) + e∗i ,

where E(ε∗i ) = E(e∗i ) = 0 and var(ε∗i )≈ var(e∗i )≈ σ2Y ∗ .
A reasonable estimation for σ2Y ∗ is

√
NGWASσ̂jse(β̂GWAS,j), where σ̂j is the estimated

standard deviation of the j-th SNP. This estimate is based on the derivation of the stan-
dard error se(β̂GWAS,j). Therefore, the GWAS summary statistics {β̂GWAS,j, se(β̂GWAS,j)},
which were obtained from generalized linear models using {Yi,Zij ,Ci}NGWAS

i=1 , can be equiv-
alently viewed as if they were estimated from linear models with the pseudo-response data
{Y ∗i ,Zij ,Ci}NGWAS

i=1 . As a result, the derivation of the QTWAS statistics remains valid, mean-
ing that the GWAS summary statistics can be used in eq. (8) regardless of the specific models
from which they were originally generated.

2.4. Model implementation.

2.4.1. Implementation details in the GTEx data. We trained the gene expression predic-
tion model for 49 tissues from the GTEx project (v8), as described below. Gene expression
levels were normalized and adjusted for covariates and confounders, including sex, sequenc-
ing platform, and the top five principal components of genotype data, as well as the top 15
probabilistic estimation of expression residuals (PEER) factors (Hu et al., 2019; Stegle et al.,
2010). We considered protein-coding genes, removed ambiguously stranded SNPs, and only
considered ref/alt pairs A/T, C/G, T/A, and G/C. SNPs with minor allele frequency less than
0.01 were excluded from the analyses. For each gene, we used SNPs between 1Mb upstream
and downstream of the transcription start site. The LD matrixDZ is estimated from the geno-
type data in the GTEx data.

2.4.2. Variant screening procedure. Based on empirical evidence, XZ often depends on
a sparse set of SNPs (Barbeira et al., 2018; Gamazon et al., 2015). Most existing TWAS
approaches use penalized linear regression to select significant SNPs associated with the
mean of XZ (Barbeira et al., 2018; Gamazon et al., 2015; Hu et al., 2019), which may not
be optimal at identifying more local (quantile-stratified) associations. We introduce a new
variant screening procedure based on the quantile rank score test to identify important SNPs
separately for each region Ak. Specifically, we aggregate multiple quantile rank score tests
(Gutenbrunner et al., 1993) at selected quantile levels within AX,k to select region-specific
SNPs while controlling the false discovery rate at the 5% level using the method of Benjamini
and Hochberg (1995). The new screening procedure is more effective at identifying heteroge-
neous distributional associations and non-gaussian errors. We outline the detailed algorithm
and a flowchart of the screening procedure in Appendix Section 1.1. Note that the variant
screening step is a data pre-processing procedure for training the Genotype-GeneExpression
model by GTEx data, which is independent of the subsequent steps for constructing test
statistics. Thus, it does not affect the multiple testing burden at the gene-level QTWAS p-
values.

2.4.3. Selection of K . The length of Ak and the number of regions (K) can be set
depending on applications. Though the piecewise linear approximation eq. (4) assumes
∪Kk=1Ak = (0,1) for estimation, this assumption can be relaxed in the context of hypoth-
esis testing. To test the overall associations between XZ and Y , integrating β(τ)’s over a
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larger region Ak is especially helpful in detecting weak genetic associations. Based on our
empirical experience, K = 3 or 4 should be sufficient to detect homogeneous associations
such as location shift, and a relatively larger K (e.g., K = 9) facilitates detecting local asso-
ciations, whereas a very large K is not recommended because of the risk of power loss. As
the underlying association patterns are unknown in real applications, one can further consider
using partially overlapped regions and multiple choices of K to improve the power. In prac-
tice, we use the Cauchy combination method to combine results from K ∈ {3,4,5,9} with
slightly overlapped regions to obtain robust and powerful results (see the region segments in
Appendix Section 1.2). This approach is data-driven, insensitive to the underlying association
patterns, and avoids selecting K as a tuning parameter. Furthermore, for a specified K , we
recommend considering the partition such that ∪Kk=1Ak covers the 5% percentile to the 95%
percentile of the value of XZ . We do not recommend considering τ < 0.05 and τ > 0.95, as
coefficients of extreme quantiles are more challenging to estimate. Note that excluding the
extreme regions τ ∈ (0,0.05) and τ ∈ (0.95,1) may lead to loss of power if local associa-
tion only manifest at these extreme tails. Investigators can also choose the regions based on
specific applications.

3. Simulation studies.

3.1. Simulation settings. The simulation studies are based on the data in whole blood
tissue from GTEx v8 (n = 670). We generate gene expression based on the genotype data
on 670 individuals from GTEx (see details below on the genotype-gene expression models).
Then, we resample n = 1,000 subjects and generate their trait values based on their geno-
types. For each gene, Z includes all SNPs within ±1 Mb from its TSS. Gene expression X is
normalized before analysis as common practice in genetic association tests. The set of covari-
ates C includes the top five principal components, top 15 PEER factors, platform, and sex.
Similar to Hu et al. (2019), we randomly select 500 genes and generate the gene expression
data and traits independently for each gene, as described below.

To evaluate Type I error, we generate the gene expression X from the model: X = Z>β+
C>αx + εx, in which β is estimated based on true GTEx data via the elastic net with the
tuning parameter set as 0.5. The trait Y is generated by Y =C>η+ e. Both error terms e and
εx follow a standard normal distribution; αx and η are vectors with each element randomly
drawn from Unif(0,1). This null model preserves the associations between gene expression
and SNPs from GTEx data but assumes no gene-trait association. A similar setting has been
simulated in Hu et al. (2019).

For power analyses, we consider three different Genotype-GeneExpression models, and
we assume a simple linear Genotype-Trait model to mimic the setting of GWAS summary
statistics from linear models.

Genotype-GeneExpression models. We consider the following three models: (a) Location
shift: X = Z>β + C>αx + εx; (b) Location-scale: X = Z>β + C>αx + (1 + 0.5Z>β)εx;
(c) Local signal: QX(τ > 0.7 | Z,C) = 5 τ−0.71−0.7Z

>β +C>αx + F−1εx (τ).
In the location shift model (a), genetic variants Z only affect the mean of X , while in

the location-scale model (b), genetic variants Z affect both the mean and variance of X . In
the local signal model (c), variants Z only affect part of the distribution of X , i.e., Z only
affects the upper quantile (> 0.7th quantile) of X . In each of the three scenarios, we consider
two error distributions for εx: standard normal and Cauchy distributions, where the Cauchy
distribution is commonly considered as a challenging case of heavy-tailed distribution in
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association studies (Song et al., 2017; Wang et al., 2022). Under models (b) and (c), when
the quantile specific coefficients are different across quantiles, the Genotype-GeneExpression
association is heterogeneous, and the transcriptome-wide association is nonlinear (Appendix
Section 2.1).

Genotype-Trait model. We consider a simple linear model Y = Z>βGWAS + C>η + e,
where e follows a standard normal distribution.

To illustrate the performance in different scenarios, we randomly select 1% of SNPs from
the 2Mb region around TSS to be causal (i.e., with non-zero effect sizes β and βGWAS). We
set βGWAS = 1p and β = 2 · 1p for local signal model, βGWAS = 0.2 · 1p and β = 0.4 · 1p
for location-scale model, and βGWAS = 0.1 · 1p and β = 0.2 · 1p for location shift model,
where 1p represents a column vector with all elements being 1. αx and η are vectors with
each element randomly drawn from Unif(0,1).

For power analyses, we repeat the data generation procedure two times per gene and re-
port the statistical power based on 1,000 replicates at the significance threshold α = 2.5e-6
(corresponding to the usual Bonferroni threshold when testing 20,000 protein-coding genes).
For type I error analysis, we repeat the procedure for each gene 20,000 times and report
the results based on 107 replicates at different significance thresholds ranging from 0.05 to
2.5e− 6. In addition, we compare the proposed framework with S-PrediXcan (note that we
have re-implemented S-PrediXcan as it needs to be trained based on simulated data, and we
denote it as “S-PrediXcan∗"). For our method, we report results based on a single region
partition (K = 3/4/5/9) and the unified results combining all partitions. The detailed par-
titions are described in Appendix Section 1.2. For one gene, we generate random p-values
p ∼ Unif(0,1) if the elastic net model in S-PrediXcan∗ does not select any variables, or if
none of the four regions A1-A4 in QTWAS has valid p-value (e.g., no variant is selected).

3.2. Simulation results. The type I error for QTWAS, either with a single choice of K
or a unified result based on four choices of K , is controlled at all significance levels (Ta-
ble 1). Regarding power performance, QTWAS, combining different quantile intervals, has
improved power in most scenarios compared to S-PrediXcan∗ (Figure 3). When the error
is Gaussian, both methods have comparable power for the location shift and location-scale
models. However, QTWAS has substantially improved power over S-PrediXcan∗ when the
association is local and only at upper quantiles. When the error follows the Cauchy dis-
tribution, QTWAS performs well compared to S-PrediXcan. Additionally, we observe that
QTWAS is not very sensitive to the choice of K , and the unified approach performs best.

α S-PrediXcan* QTWAS
Unified K = 3 K = 4 K = 5 K = 9

0.05 5.024E-02 5.154E-02 4.993E-02 4.910E-02 4.924E-02 4.937E-02
1e-2 1.075E-02 9.784E-03 9.908E-03 1.017E-02 9.841E-03 9.843E-03
1e-3 1.248E-03 6.536E-04 9.267E-04 8.847E-04 1.004E-03 8.584E-04
1e-4 9.770E-05 3.900E-05 2.380E-05 6.140E-05 6.490E-05 5.910E-05
1e-5 4.600E-06 1.800E-06 1.700E-06 1.200E-06 1.300E-06 1.500E-06

2.5e-6 1.400E-06 1.200E-06 2.000E-07 3.000E-07 3.000E-07 1.200E-06
TABLE 1

Type I error results for S-PrediXcan∗ and QTWAS (nGTEx = 670), as well as for quantile region stratified
QTWAS based on 107 replicates. “Unified" combines the p-value of K = 3/4/5/9 via the Cauchy combination

method.
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FIG 3. Power of S-PrediXcan∗ and QTWAS under alternative models. The significance threshold is α= 2.5e−6.
“QTWAS" combines the p-values of K = 3/4/5/9 via the Cauchy combination method.

We further illustrate the power improvement of QTWAS using the partition K = 4 as
an example. We provide the figure of region-specific power of the QTWAS test statistics
under three models in Appendix Section 2.1. The power of QTWAS in each region reveals
the true underlying signal. For example, the location shift model with normal errors has
equally high power in each region, and the location-scale model with normal errors shows
increasing power from lower quantile to upper quantile, corresponding to the assumptions of
our model. For local signal models, we observed a dominant power boost for QTWAS, owing
to the power of QTWAS test statistics in the upper quantile region (A4), corresponding to the
true signals being simulated at upper quantiles (i.e., τ > 0.7). Therefore, the region-specific
quantile test statistics can reveal more complex and detailed association patterns.

Under alternative models, we assess the robustness of the QTWAS approach. That is, we
report how sensitive the QTWAS is to the choice of K . Among the significant results of
QTWAS in Figure 3, we report the proportion identified by at least two partitions with the
significance threshold 2.5e− 6 (see Appendix Section 2.2). We observe that most of the QT-
WAS discoveries are identified by at least two partitions for all models, with the proportion
slightly decreasing for the models with a higher level of heterogeneity. Overall, these results
suggest that QTWAS results are robust.

3.3. Model evaluation.

3.3.1. Imputation accuracy. To evaluate the accuracy of the gene expression imputation
model (2), we consider the goodness of fit criterion RQ(τ) = 1− V̂ (τ)/Ṽ (τ) (Koenker and
Machado, 1999), a measure of explained deviance by the quantile model associated to genetic
effects at a fixed quantile level, where V̂ (τ) = min

∑n
i ρτ (Xi −C>i ατ −Z>i βτ −α0,τ ) and

Ṽ (τ) = min
∑n

i ρτ (Xi−C>i ατ −α0,τ ) are optimized quantile loss under the alternative and
null model, respectively. It is a natural analog to R2 in linear models. We use K = 4 as an
example and consider the largest RQ(τ) over the four intervals as the explained deviance by
QTWAS, which coincides with the fact that the Cauchy combination is practically driven by
the smallest p-value in the combination. To compare the imputation accuracy for QTWAS and
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S-PrediXcan∗, we plotted RQ against R2 (Figure 4). Except for the location shift model with
normal error, QTWAS generally explained more deviance than S-PrediXcan∗. Specifically,
in the location-scale and local signal models, S-PrediXcan∗ explains a low proportion of the
total deviance, indicating a relatively poor goodness of fit compared to quantile models.
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FIG 4. Model explained deviance for QTWAS and S-PrediXcan∗. We consider the location shift, location-scale,
and local signal models with normal errors and Cauchy errors.

3.3.2. Evaluation of variant screening procedure. To evaluate the quantile variant
screening, we measure the canonical correlation between selected sets and the causal set
in the three alternative models with normal or Cauchy errors. For ease of presentation, we
again consider K = 4 as an example and use “QTWASAk" to denote the results for region
k = 1,2,3,4. The proportion of replicates with a correlation greater than 0.95 is reported
in Table 2 based on 1,000 replicates. For the location shift model, both QTWAS and S-
PrediXcan∗ select SNP sets highly correlated with the true causal set. In the location-scale
model, the proportion of replicates selecting highly correlated SNPs is increasing with the
quantile levels and is comparable to S-PrediXcan∗ for interval A4, consistent with the power
results. In the local shift model, QTWAS selected a set of SNPs with high correlation with
the true causal set in the upper quantile interval A4 more often than S-PrediXcan∗, as ex-
pected. The ability of QTWAS to select variants that are more correlated to the underlying
causal variants in heterogeneous cases is likely due to the specific quantile-oriented screening
procedure we use here.

Model QTWASA1 QTWASA2 QTWASA3 QTWASA4 S-PrediXcan∗

location shift 97.9% 99.1% 99.1% 99.0% 99.8%
location-scale 31.3% 54.2% 70.4% 83.7% 85.4%
local shift 4.5% 0.5% 0.5% 39.1% 15.4%

TABLE 2
The proportion of replicates (out of 1,000) with canonical correlation values between the selected variable set

and the true causal set greater than 0.95.
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3.4. Comparisons to sMiST. We also compare the performance of S-PrediXcan and QT-
WAS to sMiST (Dong et al., 2020), a method based on mixed effect models to test the total
effect of genetic variants, including their direct effects and indirect effects through gene ex-
pression. Though sMiST can also be performed based on summary statistics, the goal of
sMiST is to test not only the effect of imputed gene expression (e.g., similar to TWAS) but
also the direct effect of genetic variants, which violates the second assumption outlined in
Section 2.2.1 for classic TWAS. By adding the genotype information into the Genotype-Trait
model with random effects, their model can be written in our notations as below:

g{E(Y |X,Z,C)}=C>η+Xγx +Z>δ,

where δj for j = 1, · · · , p are random effects with mean zero and variance σ2δ . The null hy-
pothesis that sMist tests is H0 : γx = 0 and σ2δ = 0. Though S-PrediXcan and sMiST are both
based on GWAS summary statistics, their performance are not directly comparable because
sMiST needs S-PrediXcan estimated coefficients as an input, and it tests both fixed effects
and random effects. Thus, it is more powerful than S-PrediXcan when the σ2δ 6= 0. Neverthe-
less, we applied sMiST to the three models we considered in our simulations. The R package
is obtained from the author’s website (https://research.fredhutch.org/hsu/en/software.html).
We report results based on three p-value combination procedures offered by their R package.
From Table 3, we can see that sMiST is more powerful than S-PrediXcan in the local model,
as expected. Compared to QTWAS, sMiST is comparable in the location and location-scale
models but less powerful in the local model, which suggests that it is promising to develop
a similar mixed effects model under the quantile framework to further improve the power of
the association test.

Setting S-PrediXcan* QTWAS sMiST
p.oMiST p.aMiST p.fMiST

location shift 0.999 0.996 0.997 0.996 0.997
location-scale 0.901 0.905 0.911 0.909 0.911

local shift 0.132 0.440 0.244 0.237 0.236
TABLE 3

Comparisons with sMiST. Power results based on 1000 Monte Carlo replicates.

3.5. Additional simulations. The previously presented local signal model is in favor of
quantile regression, as the association only appears at upper quantiles. In the Appendix (Sec-
tion 3.4), we consider two additional models: QX(τ | Z,C) = Z>β(τ) + C>αx + F−1εx (τ)
with β(τ) =

√
τ and β(τ) = sin(2πτ), respectively. Different from the previous local model,

in which β(τ) 6= 0 only for τ ∈ (0.7,1), β(τ) here changes smoothly for τ ∈ (0,1). For these
two heterogeneous models, QTWAS also outperformed S-PrediXcan*. Specifically, QTWAS
is powerful for the model with β(τ) = sin(2πτ) while S-PrediXcan* has almost no power
because there is no association when τ = 0.5. We further consider the location model with un-
observed gene-environment interaction for the Genotype-GeneExpression model (Appendix
Section 3.3). Results suggest that when there exists gene-environment interaction, but the
environmental factor is unobserved, QTWAS is equivalently powerful or more powerful than
S-PrediXcan in detecting gene-trait associations.

We further conduct simulations based on other tissues from GTEx data with smaller sam-
ple sizes. In particular, we considered the breast mammary tissue (n = 396) and the brain
cerebellum tissue (n= 209). The Genoytpe-GeneExpression model and the Genotype-Trait
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model remain the same as in Section 3.1. With a smaller sample size of the genotype-
gene expression data, we still observe significant power improvement of QTWAS over S-
PrediXcan*. The detailed results are shown in Appendix Section 3.5.

Additionally, we consider another data-generating mechanism under the same Genotype-
GeneExpression model and the Genotype-Trait model, but with cis-heritability controlled at
10% and 30% levels, respectively. At both levels, QTWAS exhibits higher power than S-
PrediXcan. Results are shown in Appendix Section 3.6. At the cis-heritability levels 10%
and 30%, we also consider the scenario with horizontal pleiotropy. That is, we add a direct
genetic effect in the Genotype-Trait model in addition to the classic homogeneous model
(Appendix Section 3.7). The Genotype-GeneExpression model is the same as before. Results
suggest that QTWAS is more powerful than S-PrediXcan at 10% and 30% cis-heritability
levels. However, we acknowledge that with horizontal pleiotropy, both S-PrediXcan and QT-
WAS cannot infer causality and only detect associations (see Appendix Figure 8); a detailed
discussion of robust methods that detect causality against horizontal pleiotropy is provided
in Section 5.

4. Applications. We apply S-PrediXcan and QTWAS to publicly available GWAS sum-
mary statistics from UK Biobank (UKBB) from Pan-UKB team (2020). Specifically, we
focus on two traits, one continuous (low-density lipoprotein (LDL)) and a binary trait
(schizophrenia (SCZ)) (Pardiñas et al., 2018). For LDL (“LDL direct, adjusted by medi-
cation”), NGWAS = 398,414 and we leverage data on whole-blood tissue from GTEx with
n = 670. For SCZ, we leverage summary statistics on NGWAS = 35,802 individuals and
gene expression data on 13 brain tissues from GTEx. For QTWAS, we consider different
quantile partitions with K ∈ {3,4,5,9} and use the Cauchy combination to combine all p-
values. Note that we only keep genes with RQ > 0.1 for QTWAS, and, similarly, we consider
R2 > 0.1 for S-PrediXcan results. We focus on protein-coding genes and further restrict to the
set of 6,560 genes with valid pre-trained S-PrediXcan models available from the PredictDB
website (PredictDB Team, 2021). Further, we use genomic control (Devlin and Roeder, 1999)
to adjust for possible inflation induced by polygenic effects, although future model develop-
ments based on mixed effect models will be implemented in the QTWAS framework (see
Section 5). The significance threshold we used is 2.5e− 6.

4.1. Results for LDL. QTWAS identified 136 genes while S-PrediXcan identified 39
genes, with 29 genes identified by both methods (Figure 5).
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FIG 5. Manhattan plot for LDL with significance threshold 2.5e− 6.

Further, we explore the reproducibility of our findings using another GWAS of lipid levels
Graham et al. (2021), which contains 1.65 million individuals of mixed ancestries (although
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variance of gene expression number of genes only identified identified by both
explained by genotypes identified by QTWAS by QTWAS QTWAS and S-PrediXcan
less than 5% 96 78% 22%
between 5% and 10% 24 71% 29%
greater than 10% 16 94% 6%

TABLE 4
Analysis of heterogeneity and nonlinearity of genes identified by QTWAS using GTEx data.

the European ancestry is dominant at 79.8%). Among the 107 genes that were uniquely iden-
tified by QTWAS in UKBB, 73 genes were also significantly identified in the new study at
significance level 2.5e − 6. In contrast, for the 10 genes that were uniquely identified by
S-PrediXcan, none of them were successfully reproduced in the second study. These results
suggest that QTWAS may be more powerful.

4.2. Assessing nonlinearity and functional enrichment analysis. As the two-step TWAS
framework combines both eQTL and GWAS information from two datasets, the genes only
identified by QTWAS but not by S-PrediXcan are highly likely to be detected due to non-
linear associations. To further assess the heterogeneity and nonlinearity of gene expression
for the genes uniquely identified by QTWAS, we first obtain their residuals from an elastic
net model that fits gene expression to genotypes and covariates. We then fit another elastic
net model with the squared residuals against the genotypes. The explained deviations in this
model, similar to R2 in linear models, measure the correlation between the squared residuals
and genotypes. A higher value indicates stronger heteroskedasticity, as the squared residuals
represent the variance in gene expression. We compare the nonlinearity between the group
of genes identified by both QTWAS and S-PrediXcan and those identified only by QTWAS.
Our results show that the genes identified exclusively by QTWAS exhibit a higher degree of
nonlinearity (Table 4).

We further performed enrichment analysis to explore the function of the 107 genes
uniquely identified by QTWAS but not by S-PrediXcan. We used the ToppGene database
(https://toppgene.cchmc.org/enrichment.jsp) and focused on traits enriched in this group of
genes. As presented in Table 5, the most enriched trait is LDL measurement, which is our
primary response trait. Following LDL measurement, the traits with the highest number of
gene hits are total cholesterol, apolipoprotein B, and triglycerides, all of which are closely as-
sociated with LDL levels. The fifth trait, cholesteryl ester, is a form of cholesterol in which a
fatty acid is attached to the cholesterol molecule. In total, 61 out of the 107 genes are enriched
across these five traits.

Trait q-value (Bonferroni) Number of Gene Hits
low density lipoprotein cholesterol measurement 5.932e-32 52
total cholesterol measurement 1.709e-24 43
apolipoprotein B measurement 2.034e-19 28
triglycerides measurement 5.628e-14 36
cholesteryl ester measurement 1.758e-12 16

TABLE 5
Genes uniquely identified by QTWAS are enriched in LDL-related traits in ToppGene.

4.3. Application to schizophrenia. We applied both QTWAS and S-PrediXcan to sum-
mary statistics from a GWAS on schizophrenia Pardiñas et al. (2018), which included 11,260
cases and 24,542 controls. We use 13 brain tissues from GTEx data, with sample sizes rang-
ing from 114 to 205. The p-values from the 13 brain tissues are combined by the Cauchy



16

method for the final p-value. QTWAS identified 76 genes, and S-PrediXcan identified 33
genes, with 18 genes overlapping between the two methods (Figure 6). We performed a sim-
ilar enrichment analysis as for LDL, identifying 17 out of 58 genes as enriched in the top five
traits, including autism and schizophrenia and complement C4, which is genetically and neu-
robiologically related to schizophrenia (Table 6). We also include the analysis for the other 7
binary traits in Appendix Section 4.
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FIG 6. Manhattan plot for SCZ with significance threshold 2.5e− 6.

Trait q-value (Bonferroni) Number of Gene Hits
autism spectrum disorder, schizophrenia 9.507e-10 12
complement C4 measurement 8.927e-09 7
Takayasu arteritis 4.392e-07 8
ubiquitin carboxyl-terminal hydrolase 25 measurement 6.755e-07 5
Epstein Barr virus nuclear antigen 1 IgG measurement 1.938e-06 4

TABLE 6
Enrichment analysis of the top 5 traits associated with genes uniquely identified by QTWAS for schizophrenia.

5. Discussion. We have proposed a novel quantile-based TWAS approach that utilizes a
conditional quantile process to model heterogeneous gene expressions and combines it with
GWAS summary statistics to infer nonlinear gene-trait associations. Our framework is partic-
ularly useful in scenarios where gene expression patterns and underlying genetic regulation
exhibit significant heterogeneity, allowing for more flexible and precise modeling of gene-
trait associations. As demonstrated in both simulations and applications, our quantile-based
TWAS is able to identify more gene-trait associations than traditional methods and provide
deeper insights regarding how gene expression levels regulate phenotypes, especially when
their relationships vary across different quantiles of gene expression. These findings under-
score the potential of our approach to enhance the discovery of genetic contributions to com-
plex traits and diseases.

Through validation analyses, we show that the novel genes identified by QTWAS are likely
to be functional and relevant to the trait under study. There are, however, several sources of
confounding that lead to false positive associations in TWAS analyses. First, LD confound-
ing and co-regulation (Wainberg et al., 2019) can lead to false positive associations and fine-
mapping methods can further prioritize relevant genes at each locus (Ma et al., 2023, 2021;
Mancuso et al., 2019). Second, QTWAS, as described here, focuses on estimating the associ-
ation between genetically predicted gene expression and traits, but there are no guarantees of
causal inference. Colocalization methods can identify genetic variants that are causal for two
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phenotypes, including gene expression and a trait of interest (Zuber et al., 2022). Examples
include Bayesian approaches and likelihood-based methods (Giambartolomei et al., 2014;
Plagnol et al., 2009). Similarly, Mendelian Randomization (MR) methods have been pro-
posed to test for causal relationships between gene expression and traits, by treating eQTLs
as the instrumental valuables (Shi et al., 2020). A thorough review of the connections be-
tween TWAS and MR can be found in Zhu and Zhou (2021). Future research will be needed
to adapt MR to quantile association tests. Furthermore, violations of assumptions, such as
no horizontal pleiotropy, can also lead to false positives for both QTWAS and MR-based ap-
proaches. Increasing efforts have been made to adjust TWAS for horizontal pleiotropy (Deng
and Pan, 2021; Zhao et al., 2024; Gleason et al., 2021). We provide additional details on how
horizontal pleiotropy could be included in QTWAS in future work in Appendix Section 6.

In addition, several emerging topics are worth exploring for future work. It is desirable to
develop approaches that combine data on multiple tissues to increase the total sample size of
eQTL studies for the estimation of the conditional distribution of gene expression. Such ap-
proaches have been developed before, e.g., UTMOST (Hu et al., 2019), and have been shown
to effectively increase imputation accuracy and power. Multi-tissue quantile modeling may
allow investigations of more comprehensive nonlinear associations across tissues. Further-
more, the current QTWAS framework can be better developed when individual GWAS data
are available, which would allow nonparametric approaches to estimate higher-resolution
nonlinear gene-trait associations and multiplicative errors instead of additive errors, depend-
ing on the original transformation applied to the trait.

Software. QTWAS has been implemented in publicly available software. We have
posted a comprehensive demonstration on Github: https://github.com/tianyingw/QTWAS,
which contains the tutorial for downloading and using the pre-trained QTWAS models to
conduct analysis.
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