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Abstract. We propose a novel approach to induce anomalous dissipation through advection

driven by turbulent fluid flows. Specifically, we establish the existence of a velocity field v
satisfying randomly forced Navier-Stokes equations, leading to total dissipation of kinetic energy

in finite time when advecting a passive scalar. This dissipation phenomenon is uniform across

viscosity parameters and initial conditions, representing a case of anomalous dissipation. We
further explore dissipation induced by individual realizations of v. Our results extend to scenarios

where the passive scalar is replaced by solutions to two or three-dimensional deterministic Navier-

Stokes equations advected by v.
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1. Introduction

We are concerned with the intriguing physical phenomenon of anomalous dissipation observed
in turbulent fluids. This topic has been extensively discussed in the physics literature [35, 4] in
connection with passive scalar quantities ρ like temperature or solute concentration advected by
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the fluid velocity v. This scenario is mathematically modeled by the advection-diffusion equation:

∂tρ+ v · ∇ρ = ν∆ρ.(1.1)

We consider a situation where the fluid is confined within a box with periodic boundaries, denoted
by the d-dimensional torus by Td := (R/Z)d, where d = 2, 3. In equation (1.1), the unknown
ρ : Td×R+ → R represents the scalar quantity, and v : Td×R+ → Rd represents the incompressible
advecting velocity field, assumed to be predetermined and ideally governed by a physical model
such as the Navier-Stokes or Euler equations. The viscosity (or diffusivity) parameter ν is strictly
positive. We assume that the initial condition ρ0 in (1.1) is non-constant, belongs to L2 and is
independent of ν.

Anomalous dissipation refers to the limiting behavior of the dissipation, specifically the time
decay of the L2-norm of ρ = ρν , as the viscosity approaches zero. More precisely, anomalous
dissipation at time t = 1 occurs if

lim inf
ν→0

∥ρν1∥L2 < ∥ρ0∥L2 ,(1.2)

or equivalently, if the energy equality holds,

lim sup
ν→0

ν

∫ 1

0

∥∇ρt∥2L2dt > 0.(1.3)

The latter formulation is common in the physics literature. However, depending on the regularity
of the advecting velocity field, the energy equality may only hold under additional assumptions on
the initial condition and generally must be replaced by the corresponding energy inequality.

Physically, anomalous dissipation occurs due to the transfer of kinetic energy from ρ to small
spatial scales by the convective term v · ∇ρ. Mathematically, capturing this phenomenon is highly
challenging, as demonstrated by the scarcity of rigorous mathematical results, as discussed in
subsection 1.2 and subsection 1.3.

Initially, the claim (1.2) may seem counterintuitive. On the one hand, one expects the solutions
ρ = ρν of (1.1) to converge to a solution of the transport equation

∂tρ+ v · ∇ρ = 0.(1.4)

On the other hand, formally testing (1.1) by its solution leads to the energy equality

∥ρν1∥2L2 + 2ν

∫ 1

0

∥∇ρνt ∥2L2dt = ∥ρ0∥2L2 .

Thus, if sufficient uniform in ν bound allowed for the passage to the limit in this expression, the
second term on the left hand side would vanish, and the limit solution would conserve energy:

∥ρ1∥2L2 = lim
ν→0

∥ρν1∥2L2 = ∥ρ0∥2L2 .

This is consistent with the direct (formal) testing of (1.4) by its solution. However, it contra-
dicts anomalous dissipation (1.2), suggesting that anomalous dissipation is only valid for irregular
solutions, which in turn implies that the advecting velocity cannot be excessively regular. Neg-
ative results are also known; for instance, for L2 initial conditions ρ0, [6, Remark 4.3] shows
the absence of anomalous dissipation for vector fields v ∈ L1([0, 1],W 1,p) for some p > 1 or
v ∈ L1([0, 1],W 1,1) ∩ Lq((0, 1) × Td) for some q > 1. This notably excludes anomalous dissipa-
tion in (1.4) when v is a Leray-Hopf solution to the Navier-Stokes equations, which belong to
L2([0, 1], H1) (see also [20, Theorem 4]).

1.1. Main results. Taking into account the aforementioned counter-argument, we revisit the
framework of Leray-Hopf solutions v to the Navier-Stokes equations augmented with an additional
stochastic force and a friction term. This exploration is partly motivated by [34], wherein the
authors assert that “the turbulent velocity which advects the passive scalar should be a solution
to the Navier-Stokes equations [...] with some external stirring which maintains the fluid in a
turbulent state”. Our main result demonstrates the existence of a solution adhering to the Leray-
Hopf regularity locally in time, and inducing enhanced and ultimately anomalous dissipation in
(1.1). In fact, we establish a significantly more robust result concerning total dissipation over finite
time, uniformly across both the initial condition and the viscosity parameter.
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Theorem 1.1. There exist a countable family of Brownian motions {W k,α}, time-dependent ve-
locity fields {σk,α}, and a weak solution v of the Navier-Stokes equations with large friction and
additive noise:{

dv + (v · ∇)v dt+∇pv dt = ∆v dt− ε−1v dt+ ε−1
∑

k,α σk,αdW
k,α,

div v = 0,
(1.5)

where ε = ε(t) depends on t and is piecewise constant, such that

v ∈ Cw([0, 1), L
2) ∩ L2

loc([0, 1), H
1) almost surely,

and every progressively measurable1 weak solution of (1.1) manifests total dissipation at time t = 1,
i.e. for every zero-mean initial condition ρ0 ∈ L2 and ν ∈ (0, 1) it holds

lim
t↑1

∥ρt∥L2 = 0 almost surely.

The solution v, as provided by the preceding theorem, experiences a loss of Leray-Hopf regularity
precisely at time t = 1. This phenomenon arises due to the increasing strength of the forcing noise
and friction in (1.5), amplified as time approaches 1 via ε(t) → 0 as t → 1. In essence, v undergoes
a carefully controlled blow up at t = 1, a behavior that can be further quantified based on the
choice of ε and the characteristics of the noise. The mechanism driving total (not merely enhanced)
dissipation involves a forced transfer of the kinetic energy of ρ to increasingly higher wavenumbers
as time t converges to 1. Notably, the obtained result is universal, as it holds true for every
initial condition in L2 and every ν ∈ (0, 1). Specifically, the dissipation is anomalous in the sense
that (1.2) holds almost surely by continuity extension, along with (1.3) if ρ adheres to the energy
equality2. Central to our proof is the crucial property that solutions of (1.1), with ρ0 ∈ L2 and
velocity v ∈ L2

loc([0, 1), H
1), exist and are unique due to [6], and satisfy the corresponding energy

inequality. Such solutions are readily obtained via Galerkin approximation.
As an intermediate auxiliary step, we establish the corresponding statement for the scenario of

white-in-time velocity v formally expressed as:

v =
∑
k,α

σk,α∂tW
k,α.

This result, novel and interesting in its own right, serves as a foundational component for the proof
of Theorem 1.1.

It is noteworthy to mention that one could theoretically consider a specific realization v = v(ω)
of the random velocity field v above and inquire whether the deterministic vector field v(ω) induces
total dissipation in (1.1). However, the challenge in this scenario lies in the fact that the full measure
set of ω’s for which limt↑1 ∥ρt∥L2 = 0 in Theorem 1.1 may potentially depend on the initial condition
ρ0 and the viscosity ν. Consequently, the universality of dissipation is compromised, yielding a
weaker result as stated below:

Corollary 1.2. For every countable sets of initial conditions C ⊂ L2 with zero mean and viscosities
V ⊂ (0, 1) there exists a deterministic vector field v = v(C ,V ) such that limt↑1 ∥ρt∥L2 = 0 for every
weak solution ρ of (1.1) with initial condition ρ0 ∈ C and viscosity ν ∈ V . More generally, given
arbitrary probability measures Pρ0 on L2 with zero mean and Pν on (0, 1), there exists v = v(Pρ0 ,Pν)
inducing total dissipation at time t = 1 in (1.1) for Pρ0 ⊗ Pν almost every (ρ0, ν).

In cases where a higher degree of regularity for v is desired, it can be postulated to satisfy an
Ornstein-Uhlenbeck equation instead:

dv = −ε−1v dt+ ε−1
∑
k,α

σk,αdW
k,α.(1.6)

Theorem 1.3. There exists v ∈ C
1/2−

loc ([0, 1), C∞) almost surely, satisfying (1.6) above, such that
the same total dissipation for solutions of (1.1) stated in Theorem 1.1 holds true.

1By weak continuity of weak solutions to (1.1), progressive measurability is equivalent to require that ρ is adapted,
namely for every t ∈ [0, 1) the random variable ρt is measurable with respect to the sigma algebra Ft, where
(Ω,F , {Ft}t≥0,P) is a filtered probability space, satisfying the usual conditions, that supports the Brownian motions

{Wk,α}.
2For the supposed regularity of v, this condition holds when ρ0 ∈ L3 for d = 3 and ρ0 ∈ L2+ for d = 2 by [7,

Theorem 3.3].
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Our methodology exhibits robustness that extends to nonlinear equations as well. For instance,
let us consider the Navier-Stokes equations advected by v in dimension d = 2 or 3:{

∂tu+ (u · ∇)u+ (v · ∇)u+∇p = ν∆u,

div u = 0,
(1.7)

where u : Td × R+ → Rd represents the unknown velocity field, and the scalar pressure field
p : Td×R+ → R is disregarded from the analysis of (1.7) by applying the Leray projector Π. Here
is the resultant theorem:

Theorem 1.4. For the same velocity field v as in Theorem 1.1 or Theorem 1.3, every progressively
measurable Leray-Hopf weak solution of (1.7) with zero-mean, divergence-free initial condition
u0 ∈ L2 and ν ∈ (0, 1) satisfies limt↑1 ∥ut∥L2 = 0 almost surely.

The previous theorem holds true both in dimension d = 2 and d = 3; however, there is a
technical difference between these two cases. When d = 2, by pathwise uniqueness of solutions to
(1.7), given the velocity field v we can always find a Leray-Hopf weak solution u of (1.7) that is
progressively measurable with respect to the filtration generated by the Brownian motions {W k,α},
and the analogue of Corollary 1.2 holds true. Moreover, energy equality gives the analogue of (1.3)

lim sup
ν→0

ν

∫ 1

0

∥∇ut∥2L2dt > 0 almost surely.(1.8)

In dimension d = 3, the Navier-Stokes equations may admit multiple Leray-Hopf weak solutions,
and thus it is unknown whether (1.7) possesses Leray-Hopf weak solutions adapted to {W k,α} when
the noise is specified a priori. Consequently, a statement akin to that of Theorem 1.4 might be void.
In such instances, the existence of progressively measurable Leray-Hopf weak solutions is recovered
subject to a possible change of the underlying probability space. This concept is commonly referred
to as probabilistically weak existence. We obtain the following result:

Theorem 1.5. Let d = 3. Then there exists a countable family of time-dependent velocity fields
{σk,α} with the following property. For every countable sets of initial conditions C ⊂ L2 with null
mean and divergence and viscosities V ⊂ (0, 1) there exist a countable family of Brownian motions
{W k,α} and a vector field v ∈ Cw([0, 1), L

2)∩L2
loc([0, 1), H

1) solution of (1.5) such that for every
initial condition u0 ∈ C and viscosity ν ∈ V there exists a progressively measurable Leray-Hopf
solution u of (1.7) satisfying limt↑1 ∥ut∥L2 = 0 almost surely.

Contrary to the assertion Corollary 1.2, if we fix the initial condition u0 and viscosity ν, and
then consider a deterministic realization of v, total dissipation cannot be universally established
for every (deterministic) Leray-Hopf weak solution u. The reason is that we are not able to
say whether a given Leray-Hopf weak solution u is the realization u = ũ(ω) of a progressively
measurable Leray-Hopf weak solution ũ. Nonetheless, we obtain total dissipation at time t = 1 for
at least one Leray-Hopf weak solution:

Corollary 1.6. Let d = 3. Then for every zero-mean initial condition u0 ∈ L2 with null divergence
and viscosity ν ∈ (0, 1) there exist a deterministic vector field v = v(u0, ν) and a Leray-Hopf weak
solution u of (1.7) satisfying limt↑1 ∥ut∥L2 = 0.

Finally, let us mention that for u solution of (1.7) in dimension d = 3 we do not obtain (1.8),
since we do not know whether energy equality holds and we might only have an energy inequality.
Additional details will be given in section 3 and section 4. Note that the presence of the nonlinearity
(u · ∇)u in (1.7) is not the main source of difficulties in our proof, nor it is the ultimate reason
why the total dissipation occurs. As in the passive scalar case, total dissipation is rather induced
by the advection term v · ∇u.

1.2. Known deterministic results. One of the most extensively studied examples of dissi-
pation enhancing vector fields is that of alternating shear flows – velocity fields v character-
ized by translation invariance along one time-dependent direction. These flows have been rec-
ognized for their capacity to induce enhanced dissipation [5, 16]. More recently, [20] estab-
lished a general criterion for anomalous dissipation based on an inverse interpolation inequal-
ity. Specifically, the authors proved that for every α ∈ [0, 1) there exists a velocity field v ∈
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C∞([0, 1)× Td) ∩ L1([0, 1], Cα(Td)) ∩ L∞([0, 1]× Td) that yields anomalous dissipation for initial
conditions in H2 near harmonics.

A more intricate variant of alternating shear flows involves rearranging chessboard-like initial
data to develop small-scale spatial structures, thus facilitating anomalous dissipation, as presented
in [14]. This work demonstrated that for every α ∈ [0, 1) and p ∈ [2,∞], there exists an initial da-
tum ρ0 ∈ C∞ and a velocity field v ∈ Lp([0, 1], Cα(T2)) inducing anomalous dissipation. Similarly,
in [8], a result on anomalous dissipation for the forced Navier-Stokes equations was established.
Notably, in both [20] and [14], anomalous dissipation occurred at the final time t = 1. This
temporal limitation was addressed in [2] through a fractal homogenization approach. For every
α ∈ (0, 1/3), the existence of a vector field v ∈ C([0, 1], Cα(Td)) ∩ Cα([0, 1], C(Td)) was obtained,
ensuring anomalous dissipation for every initial datum in H1.

In the aforementioned works, the advecting velocity was constructed somewhat ad hoc, without
a priori reference to any specific fluid dynamics model. Incorporating such a requirement imposes
additional constraints, rendering the problem even more challenging. This challenge was effec-
tively tackled in the recent work [13], which appeared after the completion of the first version
of our manuscript. Here, weak solutions to Euler equations inducing anomalous dissipation were
identified. Specifically, the authors demonstrated that for every α ∈ (0, 1/3), there exists a weak
solution v ∈ Cα([0, 1]× T3) to the Euler equations, ensuring anomalous dissipation in (1.1) for all
initial conditions in H1.

Moreover, other mechanisms have been shown to produce anomalous dissipation for particular
initial data in the Navier-Stokes equations with force, as documented in [10, 31, 30].

1.3. Known stochastic results. Kraichnan proposed white-in-time random flows as a model of
synthetic scalar turbulence in [33], which has since been extensively studied (see [34] and references
therein, or the more recent [29]). The Kraichnan model is characterized by a specific spatial
structure and demonstrates the phenomenon of Lagrangian spontaneous stochasticity, observed
in [9]. This phenomenon is intimately related to scalar anomalous dissipation via a fluctuation-
dissipation relation. Under certain assumptions, [21] proved the equivalence between these two
notions, thus establishing anomalous dissipation for the Kraichnan model.

Furthermore, more general white-in-time random flows have gained attention in recent years.
Thanks to works such as [24, 23], it is now relatively well-understood in stochastic literature that
a white-in-time velocity field v can induce mixing and dissipation enhancement in (1.1), especially
when v is concentrated solely at very high Fourier modes and each mode is excited with low
intensity. This dissipation enhancement stems from the presence of a Stratonovich-to-Itō corrector
in the weak formulation of (1.1), which, under suitable geometric conditions on the spatial structure
of the noise, acts as a large multiple of the Laplacian, facilitating the proof of smallness of the
H−1 norm of the solution ρ. It is crucial to note that while this transport noise formally preserves
energy, its algebraic reformulation with the Stratonovich-to-Itō corrector provides a convenient
framework for effectively quantifying energy transfer to high wavenumbers.

Additionally, the transport noise can be engineered to produce arbitrarily strong dissipation
enhancement on short time intervals, as discussed in [23]. However, until now, it remained unclear
whether this dissipation could be made anomalous, i.e., uniform in the vanishing viscosity limit
ν → 0.

Moreover, the literature, e.g., [34], has argued against white-in-time velocity fields being phys-
ically relevant. This poses additional challenges, as no Stratonovich-to-Itō corrector appears in
the weak formulation of (1.1), rendering previous considerations inapplicable. Nevertheless, if v
exhibits a similar spatial structure to the aforementioned transport noise, it is reasonable to expect
the same energy transfer to high wavenumbers and consequent dissipation enhancement to occur,
as discussed in [36].

1.4. Our contribution. The primary contribution of the present paper lies in capturing the
phenomenon of enhanced and anomalous dissipation without relying on the Stratonovich-to-Itō
corrector. The core idea is to define v as a solution of a stochastic differential equation driven
by a strong external random forcing and a strong friction. These two elements enable v to mimic
the behavior of a transport noise in the weak formulation of (1.1), despite v retaining a positive
decorrelation time. With sufficiently strong external forcing, we can even allow v to satisfy the
forced Navier-Stokes equations or other equations relevant to fluid dynamics. This is particularly
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significant as it distinguishes our approach from most existing examples of anomalous dissipation,
with the exception of [13].

To quantify the induced decay of the H−1 norm of ρ, we add a small perturbation to the solution
of (1.1), reintroducing temporal roughness into the equation that produced the Stratonovich-to-Itō
corrector in the case of transport noise. The perturbation, inspired by homogenization methods
and ideas from [18], ultimately results in the convective term homogenizing to a negative definite
operator, which coincides with the same Stratonovich-to-Itō corrector observed with transport
noise, plus small reminders. Through suitable tuning of the parameters defining the random
forcing acting on v, we establish enhanced, and eventually anomalous, dissipation in (1.1).

In terms of regularity over the entire time domain [0, 1], our construction represents an inter-
mediate result between the white-in-time examples mentioned above and the purely deterministic
results from [20, 14, 2, 13]. Specifically, we eliminate the need for a white-in-time velocity but
encounter integrability issues near t = 1, unlike the deterministic examples mentioned above. This
can be intuitively understood as follows: as t → 1, we approximate the transport noise, resulting in

time regularity of only C−1/2− uniformly in [0, 1]. Nevertheless, the noise simultaneously shifts to
higher and higher modes and eventually vanishes as t → 1. This can be employed in the case of the
Ornstein-Uhlenbeck process (1.6) to trade space regularity for time integrability. More precisely,
as shown in Remark 2.1, it holds true that v ∈ L∞([0, 1];H−ϵ) for a suitably chosen ϵ > 0. The
Navier-Stokes setting (1.5) is more complex due to the nonlinearity, and this argument does not
apply.

However, we can draw a parallel between our construction and the relaxation enhancing flows
described in [15], whose suitable acceleration was also shown to produce total dissipation in [38]
by choosing a time dependent coefficient in the spirit of our construction. Notably, [38] mentions
that total dissipation is unattainable for velocity fields v ∈ L∞([0, 1]×Td) at any diffusivity ν > 0.
Therefore, in our scenario, solutions of the forced Navier-Stokes equations blow up in a relaxation
enhancing manner almost surely, meaning they explode in the right way to yield mixing and
diffusion. A generic velocity field experiencing blow-up at t = 1 would not be expected to exhibit
such behavior. In this respect, let us stress that, although obtaining total dissipation only via
additive noise of stronger and stronger intensity in (1.5) is a very natural and interesting question,
the presence of the friction is fundamental in our approach in order to get explicit expressions for
the correctors U and V in subsection 4.1.

In summary, we have identified a novel mechanism for inducing scalar anomalous dissipation
that: i) is potent enough to achieve total dissipation in finite time; ii) is universal, as a single
velocity field v is effective for every initial condition in L2 and every viscosity value; and iii) is
robust enough to extend to the nonlinear case, such as the Navier-Stokes equations, and likely to
many other models of fluid dynamics interest.

1.5. Organization of the paper. The paper is organized as follows. In section 2, we describe the
structure of our noise and outline the main ideas of how to reintroduce the roughness to profit from
the hidden Stratonovich-to-Itō corrector. section 3 addresses the preliminary problem of white-in-
time velocity v, presented in Proposition 3.1. This is crucial for our analysis since it allows us to
isolate the difficulties arising from the Leray projection Π in the expression of the Stratonovich-
to-Itō corrector in subsection 3.1 and the main strategy behind the proof of total dissipation in
subsection 3.2. In subsection 3.3, we also demonstrate that in dimension d = 3, there exist weak
solutions of (1.7) perturbed by transport noise that are not Leray-Hopf and do not dissipate their
kinetic energy at time t = 1. This is reasonable to expect, since non Leray-Hopf weak solutions do
not need to satisfy the energy inequality, see (3.2). section 4 explores the more realistic scenario
of v being a solution of the forced Navier-Stokes equations. The primary focus of this section is
to rigorously validate the heuristic arguments presented in subsection 2.2, particularly in the more
difficult case of solutions to (1.7). The proof of Theorem 1.3 when v solves (1.6) descends easily
from the Navier-Stokes case (1.5), see Remark 2.1.

2. Main ideas of the construction

2.1. Structure of the noise. Let us focus on the case d = 3 only. The case d = 2 is readily
covered in a similar fashion and we omit it for the sake of brevity.
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We construct the noise in (1.5) taking inspiration from [28] and [26]. Let Z3
0 := Z3 \ {0} and

let {Λ,−Λ} be a partition of Z3
0. Let us introduce a family {Bk,α}k∈Z3

0,α∈{1,2} of independent

standard Brownian motions on a filtered probability space (Ω,F , {Ft}t≥0,P) satisfying the usual
conditions. Define the complex-valued Brownian motions

W k,α :=

{
Bk,α + iB−k,α, if k ∈ Λ,

Bk,α − iB−k,α, if k ∈ −Λ,

whose quadratic covariation is given by [W k,α,W l,β ]t = 2tδk,−lδα,β . For every k ∈ Λ let {ak,1, ak,2}
be orthonormal basis of k⊥ such that {ak,1, ak,2, k/|k|} is right-handed. Let ak,α = a−k,α for every
k ∈ Z3

0. The coefficients {σk,α}k∈Z3
0,α∈{1,2} are given by

σk,α(x, t) := θk(t)ak,αek(x), ek(x) := e2πik·x,

for some suitable intensity coefficients θk : R+ → R. Notice that {ak,αek}k,α is a complete
orthonormal system of the space H of zero-mean, divergence-free, square integrable velocity fields
on the torus; in particular σk,α(·, t) is H valued for every k, α and t. For s ∈ R, denote Hs the
H-based Sobolev space of velocity fields on the torus with zero average and null divergence in the
sense of distributions.

We introduce the dependence of θk on time in order to switch the noise on at higher and higher
Fourier modes as time approaches t = 1. To rigorously describe this, let {τq}q∈N be a sequence of
times such that τ0 = 1 and τq → 0 monotonically as q → ∞. On the time interval (1− τq, 1− τq+1]
we choose the coefficients θk(t) = θqk as:

θqk := 1{Nq≤|k|≤2Nq},

where Nq is a sequence such that Nq → ∞ sufficiently fast as q → ∞. We also define∑
k∈Z3

0

(θqk)
2 =: κq ∼ N3

q → ∞ as q → ∞.

2.2. Reintroducing roughness at small time scales. Let us describe the heuristics behind
the proof of Theorem 1.1, which is based on ideas from [18]. For the sake of simplicity, here we
focus on the scalar case but we shall see that the same arguments apply to the Navier-Stokes case.
Fix q ∈ N and consider the time interval (1− τq, 1− τq+1]. Suppose on this time interval ε(t) ≡ εq
and we can decompose a solution v of (1.5) as

v = ε−1/2
q w + r,

where w is the noisy part of v, satisfying

dw = −ε−1
q wdt+ ε−1/2

q

∑
k,α

σk,αdW
k,α,

and is renormalized such that w is on average of order one, whereas r is a remainder. Then, if
εq ≪ 1 the dynamics (1.1)

dρ = −ε−1/2
q w · ∇ρ dt− r · ∇ρ dt+ ν∆ρ dt

has a potentially large term ε
−1/2
q w · ∇ρ. However, this potentially troublesome term can be can-

celled out by adding correctors to ρ, following ideas from [18]. Roughly speaking, these correctors
are auxiliary stochastic processes, usually taking values in a space of distributions, that formally
compensate large terms in the dynamics of ρ.

In our particular case, we consider the dynamics of the process ρ− ε
1/2
q w · ∇ρ instead. It reads

as

d
(
ρ− ε1/2q w · ∇ρ

)
= −r · ∇ρ dt+ ν∆ρ dt+ w · ∇(w · ∇ρ) dt−

∑
k,α

σk,α · ∇ρ dW k,α +O(ε1/2q ).

Here we have the term w · ∇(w · ∇ρ) which oscillates extremely fast with respect to time, and
together with the quadratic interaction in w this produces the extra dissipation. To see this,
consider another corrector defined as

εq
2 w · ∇(w · ∇ρ). It evolves according to

εq
2
d (w · ∇(w · ∇ρ)) = −w · ∇(w · ∇ρ) dt+

∑
k,α

σk,α · ∇(σ−k,α · ∇ρ) dt+O(ε1/2q ),
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which compensates exactly the fast oscillations w · ∇(w · ∇ρ) in the dynamics of ρ − ε
1/2
q w · ∇ρ

and simultaneously makes appear the Stratonovich-to-Itō corrector
∑

k,α σk,α · ∇(σ−k,α · ∇ρ).
If the parameters σk,α are tuned properly, this procedure permits to prove smallness of a negative

Sobolev norm of the process

ρ− ε1/2q w · ∇ρ+
εq
2
w · ∇(w · ∇ρ) + V ∼ ρ,

from which we deduce dissipation of the L2 norm of ρ via an inverse interpolation inequality3.
Here V is another auxiliary process, of average size proportional to εq, which helps to control

the term −r · ∇ρ in the dynamics of ρ. For more details, we refer the reader to section 4, where
the rigorous argument is described.

Remark 2.1. The same arguments apply a fortiori to v solution of (1.6). Indeed, in this case one

has r = 0 in the decomposition v = ε
−1/2
q w+ r. Furthermore, in this scenario we are able to trade

space regularity for time integrability and show for instance that v ∈ L∞([0, 1], H−ϵ) almost surely
for a suitably chosen ϵ > 0. Specifically, the Fourier coefficients vk,α := ⟨v, ak,αek⟩ of v satisfy

dvk,α + ε−1vk,αdt = ε−1θkdW
k,α.

Thus, fixing k, α determines q = q(k) via Nq ≤ |k| ≤ 2Nq together with the time interval (1 −
τq, 1 − τq+1] where the above right hand side is non-zero. In other words, integrating the above
equation in time, its right hand side remains bounded in time in expectation even in the limit
t → 1. However, the bound depends on k, α: testing the equation by vk,α leads to

1

2
|vk,α(t)|2 + ε−1

∫ t

0

|vk,α|2ds =
∫ t∧(1−τq+1)

1−τq

ε−1
q θqkvk,αdW

k,α +
1

2

∫ t∧(1−τq+1)

1−τq

ε−2
q (θqk)

2ds

and the Itō correction term explodes as k → ∞, i.e. q → ∞. Applying Burkholder-Davis-Gundy’s
inequality for the stochastic integral, we deduce

E sup
t∈[0,1]

∥vt∥2H−ϵ = E sup
t∈[0,1]

∑
k,α

k−2ϵ|vk,α(t)|2 ≲
∑
k

k−2ϵε−2
q(k) ≲ 1

provided k−2ϵ ≪ ε2q(k) in order to cancel the blow up coming from ε−2
q(k) and to make the sum

converging. On the one hand, we have k ∼ Nq(k). On the other hand, it can be seen in section 4

that for the case of the Ornstein-Uhlenbeck process we may choose εq ∼ N−K
q for some integer

K ∈ N. This implies the condition N−ϵ
q ≪ N−K

q hence ϵ > K.

Hereafter, in order to keep the discussion as concise as possible, we prefer to restrict ourselves
to the vectorial case (1.7), which is technically more demanding than the scalar case (1.1) due to
the more complex form of the Stratonovich-to-Itō corrector. Also, in view of Remark 2.1 we will
only consider v solution of (1.5), being the case when v solves (1.6) easier. Major differences in
the proofs will be detailed when necessary.

3. Total dissipation by transport noise

In this section we shall focus on the case of transport noise:

v(x, t) =
∑
k,α

σk,α(x, t)∂tW
k,α,

where the coefficients σk,α are as in subsection 2.1 and the white noise ∂tW
k,α is meant in the

Stratonovich sense. This is a good starting point, propaedeutic to the study of (1.7) advected by a
more realistic velocity field solution v solution of (1.5). With this choice of v, equation (1.7) reads
as {

du+ (u · ∇)u dt+
∑

k,α(σk,α · ∇)u ◦ dW k,α +∇p dt = ν∆u dt

div u = 0.
(3.1)

The symbol ◦ dW k,α in the equation above is a notational shorthand for the Stratonovich in-
terpretation of the stochastic integral. This is a sensible modelling choice since Stratonovich

3Notice that our approach allows to prove smallness of a negative Sobolev norm of ρ also in the inviscid case ν = 0,

but ν > 0 is required to deduce dissipation.
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integration satisfies the chain rule and thus the advection term
∑

k,α(σk,α ·∇)u◦dW k,α is formally
energy preserving.

The goal of this section is to prove the following:

Proposition 3.1. We can choose parameters τq, Nq and κq ∼ N3
q , q ∈ N, such that the follow-

ing holds true. Every probabilistically weak, progressively measurable Leray-Hopf weak solution of
(3.1) with zero-mean, divergence-free initial condition u0 ∈ L2 and viscosity ν ∈ (0, 1) satisfies
limt↑1 ∥ut∥L2 = 0 almost surely.

A similar statement holds true in the passive scalar case. Before moving on, let us clarify what
we mean by probabilistically weak Leray-Hopf weak solution of (3.1) in this case.

Definition 3.2. A probabilistically weak, progressively measurable Leray-Hopf weak solution of
(3.1) is defined as a probability space (Ω,F , {Ft}t≥1,P) supporting a family of i.i.d. Brownian
motions {W k,α}k,α and a progressively measurable stochastic process u : Ω → Cw([0, 1), H) ∩
L2([0, 1), H1) almost surely such that, for every divergence-free test function f ∈ C∞

c (T3×[0, 1),R3)
it holds almost surely for every 0 ≤ s < r < 1

⟨ur, fr⟩ − ⟨us, fs⟩ =
∫ r

s

⟨ut, ∂tft + (ut · ∇)ft + ν∆ft⟩dt+
∑
k,α

∫ r

s

⟨ut, (σk,α(·, t) · ∇)ft⟩ ◦ dW k,α
t ,

and for almost every ω ∈ Ω there exists a full Lebesgue measure set T ⊂ [0, 1) such that 0 ∈ T and
for every r ∈ T , r < t < 1 the following energy inequality holds almost surely

∥ut∥2L2 + 2ν

∫ t

r

∥∇us∥2L2ds ≤ ∥ur∥2L2 .(3.2)

We can rewrite the Stratonovich integral in Definition 3.2 in the equivalent Itō form as follows:
for every divergence-free test function f ∈ C∞

c (T3 × [0, 1),R3)

⟨ur, fr⟩ − ⟨us, fs⟩ =
∫ r

s

⟨ut, ∂tft + (ut · ∇)ft + ν∆ft + S(ft)⟩dt

+
∑
k,α

∫ r

s

⟨ut, (σk,α(·, t) · ∇)ft⟩dW k,α
t ,

where S is the so-called Stratonovich-to-Itō (or simply Stratonovich) corrector, described in details
in the next subsection. Existence of solutions according to Definition 3.2 has been shown in [25].

Finally, let us comment briefly on the energy inequality (3.2). It ultimately is the reason why the
transfer of energy to high wavenumbers increases the rate of dissipation in solutions of the Navier-
Stokes equations, since a larger time integral of ∥∇us∥2L2 necessitates a smaller ∥ut∥2L2 to ensure the
validity of (3.2). However, the energy inequality can not be deduced from the equation (3.1) itself,
and must be postulated a priori: this is the difference between weak solutions and Leray-Hopf weak
solutions of (3.1). In particular, weak solutions of (3.1) that do not satisfy the energy inequality
do not need to dissipate their energy, and explicit examples have been constructed recently by
convex integration techniques [11], [12], [37]. In subsection 3.3 we give an example following the
construction of [37].

In the passive scalar case, the weak formulation of the equation is obtained mutatis mutandis,
but by linearity and pathwise uniqueness [22, Theorem 5.2] the stronger energy equality holds true:
one can take T = [0, 1) and has almost surely for every t > r

∥ρt∥2L2 + 2ν

∫ t

r

∥∇ρs∥2L2ds = ∥ρr∥2L2 .

This can be obtained for instance taking a space mollification ρϵ of the solution, using a commutator
estimate à la Di Perna-Lions [19, Lemma II.1] to deduce energy equality for ρϵ up to in infinitesimal
error, and then passing to the limit ϵ → 0. The passage to the limit is justified by local-in-time
smoothness of the coefficients {σk,α}.

3.1. Stratonovich corrector. Equation (3.1) can be rewritten without the pressure term by
using the Leray projector Π = Id+∇(−∆)−1div onto the divergence-free velocity fields:

du+Π[(u · ∇)u] dt+
∑
k,α

Π[(σk,α · ∇)u] ◦ dW k,α = ν∆u dt.(3.3)
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The advantage of (3.3) compared to (3.1) is that the Stratonovich-to-Itō corrector S can be readily
computed,4 see also equation (1.6) in [26]. We have

du+Π[(u · ∇)u] dt+
∑
k,α

Π[(σk,α · ∇)u] dW k,α = ν∆u dt+ S(u) dt,

with

S(u) =
∑
k,α

Π[(σk,α · ∇)Π[(σ−k,α · ∇)u]].(3.4)

On the time interval (1− τq, 1− τq+1], we can rewrite S = Sq (cf. subsection 2.1) as

Sq(u) =
2

3
κq∆u− S⊥

q (u),

S⊥
q (u) :=

∑
k,α

(θqk)
2 Π[(ak,αek · ∇)Π⊥(ak,αe−k · ∇)u],

where Π⊥ = −∇(−∆)−1div is the orthogonal complement of the Leray projector Π.
Decompose u as u =

∑
ℓ,β uℓ,βaℓ,βeℓ. By [26, Corollary 5.3] it holds

S⊥
q (u) = −4π2

∑
ℓ,β

uℓ,β |ℓ|2Π

[∑
k

(θqk)
2 sin2(<k,ℓ)(aℓ,β · (k − ℓ))

k − ℓ

|k − ℓ|2
eℓ

]
,

where <k,ℓ denotes the angle between the Z3 vectors k and ℓ.
In order to better describe the behaviour of S⊥

q , split u into low and high Fourier modes

u = uL + uH , uL := ΠLu,

where ΠL denotes the Fourier projector onto modes |ℓ| ≤ N1−δ
q for some small δ > 0. It holds

S⊥
q (uL) = −4π2

∑
ℓ,β

uL
ℓ,β |ℓ|2Π

[∑
k

(θqk)
2 sin2(<k,ℓ)(aℓ,β · k) k

|k|2
eℓ

]

− 4π2
∑
ℓ,β

uL
ℓ,β |ℓ|2Π

[∑
k

(θqk)
2 sin2(<k,ℓ)

(
(aℓ,β · (k − ℓ))

k − ℓ

|k − ℓ|2
− (aℓ,β · k) k

|k|2

)
eℓ

]
.

Next we show that the second line on the right-hand-side in the expression above is negligible
when compared to the first line, at least when taking the H−1 norm thereof. Recall also that Π
is a bounded operator from H−1 to H−1 and acts diagonally on the Fourier elements eℓ. By [26,
Lemma 5.5] using uL

ℓ,β = 0 for |ℓ| > N1−δ
q and θqk = 0 for |k| < Nq it holds∥∥∥∥∥∥

∑
ℓ,β

uL
ℓ,β |ℓ|2Π

[∑
k

(θqk)
2 sin2(<k,ℓ)

(
(aℓ,β · (k − ℓ))

k − ℓ

|k − ℓ|2
− (aℓ,β · k) k

|k|2

)
eℓ

]∥∥∥∥∥∥
H−1

≤

∑
ℓ,β

|uL
ℓ,β |2|ℓ|2

(∑
k

(θqk)
2

∣∣∣∣(aℓ,β · (k − ℓ))
k − ℓ

|k − ℓ|2
− (aℓ,β · k) k

|k|2

∣∣∣∣
)2
1/2

≲

∑
ℓ,β

|uL
ℓ,β |2|ℓ|2

(∑
k

(θqk)
2 |ℓ|
Nq

)2
1/2

≲ ∥uL∥H1κqN
−δ
q .

On the other hand, one can check that the convergences in [26, Proposition 5.4, Lemma 5.6]
hold true with γ = 0 and are uniform in |ℓ| ≤ N1−δ

q , namely we have∥∥∥∥∥∥
∑
ℓ,β

uL
ℓ,β |ℓ|2Π

[∑
k

(θqk)
2

(
sin2(<k,ℓ)(aℓ,β · k) k

|k|2
− 4

15
aℓ,β

)
eℓ

]∥∥∥∥∥∥
H−1

≲ ∥uL∥H1κqN
−1
q .

4The problem with formulation (3.1) is related to the difficulty of computing the quadratic covariation between the

Brownian motions Wk,α and the pressure p.
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Therefore, since

−4π2
∑
ℓ,β

uL
ℓ,β |ℓ|2

∑
k

(θqk)
2aℓ,βeℓ = κq∆uL,

we have for some universal constant C∥∥∥∥25κq∆uL − Sq(u
L)

∥∥∥∥
H−1

=

∥∥∥∥S⊥
q (uL)− 4

15
κq∆uL

∥∥∥∥
H−1

≤ CκqN
−δ
q ∥uL∥H1 .(3.5)

A similar computation shows the continuity of Sq : ΠLH
s+2 → Hs for other values of s ∈ R.

Remark 3.3. In the passive scalar case, there is no need to reformulate the equation as in (3.3)
since no Leray projection is needed. As a consequence, the Stratonovich-to-Itō corrector takes the
simpler form

Sq(ρ) =
∑
k,α

(θqk)
2ak,αek · ∇(ak,αe−k · ∇ρ) =

2

3
κq∆ρ.

3.2. Dissipation. In principle, we are interested in the case where the initial condition u0 ∈
L2 is deterministic. However, without any additional difficulty we can assume u0 random and
independent of the Brownian motions {W k,α}, and that u0 ∈ L2 holds almost surely. Indeed,
this setting is equivalent to requiring ∥u0∥L2 ≤ M almost surely, for some deterministic constant
1 ≤ M < ∞. To see this, introduce ΩM := {M − 1 < ∥u0∥L2 ≤ M} for M ∈ N, M ≥ 1 and
write u0 =

∑
M u01ΩM

. Denoting by uM a Leray-Hopf weak solution of (3.1) with initial condition
u01ΩM

, then u :=
∑

M uM solves (3.1) with initial condition u0. Viceversa, every Leray-Hopf weak
solution to (3.1) can be decomposed as above.

Let q ∈ N be given. A key step to the proof of total dissipation is the following uniform
estimate on the H−1 norm of uL, the low-modes projection of u. This implies smallness of the
H−1 norm of u since uH is high-modes by construction, and thus the standard estimate ∥uH∥H−1 ≲
Nδ−1

q ∥uH∥L2 ≤ Nδ−1
q ∥u∥L2 holds true (recall that by definition of H the process u has zero space

average for every t almost surely).

Lemma 3.4. For every q ∈ N there exists a choice of the parameters τq, Nq and κq ∼ N3
q such

that the following holds true. Let u be any Leray-Hopf weak solution of (3.1) with initial condition
u0, ∥u0∥L2 ≤ M . Then it holds for every β > 3/2 and δ ∈ (0, 1 ∧ (β − 3/2))

E

[
sup

t∈[1−τq/2,1−τq+1]

∥uL∥2H−1

]
≲β,δ

M2 β+1
β

(ν + κq)
1−δ
β

.

Proof. Let us decompose u = uL + uH and write down the mild formulation for uL with t ∈
(1− τq, 1− τq+1]

uL
t = P (t− (1− τq))u

L
1−τq −

∫ t

1−τq

P (t− s)ΠLΠdiv (us ⊗ us)ds

−
∑
k,α

∫ t

1−τq

P (t− s)ΠLΠdiv (us ⊗ σk,α)dW
k,α
s

+

∫ t

1−τq

P (t− s)

(
Sq(u

L
s )−

2

5
κq∆uL

s

)
ds.

In the expression above we have conveniently denoted P = e(ν+2κq/5)∆ the semigroup generated
by the operator (ν + 2κq/5)∆, and we have used that ΠLSq = SqΠL since Sq acts diagonally on
the Fourier elements eℓ.

Since u is a Leray-Hopf solution, the energy inequality guarantees ∥uL
t ∥L2 ≤ ∥ut∥L2 ≤ M almost

surely for every t. Thus using ∥P (t)∥H−1→H−1 ≲ 1
(ν+2κq/5)t

we have

E

[
sup

t∈[1−τq/2,1−τq+1]

∥P (t− (1− τq))u
L
1−τq∥

2
H−1

]
≲

M2

(ν + κq)2τ2q
,
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and by boundedness of ΠLΠ and the embedding L1 ⊂ H−β+δ

E

[
sup

t∈[1−τq/2,1−τq+1]

∫ t

1−τq

∥P (t− s)ΠLΠdiv (us ⊗ us)∥2H−βds

]

≲ E

[
sup

t∈[1−τq/2,1−τq+1]

∫ t

1−τq

∥us ⊗ us∥2H−β+δ

(ν + κq)1−δ(t− s)1−δ
ds

]

≲ E

[
sup

t∈[1−τq/2,1−τq+1]

∫ t

1−τq

∥us ⊗ us∥2L1

(ν + κq)1−δ(t− s)1−δ
ds

]
≲

M4

(ν + κq)1−δ
.

In principle, the parameter δ in the equation above does not need to coincide with the parameter
δ defining the low modes projector ΠL; however, we have chosen to use the same value for both
quantities, so to avoid the introduction of an additional parameter and keep notation lighter.

To control the stochastic integral, we want to apply [24, Lemma 2.5], in particular equation
(2.3) therein. Notice that, with respect to that lemma, here we have in addition the projector
ΠLΠ; but it is easy to check that the very same proof applies also in this case. Therefore

E

 sup
t∈[1−τq/2,1−τq+1]

∥∥∥∥∥∥
∑
k,α

∫ t

1−τq

P (t− s)ΠLΠdiv (us ⊗ σk,α)dW
k,α
s

∥∥∥∥∥∥
2

H−β

 ≲
M2

(ν + κq)1−δ
.

Finally, for the last term we have by (3.5) and using that P and Sq commute∥∥∥∥∥
∫ t

1−τq

P (t− s)

(
Sq(u

L
s )−

2

5
κq∆uL

s

)
ds

∥∥∥∥∥
H−1

≲ κqN
−δ
q

∫ t

1−τq

∥P (t− s)uL
s ∥H1ds

≲ κqN
−δ
q

∫ t

1−τq

∥P (t− s)uL
s ∥H2−2εds ≲ κqN

−δ
q

∫ t

1−τq

(ν + κq)
−1+ε(t− s)−1+ε∥uL

s ∥L2ds

≲ Mκε
qN

−δ
q ,

where ε > 0 is small enough. Accordingly,

E

 sup
t∈[1−τq/2,1−τq+1]

∥∥∥∥∥
∫ t

1−τq

P (t− s)

(
Sq(u

L
s )−

2

5
κq∆uL

s

)
ds

∥∥∥∥∥
2

H−1

 ≲ M2κ2ε
q N−2δ

q .

Putting all together and assuming for every q ∈ N

κ2ε
q N−2δ

q ≲
1

(ν + κq)1−δ
, (ν + κq)

1+δτ2q ≳ 1,(3.6)

by interpolation we arrive to

E

[
sup

t∈[1−τq/2,1−τq+1]

∥uL∥2H−1

]
≤ M2 β−1

β E

[
sup

t∈[1−τq/2,1−τq+1]

∥uL∥2H−β

]1/β
≲

M2 β+1
β

(ν + κq)
1−δ
β

.

□

With this lemma at hand we are ready to prove our dissipation result in the case of transport
noise.

Proof of Proposition 3.1. Let (3.6) holds true. Without loss of generality we can assume ∥u0∥L2 ≤
M almost surely, for some deterministic constant M ∈ (0,∞). For simplicity we denote

c̃2q := Cβ,δ
M2/β

(ν + κq)
1−δ
β

,

where Cβ,δ is the implicit constant in the previous lemma and depends only on β and δ. The same
lemma implies, by Markov inequality:

∥ut∥2H−1 ≤ ∥uL
t ∥2H−1 + ∥uH

t ∥2H−1 ≤ (c̃q +N2(δ−1)
q )M2 =: cqM

2

for every t ∈ [1− τq/2, 1− τq+1], with probability at least equal to 1− c̃q.
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Recall the energy inequality (3.2) satisfied by Leray-Hopf weak solutions of (3.1): there exists
a full Lebesgue measure set of times T = T (ω) such that for every r ∈ T , t > r it holds

∥ut∥2L2 + 2ν

∫ t

r

∥us∥2H1ds ≤ ∥ur∥2L2 .

Formally, in order to prove smallness of ∥u1−τq+1∥L2 we would like to apply the following in-
equality with cq ≪ 1:

− d

dt

(
1

∥ut∥2L2

)
=

1

∥ut∥4L2

d

dt
∥ut∥2L2 ≤ −2ν

∥ut∥2H1

∥ut∥4L2

≤ − 2ν

∥ut∥2H−1

≤ − 2ν

cqM2
,(3.7)

where the second to last inequality comes from interpolation ∥ut∥4L2 ≤ ∥ut∥2H1∥ut∥2H−1 . However,
the kinetic energy t 7→ ∥ut∥2L2 may have jump discontinuities and even vanish at some time t ∈
[0, 1). In order to rigorously make sense of the previous line, let us consider instead the function

E(t) :=

{
∥ut∥2L2 , if t ∈ T ,

lim inf
s∈T , s→t

∥us∥2L2 , if t ∈ T c.

The function E is non-increasing by definition of T , therefore of class BV almost surely. In
particular, lim infs∈T ,s→t ∥us∥2L2 always equals the right limit lims∈T ,s↓t ∥us∥2L2 and E is right
continuous. Moreover, also the map t 7→ ∥ut∥2L2 is of class BV almost surely since it coincides with
E on the full Lebesgue measure set T . In particular, it holds as Radon measures

d∥u∥2L2((s, t]) = dE((s, t]) = E(t)− E(s).

Finally, E(t) ≥ ∥ut∥2L2 for every t ∈ [0, 1) since

lim inf
s∈T , s→t

∥us∥2L2 ≥ lim inf
s→t

∥us∥2L2 ≥ ∥ut∥2L2

by lower semicontinuity of the L2 norm (recall that we require Leray-Hopf weak solutions to be of
class Cw([0, 1), H) almost surely).

Let us consider the Lebesgue decomposition of the measure dE:

dE(t) = eLeb(t)dt+ dECan(t) +
∑
t∈D

(E(t+)− E(t−))δt,

where eLeb(t) is the density with respect to the Lebesgue measure of the absolutely continuous
part of dE, dECan in the Cantor part of dE, D is the (at most countable) discontinuity set of E
and δt denotes the delta Dirac measure at time t.

By energy inequality (3.2) we have for almost every t ∈ [0, 1)

eLeb(t) ≤ −2ν∥ut∥2H1 ,

and the Cantor and atomic parts of dE are non-positive measures:

dECan(t) ≤ 0,
∑
t∈D

(E(t+)− E(t−))δt ≤ 0.

Recall that we want to show that ∥u1−τq+1
∥2L2 is small. Assume E(1−τq+1) > 0 (otherwise there

is nothing to prove); by Vol’pert formula (i.e. the chain rule for BV functions, see for instance [1])
we have with probability no less than 1− c̃q

− 1

E(1− τq+1)
≤ 1

E(1− τq/2)
− 1

E(1− τq+1)

=

∫ 1−τq+1

1−τq/2

eLeb(t)dt

E(t)2
+

∫ 1−τq+1

1−τq/2

dECan(t)

E(t)2

+
∑
t∈D

1{1−τq/2<t≤1−τq+1}

(
− 1

E(t+)
+

1

E(t−)

)

≤ −2ν

∫ 1−τq+1

1−τq/2

∥ut∥2H1dt

∥ut∥4L2

≤ −2ν

∫ 1−τq+1

1−τq/2

dt

∥ut∥2H−1

≤ −ν(τq − 2τq+1)

cqM2
.

In the last line we have used ∥ut∥2L2 = E(t) for every t ∈ T and ∥ut∥2H−1 ≤ cqM
2 for every

t ∈ [1− τq/2, 1− τq+1] with probability at least 1− c̃q.
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Therefore, as long as q ∈ N is such that E(1 − τq+1) > 0 and assuming τq − 2τq+1 ≥ τq/2, the
previous formula implies

P(Aq) ≥ 1− c̃q, Aq :=

{
E(1− τq+1) ≤ M2 2cq

ντq

}
.

Let us now fix parameters β = 12/5, δ = 4/5 and

τq := 4−q, Nq := τ−10
q .

Since
∑

q c̃q < ∞ by our choice of parameters, by Borel-Cantelli Lemma almost every ω ∈ Ω

belongs to the set Aq for every q larger than a certain q⋆ = q⋆(ω), and thus

sup
t≥1−τq+1

∥ut∥2L2 ≤ E(1− τq+1) → 0

almost surely as q → ∞, since for every fixed value of M and ν

lim
q→∞

M2 cq
ντq

= 0.

This obviously implies limt↑1 ∥ut∥L2 = 0 almost surely, and the proof is complete. □

Remark 3.5. As a consequence, Leray-Hopf weak solutions of (3.1) can be extended with u1 = 0
to continuous functions at time t = 1 with respect to the strong topology on H.

Actually, from the proof of the previous proposition one can deduce the following refinement.
Recall that the largest integer q such that E(1 − τq+1) > M2 cq

ντq
is almost surely finite by Borel-

Cantelli Lemma. In particular, we have the following almost sure “rate” of dissipation:

lim sup
q→∞

(
ντq
M2cq

)1−δ

E(1− τq+1) ≤ lim
q→∞

(
M2cq
ντq

)δ

= 0,

where δ ∈ (0, 1), implying

lim sup
q→∞

(
ντq
M2cq

)1−δ

sup
t≥1−τq+1

∥ut∥2L2 = 0.(3.8)

3.3. Non dissipating solutions. The key property that allowed us to prove total dissipation at
time t = 1 in Proposition 3.1 was the energy inequality (3.2) satisfied by Leray-Hopf weak solutions
of (3.1). More than that, (3.8) shows that in this case some sort of enhanced dissipation holds
even before time t = 1, although for t < 1 it is neither total nor anomalous. In this subsection
we show that weak solutions not satisfying the energy inequality may not dissipate energy close
to time t = 1. More specifically, from any divergence-free initial condition u0 ∈ L2 almost surely
we construct a weak solution of (3.1) with unbounded kinetic energy on every time interval of the
form [1 − τq, 1 − τq+1], q ∈ N. This result highlights the importance of (3.2) in our construction.
Nonetheless, we point out that our result does not exclude that other weak solutions not satisfying
the energy inequality may anomalously dissipate kinetic energy.

Proposition 3.6. Let d = 3. For every ν > 0 and zero-mean, divergence-free u0 ∈ L2 almost
surely there exists a progressively measurable weak solution u to (3.1) on the time interval [0, 1),
with continuous trajectories in H−1 and initial condition u|t=0 = u0, such that almost surely∫ 1

r

∥ut∥2L2dt = ∞, ∀r ∈ (0, 1).(3.9)

In particular, (3.8) can not hold true for the constructed solution.

The proof is based on a modification of the convex integration scheme of [37]. Let Z be the
unique weak solution on [0, 1) of the Stokes system

dZ +
∑

k,α(σk,α · ∇)Z ◦ dW k,α +∇pZdt = ν∆Zdt,

divZ = 0,

Z|t=0 = u0.

It is sufficient to prove the following:
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Lemma 3.7. For every K > 0 and q ∈ N there exists a progressively measurable weak solution
uq to (3.1) on the time interval [1− τq, 1− τq+1] with continuous trajectory in H−1 and such that
uq
1−τq

= Z1−τq and uq
1−τq+1

= Z1−τq+1 almost surely, and with probability at least 1− (q + 1)−2 it

holds ∫ 1−τq+1

1−τq

∥uq
t∥2L2dt ≥ K.

Proof. Without loss of generality we can assume ∥u0∥L2 ≤ M almost surely. The idea is to
construct a solution uq as the sum of the solution Z to the Stokes system and a perturbation v,
under the additional constraint v1−τq = v1−τq+1 = 0. In order to do so, we modify the convex
integration scheme in [37, Proposition 4.2] using two sided cutoffs χ such that

χ(t) =


0, if −∞ < t ≤ 1− τq(1− 2−n−1),

1, if 1− τq(1− 2−n) ≤ t ≤ 1− τq+1(1 + 2−n),

0, if 1− τq+1(1 + 2−n−1) ≤ t < ∞,

and monotone in between of these intervals. Notice that imposing the terminal value v1−τq+1
= 0

does not compromise adaptedness, since the time 1− τq+1 is deterministic. Then the estimates in
[37, Section 4.2] remain the same, with the only differences that the the iterative estimates can now
depend on ν > 0 and time derivative of χ is now controlled with |χ′| ≲ τ−1

q+12
n and therefore may

depend on q; however this gives no additional problem since here ν, q are fixed (notice however that
the constants Cv, CR, ... in [37, Proposition 4.2] may depend on ν and τq+1). The lower bound on
the kinetic energy of uq comes from (here uq

n denotes the solution of the Navier-Stokes-Reynolds
system obtained as n-th iteration of the convex integration scheme of [37, Proposition 4.2])∫ t

1−τq(1−2−n+2)∧t

|∥uq
n+1(t)− Z(t)∥2L2 − ∥uq

n(t)− Z(t)∥2L2 − 3γn+1| dt ≤ Ceδn+1,

where δn is a given parameter going to zero sufficiently fast as n → ∞, t ≤ 1 − τq+1 is a suitable
stopping time with P{t > 1 − τq/2} ≥ 1 − (q + 1)−2, and Ce may depend on ν and τq+1. Then,
choosing n0 sufficiently large (possibly depending on ν and q) and γn0 ≥ Cτ−1

q (K +M2), we get

with probability no less than 1− (q + 1)−2:

2

∫ 1−τq+1

1−τq

∥uq
t∥2L2dt ≥

∫ t

1−τq(1−2−n+2)∧t

∥uq
t − Z(t)∥2L2dt− 2M2

≥
∫ t

1−τq(1−2−n+2)∧t

∥uq
n0
(t)− Z(t)∥2L2dt− Ce

∞∑
n=n0

δn+1 − 3

∞∑
n=n0

γn+1 − 2M2

≥
∫ t

1−τq(1−2−n+2)∧t

3γn0dt− Ce

∑
n

δn+1 − 3
∑
n ̸=n0

γn − 2M2 ≥ K.

□

Proof of Proposition 3.6. It follows from the previous lemma by gluing solutions uq on different
time intervals and Borel-Cantelli Lemma. Gluing is possible because Z1−τq+1 ∈ L2 almost surely,

and the glued process solves (3.1) and enjoys continuity in H−1. Indeed for every divergence-free
test function f ∈ C∞

c (T3 × [0, 1),R3) and 0 < s < 1 − τq < ... < 1 − τq+k < t < 1, since u is a
solution on every time interval [1− τq+i−1, 1− τq+i] (the endpoints s and t being similar) it holds

⟨u−
1−τq+i

, f1−τq+i
⟩ − ⟨u+

1−τq+i−1
, f1−τq+i−1

⟩ =
∫ 1−τq+i

1−τq+i−1

⟨ur, ∂tfr + (ur · ∇)fr + ν∆fr⟩dr

+
∑
k,α

∫ 1−τq+i

1−τq+i−1

⟨ur, (σk,α · ∇)fr⟩ ◦ dW k,α,

where u−
1−τq+i

denotes the left limit of u at time 1− τq+i and u+
1−τq+i−1

denotes the right limit of

u at time 1− τq+i−1. By continuity in H−1

⟨u−
1−τq+i

, f1−τq+i⟩ − ⟨u+
1−τq+i−1

, f1−τq+i−1⟩ = ⟨u1−τq+i , f1−τq+i⟩ − ⟨u1−τq+i−1 , f1−τq+i−1⟩,
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and therefore

⟨ut, ft⟩ − ⟨us, fs⟩ = ⟨ut, ft⟩ − ⟨u1−τq+k
, f1−τq+k

⟩+ ...+ ⟨u1−τq , f1−τq ⟩ − ⟨us, fs⟩

=

∫ t

s

⟨ur, ∂tfr + (ur · ∇)fr + ν∆fr⟩dr +
∑
k,α

∫ t

s

⟨ur, (σk,α · ∇)fr⟩ ◦ dW k,α.

□

4. Total dissipation by solution of randomly forced Navier-Stokes equations

In this section we consider a relatively more regular (in time) approximation of transport noise.
Let the coefficients {σk,α}k,α be as in the previous section, and consider the Navier-Stokes equations
with large friction and additive noise (1.5):{

dv + (v · ∇)v dt+∇pv dt = ∆v dt− ε−1v dt+ ε−1
∑

k,α σk,αdW
k,α,

div v = 0,

where ε = ε(t) depends on t and is constantly equal to εq ∈ (0, 1) on the intervals of the form
(1− τq, 1− τq+1]. We shall assume εq → 0 sufficiently fast as q → ∞.

Definition 4.1. Given a probability space (Ω,F , {Ft}t≥1,P) supporting a family of i.i.d. Brownian
motions {W k,α}k,α, a weak solution of (1.5) is defined as a progressively measurable stochastic
processes v : Ω → Cw([0, 1), H) ∩ L2

loc([0, 1), H
1) almost surely such that, for every divergence-free

test function f ∈ C∞
c (T3 × [0, 1),R3) it holds almost surely for every 0 ≤ s < r < 1

⟨vr, fr⟩ − ⟨vs, fs⟩ =
∫ r

s

⟨vt, ∂tft + (vt · ∇)ft +∆ft⟩dt

−
∫ r

s

ε−1
t ⟨vt, ft⟩dt+

∑
k,α

∫ r

s

ε−1
t ⟨σk,α(·, t), ft⟩dW k,α

t .

Our main results are about total dissipation for progressively measurable (Leray-Hopf) weak
solutions. For the sake of completeness, here we specify our notion of solutions.

Definition 4.2. Given a probability space (Ω,F , {Ft}t≥1,P) supporting a family of i.i.d. Brownian
motions {W k,α}k,α and a weak solution v of (1.5), a progressively measurable weak solution of (1.1)
is defined as a progressively measurable stochastic process ρ : Ω → Cw([0, 1), H) ∩ L2([0, 1), H1)
almost surely such that, for every test function f ∈ C∞

c (T3 × [0, 1),R3) it holds almost surely for
every 0 ≤ s < r < 1

⟨ρr, fr⟩ − ⟨ρs, fs⟩ =
∫ r

s

⟨ρt, ∂tft + ν∆ft⟩dt+
∫ r

s

⟨ρt, (vt · ∇)ft⟩dt,

and for almost every ω ∈ Ω there exists a full Lebesgue measure set T ⊂ [0, 1) such that 0 ∈ T and
for every r ∈ T , t > r the following energy inequality holds almost surely

∥ρt∥2L2 + 2ν

∫ t

r

∥∇ρs∥2L2ds ≤ ∥ρr∥2L2 .

Definition 4.3. Given a probability space (Ω,F , {Ft}t≥1,P) supporting a family of i.i.d. Brownian
motions {W k,α}k,α and a weak solution v of (1.5), a progressively measurable Leray-Hopf weak
solution of (1.7) is defined as a progressively measurable stochastic process u : Ω → Cw([0, 1), H)∩
L2([0, 1), H1) almost surely such that, for every divergence-free test function f ∈ C∞

c (T3×[0, 1),R3)
it holds almost surely for every 0 ≤ s < r < 1

⟨ur, fr⟩ − ⟨us, fs⟩ =
∫ r

s

⟨ut, ∂tft + (ut · ∇)ft + ν∆ft⟩dt+
∫ r

s

⟨ut, (vt · ∇)ft⟩dt,

and for almost every ω ∈ Ω there exists a full Lebesgue measure set T ⊂ [0, 1) such that 0 ∈ T and
for every r ∈ T , t > r the following energy inequality holds almost surely

∥ut∥2L2 + 2ν

∫ t

r

∥∇us∥2L2ds ≤ ∥ur∥2L2 .
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Let us comment briefly on the previous notions of solutions Definition 4.2 and Definition 4.3.
Suppose (Ω,F , {Ft}t≥1,P), {W k,α}k,α and v are given. For the passive scalar case Definition 4.2,

since we have assumed v ∈ Cw([0, 1), H) ∩ L2
loc([0, 1), H

1) almost surely and ρ0 ∈ L2 there exists
a unique weak solution ρ, which satisfies the energy inequality. This can be shown following the
lines of [19, Corollary II.1]. By uniqueness, the restriction ρ|[0,t] of ρ to a time interval [0, t],
t < 1 coincides, up to time t, with the solution obtained from the same initial condition and
advecting velocity v|[0,t]. In particular, ρ is necessarily adapted to the filtration {Ft}t≥1 and
therefore progressively measurable. The same applies to the Navier-Stokes case Definition 4.3 in
dimension d = 2. However, in dimension d = 3 we can not prove uniqueness of solutions, and the
restriction u|[0,t] of a solution may depend on the values of v after time t. For instance, it could be
that the converging subsequence obtained by compactness depends on the whole trajectory of v.
As a consequence, there is no guarantee that u is progressively measurable, and in order to regain
adaptedness we may need to change the underlying probability space, see for instance [25].

The proof of Theorem 1.1, Theorem 1.4 and Theorem 1.5 is based on a generator approach
inspired by [18], which roughly speaking permits us to mimic the proof of Lemma 3.4 even though
technically speaking there is no Stratonovich corrector in the equations (1.1) and (1.7), since now
v has positive decorrelation time and therefore ρ and u are processes with finite variation.

Similar arguments can be applied without additional difficulties to the Ornstein-Ulhenbeck
approximation (1.6), but we shall omit details for the sake of brevity.

Let us consider (1.5) and let us split v on the time interval [1− τq, 1− τq+1] as

v = ε−1/2
q w + r,

where w(1 − τq) = 0, r(1 − τq) = v(1 − τq) ∈ H almost surely, and w, r are divergence-free and
evolve according to

dw = −ε−1
q wdt+ ε−1/2

q Q1/2
q dW,

dr = −ε−1
q rdt+A(ε−1/2

q w + r)dt+ b(ε−1/2
q w + r, ε−1/2

q w + r)dt.

In the lines above we have denoted for simplicity

Qq :=
∑
k,α

(θqk)
2(ak,αek ⊗ ak,αe−k), W :=

∑
k,α

ak,αekW
k,α,

so that Tr(Qq) = κq and

Q1/2
q dW =

∑
k,α

θqkak,αekdW
k,α =

∑
k,α

σk,αdW
k,α,

and the operators A and b are defined as

A := ∆, b(v1, v2) := −Π[(v1 · ∇)v2].

Next we are going to collect some energy-type a priori estimates on the processes v, w, and r.
Then our total dissipation results hold true as soon as v is a weak solution to (1.5) that can be

decomposed as v = ε
−1/2
q w+r on each interval of the form [1−τq, 1−τq+1], these energy estimates

hold true, and ρ (resp. u) is a progressively measurable weak solution to (1.1) (resp. Leray-Hopf
weak solution to (1.7)).

Notice that the estimates on r given below mark the technical difference between advection by
solutions of the randomly forced Navier-Stokes Theorem 1.1 and Ornstein-Uhlenbeck equations
Theorem 1.3. Indeed, r = 0 in the setting of Theorem 1.3.

We point out that it is easy to exhibit at least one process v satisfying this property, for instance
by taking the limit of the Galerkin approximations on (1− τq, 1− τq+1]

vn = ε−1/2
q wn + rn, n ∈ N,

to produce a (Leray-Hopf) weak solution v to (1.5) on [1 − τq, 1 − τq+1], living in a probability
space (Ωq,Fq, {Fq

t }t≥0,Pq) supporting the Brownian motions {W k,α}k,α with Nq ≤ |k| ≤ 2Nq,
and then using continuity of v e.g. in H−1 to glue together solutions on different time intervals,
see also [27].

It is worth mentioning that since each Brownian motion W k,α has non-zero intensity θk for
at most one time interval of the form (1 − τq, 1 − τq+1], the probability space (Ω,F , {Ft}t≥0,P)
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supporting the whole family {W k,α}k,α can be just taken as the product of the probability spaces
(Ωq,Fq, {Fq

t }t≥0,Pq).
Notice that, given (Ω,F , {Ft}t≥0,P), {W k,α}k,α and v as above, there always exists a progres-

sively measurable weak solution ρ to (1.1) and (in dimension d = 2 only) u to (1.7). This is a
consequence of probabilistically weak existence and pathwise uniqueness, by Yamada-Watanabe
Theorem.

However, when d = 3 we are not able to construct Leray-Hopf weak solutions to (1.7) that are
adapted to the filtration {Ft}t≥0, and thus we need to define the probability space (Ω,F , {Ft}t≥0,P)
and Brownian motions {W k,α}k,α taking into account the adaptedness of u, too. This can be done
considering simultaneously the Galerkin approximations of v and u, working at fixed divergence-
free initial condition u0 ∈ L2 and viscosity ν ∈ (0, 1). More generally, one can fix countable
families C ⊂ L2 with null divergence and V ⊂ (0, 1) and consider simultaneously the Galerkin
approximations of v and uu0,ν , where uu0,ν solves (1.7) with initial condition u0 ∈ C and viscosity
ν ∈ V . This marks the difference between the statements of Theorem 1.1, Theorem 1.4 and the
statement of Theorem 1.5.

4.0.1. Estimates on v. The basic a priori estimate on vt we get from (1.5), which in particular
holds true on the Galerkin approximations vn for every t ∈ (1− τq, 1− τq+1], is the following

E∥vnt ∥2L2 + 2

∫ t

1−τq

E∥vns ∥2H1ds+ 2ε−1
q

∫ t

1−τq

E∥vns ∥2L2ds

≤ E∥Πnv1−τq∥2L2 + ε−2
q κq(τq − τq+1),

where in the right-hand-side Πn is the Fourier projector on modes |k| ≤ n, and v1−τq is considered
as a given initial condition (we suppose to have already defined the solution v for times t ≤ 1−τq).
It is obtained by applying the Itō formula to ∥vnt ∥2L2 and taking expectations.

Therefore we deduce the following energy estimate on v:

sup
t∈(1−τq,1−τq+1]

E∥vt∥2L2 ≤ E∥v1−τq∥2L2 + ε−2
q κq(τq − τq+1)

≤ sup
t∈(1−τq−1,1−τq ]

E∥vt∥2L2 + ε−2
q κq(τq − τq+1),

and iterating for q, q − 1, q − 2, . . . , 1 we obtain (define vt ≡ 0 for times t ≤ 0)

sup
t∈(1−τq,1−τq+1]

E∥vt∥2L2 ≤
∑
k≤q

ε−2
k κk(τk − τk+1) ≲ ε−2

q κq.(4.1)

Here we are assuming ε−2
q κq ≫ ε−2

q−1κq−1. Once we have the estimate above for the L2 norm of v
at every fixed time, we can deduce as well∫ 1−τq+1

1−τq

E∥vs∥2H1ds ≲ ε−2
q κq,(4.2)

and ∫ 1−τq+1

1−τq

E∥vs∥2L2ds ≲ ε−1
q κq.(4.3)

Applying the Itō Formula to ∥vnt ∥4L2 we get with similar arguments∫ 1−τq+1

1−τq

E∥vs∥4L2ds ≲ ε−2
q κ2

q.(4.4)

4.0.2. Estimates on w. We have the explicit expression for the stochastic convolution

wt = ε−1/2
q

∫ t

1−τq

e−ε−1
q (t−s)Q1/2

q dWs

=
∑
k,α

θqkak,αe
2πik·xε−1/2

q

∫ t

1−τq

e−ε−1
q (t−s)dW k,α

s .
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The estimates we need on w are the following: for every t ∈ (1− τq, 1− τq+1] and θ ≥ 0,

E

∥∥∥∥∥ε−1/2
q

∫ t

1−τq

e−ε−1
q (t−s)Q1/2

q dWs

∥∥∥∥∥
2

Hθ

≲ κqN
2θ
q ,(4.5)

which can be proved on the Galerkin approximations wn by Itō isometry. By Gaussianity we also
have

E

∥∥∥∥∥ε−1/2
q

∫ t

1−τq

e−ε−1
q (t−s)Q1/2

q dWs

∥∥∥∥∥
4

Hθ

≲ κ2
qN

4θ
q .(4.6)

If we want to put the supremum over time inside the expectation (this will be needed in the proof
of Theorem 1.5), we can invoke maximal inequality for the one-dimensional Ornstein-Uhlenbeck
process [32, Theorem 2.2] and argue as in [3, Lemma 3.1]. As a result we get a similar estimate as
(4.6), up to a logarithmic factor in ε−1

q

E sup
t∈[1−τq,1−τq+1]

∥∥∥∥∥ε−1/2
q

∫ t

1−τq

e−ε−1
q (t−s)Q1/2

q dWs

∥∥∥∥∥
4

Hθ

≲ log2(1 + ε−1
q )κ2

qN
4θ
q .(4.7)

4.0.3. Estimates on r. We are left with the a priori estimates on r. Let Cε = −Id+εA and rewrite

dr = −ε−1rdt+A(ε−1/2w + r)dt+ b(ε−1/2w + r, ε−1/2w + r)dt

= ε−1Cεrdt+ ε−1/2Awdt+ b(v, ε−1/2w + r)dt.

Testing the equation against the solution itself, we have the following estimate for the Galerkin
truncations rn, for every t ∈ (1− τq, 1− τq+1]

∥rnt ∥2L2 + 2

∫ t

1−τq

∥rns ∥2H1ds+ 2ε−1
q

∫ t

1−τq

∥rns ∥2L2ds

≤ ∥v1−τq∥2L2 + 2ε−1/2
q

∫ t

1−τq

⟨Aws, r
n
s ⟩ds+ 2ε−1

q

∫ t

1−τq

⟨b(ε1/2q vns , w
n
s ), r

n
s ⟩ds.

By Young’s inequality, there exist constants c < 1 and C < ∞ independent of q, n such that

∥rnt ∥2L2 + 2

∫ t

1−τq

∥rns ∥2H1ds+ 2ε−1
q

∫ t

1−τq

∥rns ∥2L2ds

≤ ∥v1−τq∥2L2 + cε−1
q

∫ t

1−τq

∥rns ∥2L2ds+ C

∫ t

1−τq

∥wn
s ∥2H2ds

+ Cε−1
q

∫ t

1−τq

∥ε1/2q vns ∥L2∥wn
s ∥H3∥rns ∥L2ds

≤ ∥v1−τq∥2L2 + cε−1
q

∫ t

1−τq

∥rns ∥2L2ds+ C

∫ t

1−τq

∥wn
s ∥2H2ds

+ Cε−1
q

∫ t

1−τq

∥ε1/2q vns ∥4L2ds+ Cε−1
q

∫ t

1−τq

∥wn
s ∥4H3ds.

Taking expectations, using (4.4), (4.6) and passing to the limit n → ∞, we deduce the following
preliminary estimate on r: ∫ 1−τq+1

1−τq

E∥rs∥2L2ds ≲ κ2
qN

12
q ,(4.8)

which is not very good (recall that κ2
qN

12
q → ∞ relatively fast as q → ∞) but is auxiliary to isolate

the leading order terms in the dynamics of r. Indeed, rewrite

dr = ε−1Cεrdt+ ε−1/2Awdt+ b(v, ε−1/2w + r)dt

= ε−1Cεrdt+ ε−1/2Awdt+ ε−1b(w,w)dt+ ε−1/2b(r, w)dt+ ε−1/2b(ε1/2v, r)dt.
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Taking into account r1−τq = v1−τq , the mild formulation of the previous equation takes the form

rt = eε
−1Cε(t−1+τq)v1−τq + ε−1/2

∫ t

1−τq

eε
−1Cε(t−s)Awsds+ ε−1

∫ t

1−τq

eε
−1Cε(t−s)b(ws, ws)ds

+ ε−1/2

∫ t

1−τq

eε
−1Cε(t−s)b(rs, ws)ds+ ε−1/2

∫ t

1−τq

eε
−1Cε(t−s)b(ε1/2vs, rs)ds.

Let θ0 > 5/2. After taking expectation and time integral on [1 − τq, 1 − τq+1], we can separately
estimate in H−θ0 each term on the right-hand-side of the equation above as follows. First,∫ 1−τq+1

1−τq

E
∥∥∥eε−1Cε(t−1+τq)v1−τq

∥∥∥
H−θ0

dt ≲ εqE∥v1−τq∥L2 ≲ εqε
−1
q−1κ

1/2
q−1 ≲ ε1/2q ,

where we have used (4.1) and assuming for every q ≥ 1

ε−1
q−1κ

1/2
q−1 ≲ ε−1/2

q .(4.9)

Moreover, by Young’s convolution inequality and previous estimates (4.3), (4.5) on v, w and
(4.8) on r we have

ε−1/2
q

∫ 1−τq+1

1−τq

E

∥∥∥∥∥
∫ t

1−τq

eε
−1Cε(t−s)Aws ds

∥∥∥∥∥
H−θ0

dt

≲ ε−1/2
q

∫ 1−τq+1

1−τq

∫ t

1−τq

e−ε−1(t−s)E∥ws∥L2 dsdt ≲ ε1/2q κ1/2
q ,

and similarly

ε−1/2
q

∫ 1−τq+1

1−τq

E

∥∥∥∥∥
∫ t

1−τq

eε
−1Cε(t−s)b(rs, ws) ds

∥∥∥∥∥
H−θ0

dt ≲ ε1/2q κ3/2
q N6

q ,

ε−1/2
q

∫ 1−τq+1

1−τq

E

∥∥∥∥∥
∫ t

1−τq

eε
−1Cε(t−s)b(ε1/2q vs, rs) ds

∥∥∥∥∥
H−θ0

dt ≲ ε1/2q κ3/2
q N6

q .

In the second and last inequality we have used that the operator b : H ×H → H−θ0 is bounded,
therefore

E ∥b(rs, ws)∥H−θ0 ≲ E∥rs∥L2∥ws∥L2 ≤
(
E∥rs∥2L2

)1/2 (E∥ws∥2L2

)1/2
,

and similarly for the term b(ε
1/2
q vs, rs). Putting all together, we obtain∫ 1−τq+1

1−τq

E∥rs − r̃s∥H−θ0ds ≲ ε1/2q κ3/2
q N6

q ,(4.10)

where we have defined

r̃t = ε−1
q

∫ t

1−τq

eε
−1Cε(t−s)b(ws, ws)ds.

An estimate similar to (4.8) holds for r̃, indeed∫ 1−τq+1

1−τq

E∥r̃s∥2L2ds ≲
∫ 1−τq+1

1−τq

∫ s

1−τq

ε−1
q e−ε−1(s−r)E∥b(wr, wr)∥2L2drds

≲
∫ 1−τq+1

1−τq

∫ s

1−τq

ε−1
q e−ε−1(s−r)E∥wr∥4H3drds ≲ κ2

qN
12
q ,

and more generally, using b : H3+θ ×H3+θ → Hθ continuously for every θ ≥ 0,∫ 1−τq+1

1−τq

E∥r̃s∥2Hθds ≲ κ2
qN

12+4θ
q .(4.11)
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By interpolation we also get for every θ ∈ (0, θ0) and p such that pθ
θ0

+ p(1−θ/θ0)
2 ≤ 1∫ 1−τq+1

1−τq

E∥rs − r̃s∥pH−θds ≲
∫ 1−τq+1

1−τq

E∥rs − r̃s∥pθ/θ0H−θ0
∥rs − r̃s∥p(1−θ/θ0)

L2 ds

≲
(
ε1/2q κ3/2

q N6
q

)pθ/θ0 (
κ2
qN

12
q

)p(1−θ/θ0)/2
.

In particular, for θ = 1/2 and p = 4/3(∫ 1−τq+1

1−τq

E∥rs − r̃s∥4/3H−1/2ds

)3/4

≲
(
ε1/2q κ3/2

q N6
q

)1/2θ0 (
κ2
qN

12
q

)(1−1/2θ0)/2 ≲ ε1/12q κ2
qN

6
q .(4.12)

4.1. Dissipation. As we have seen in section 3, when v is a white-in-time noise we can prove
anomalous dissipation for u thanks to the presence of a Stratonovich corrector in the Itō formulation
of (3.1). The goal of this subsection is to “find” the hidden Stratonovich corrector in the dynamics
of u solution of (1.7). We will focus on the Navier-Stokes case (1.7) only, and in particular on
Theorem 1.5; but the same arguments work with minor modifications in all the other cases.

Technically speaking, there isn’t any Stratonovich corrector in (1.7) since u has finite variation;
but morally speaking, the solution v of (1.5) excites the small scales of u just as well as the white-
in-time transport noise. Therefore, it is reasonable to expect that the same dissipation mechanism,
induced by transfer of energy to high wavenumbers, can happen in this case, too.

Let us work on a fixed time interval (1− τq, 1− τq+1]. Let us consider the process

U := u+ ε1/2q b(w, u) +
εq
2
b(w, b(w, u)) + V,

where the two correctors ε
1/2
q b(w, u) and

εq
2 b(w, b(w, u)) are motivated by the heuristic arguments

presented in subsection 2.2 and serve to reintroduce the time roughness producing the Stratonovich
corrector in (1.7), and the auxiliary process V is defined as

V :=
εq
2
b(b(w,w), u) + εqb((−Cε)

−1r̃, u),

and is needed to compensate for the term b(r, u)dt appearing in the dynamics of u. Indeed, by Itō
formula we have

εq
2
d (b(b(w,w), u)) = −b(b(w,w), u) dt+

∑
k,α

(θqk)
2b(b(ak,αek, ak,αe−k), u) dt

+
ε
1/2
q

2
b(b(Q1/2

q dWt, w), u) +
ε
1/2
q

2
b(b(w,Q1/2

q dWt), u)

+
ε
1/2
q

2
b(b(w,w), b(w, u)) dt+

εq
2
b(b(w,w), νAu+ b(u, u) + b(r, u)) dt

and

εqd
(
b((−Cε)

−1r̃, u)
)
= −b(r̃, u) dt+ b((−Cε)

−1b(w,w), u) dt

+ εqb((−Cε)
−1r̃, νAu+ b(u, u) + b(r, u)) dt

+ ε1/2q b((−Cε)
−1r̃, b(w, u)) dt.

Notice that the Itō corrector
∑

k,α(θ
q
k)

2b(b(ak,αek, ak,αe−k), u) in the dynamics of
εq
2 b(b(w,w), u)

equals zero since b(ak,αek, ak,αe−k) = 0 for every k ∈ Z3
0 and α ∈ {1, 2}. Moreover, since it holds

(−Cε)
−1 − Id = εqA(−Cε)

−1 (this can be checked multiplying both expression by −Cε) we also
have

b((−Cε)
−1b(w,w), u)− b(b(w,w), u) = εqb(A(−Cε)

−1b(w,w), u).
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Therefore, the process U evolves according to

dU = νAudt+ b(u, u) dt+ b(r − r̃, u) dt+
∑
k,α

(θqk)
2b(ak,αek, b(ak,αe−k, u)) dt+ b(Q1/2

q dWt, u)

(4.13)

+ ε1/2q b(w, νAu+ b(u, u) + b(r, u)) dt+
ε
1/2
q

2
b(w, b(w, b(w, u)) dt

+
εq
2
b(w, b(w, νAu+ b(u, u) + b(r, u))) dt

+
ε
1/2
q

2
b(Q1/2

q dWt, b(w, u)) +
ε
1/2
q

2
b(w, b(Q1/2

q dWt, u))

+
ε
1/2
q

2
b(b(Q1/2

q dWt, w), u) +
ε
1/2
q

2
b(b(w,Q1/2

q dWt), u)

+
ε
1/2
q

2
b(b(w,w), b(w, u)) dt+

εq
2
b(b(w,w), νAu+ b(u, u) + b(r, u)) dt

+ εqb((−Cε)
−1r̃, νAu+ b(u, u) + b(r, u)) dt

+ ε1/2q b((−Cε)
−1r̃, b(w, u)) dt+ εqb(A(−Cε)

−1b(w,w), u) dt.

The term
∑

k,α(θ
q
k)

2b(ak,αek, b(ak,αe−k, u)) comes from the second derivative of
εq
2 b(w, b(w, u))

with respect to w, and recalling the definition of b and (3.4) it coincides with the Stratonovich-to-Itō
corrector applied to u: ∑

k,α

(θqk)
2b(ak,αek, b(ak,αe−k, u)) = Sq(u).

Thus, we can rewrite

Sq(u) =
2

5
κq∆U +

(
Sq(U)− 2

5
κq∆U

)
− ε1/2q Sq(b(w, u)−

εq
2
Sq(b(w, b(w, u)))− Sq(V ),(4.14)

and the term 2
5κq∆U gives us enough dissipation to control a negative Sobolev norm in the mild

formulation of U . More precisely, let ΠL be the Fourier projector onto modes |k| ≤ N1−δ
q , for some

δ ∈ (0, 1), and denote UL = ΠLU . We have

Lemma 4.4. Let u be a Leray-Hopf solution to (1.7) with zero-mean, divergence-free initial con-
dition u0 satisfying ∥u0∥L2 ≤ M for some deterministic 1 ≤ M < ∞, and let UL be defined as
above. Then for every q ∈ N there exists a choice of the parameters τq, Nq, εq and κq ∼ N3

q such
that for every δ ∈ (1/6, 1)

E

[
sup

t∈[1−τq/2,1−τq+1]

∥UL∥H−4

]
≲δ

M2

(ν + κq)1−δ
+

ε
1/12
q κ2

qN
6
qM

ν1/4
.

Proof. Let P be the semigroup generated by νA+2κq∆/5 = (ν +2κq/5)∆, and consider the mild
formulation of (4.13) for times t ∈ [1− τq/2, 1− τq+1], taking also (4.14) into account.

First, at time t = 1− τq we have UL = uL by definition of w, therefore

E

[
sup

t∈[1−τq/2,1−τq+1]

∥P (t− (1− τq))U
L
1−τq∥H−4

]
≲

M

(ν + κq)τq
.

We shall assume hereafter condition (3.6) on τq and κq as in Lemma 3.4, and moreover (ν+κq)
−δ ≤

τq. In addition, we will take εq satisfying (4.9) and small with respect to the other parameters,
so to control easily all the terms multiplied by powers of εq. For these terms, we do not need the
action of the semigroup P to prove smallness, and we will use the simple estimate

E

[
sup

t∈[1−τq/2,1−τq+1]

∥∥∥∥∥
∫ t

1−τq

P (t− s)ΠL . . . ds

∥∥∥∥∥
H−4

]
≲
∫ 1−τq+1

1−τq

E ∥. . . ∥H−4 ds.

Having said this, let us control the terms appearing in (4.14), which permits us to isolate the
strong dissipation term 2

5κq∆UL. By (4.5), (4.8), using ∥Sq(u)∥H−4 ≲ κq∥u∥H−2 and the Sobolev
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embedding we have for θ0 > 5/2

ε1/2q E

[∫ 1−τq+1

1−τq

∥Sq(b(ws, us))∥H−4 ds

]
≲ ε1/2q κqE

[∫ 1−τq+1

1−τq

∥ws ⊗ us∥H−1ds

]

≲ ε1/2q κq

∫ 1−τq+1

1−τq

E∥ws∥L∞∥us∥L2ds ≲ ε1/2q κ3/2
q Nθ0−1

q M,

εqE

[∫ 1−τq+1

1−τq

∥Sq(b(ws, b(ws, us)))∥H−4 ds

]
≲ εqκqE

[∫ 1−τq+1

1−τq

∥ws ⊗ b(ws, us)∥H−1ds

]

≲ εqκq

∫ 1−τq+1

1−τq

E∥ws∥2Hθ0∥us∥L2ds ≲ εqκ
2
qN

2θ0
q M,

and similarly by (4.11)

εqE

[∫ 1−τq+1

1−τq

∥Sq(b(b(ws, ws), us)))∥H−4 ds

]
≲ εqκ

2
qN

2θ0
q M,

εqE

[∫ 1−τq+1

1−τq

∥∥Sq(b((−Cε)
−1r̃s, us))

∥∥
H−4 ds

]
≲ εqκ

2
qN

4+2θ0
q M.

Moreover, by (4.6) and (4.11) the correctors giving the difference U − u are small, thus

E

[
sup

t∈[1−τq/2,1−τq+1]

∥∥∥∥∥
∫ t

1−τq

P (t− s)

(
Sq(U

L)− 2

5
κq∆UL

)
ds

∥∥∥∥∥
H−4

]

≲ κqN
−δ
q E

[
sup

t∈[1−τq/2,1−τq+1]

∫ t

1−τq

∥∥P (t− s)UL
∥∥
H−2 ds

]
≲ κε

qN
−δ
q M

(
1 + ε1/2q κ1/2

q Nθ0−1
q + εqκqN

4+2θ0
q

)
,

for arbitrary ε > 0 smaller than δ/3, coming from the action of the semigroup.
Similarly we have

E

[
sup

t∈[1−τq/2,1−τq+1]

∥∥∥∥∥
∫ t

1−τq

P (t− s)ΠLνA(us − Us)ds

∥∥∥∥∥
H−4

]
≲ M

(
ε1/2q κ1/2

q Nθ0
q + εqκqN

6+2θ0
q

)
Let us now move to the other terms in (4.13). We use (4.6), (4.8) and have

ε1/2q E

[∫ 1−τq+1

1−τq

∥b(ws, νAus + b(us, us) + b(rs, us))∥H−4 ds

]

≲ ε1/2q E

[∫ 1−τq+1

1−τq

(∥ws∥Hθ0+1∥us∥L2 + ∥ws∥Hθ0 (∥us∥2L2 + ∥us∥L2∥rs∥L2)ds

]
≲ ε1/2q κ3/2

q N6+θ0
q M2,

εqE

[∫ 1−τq+1

1−τq

∥b(ws, b(ws, νAus + b(us, us) + b(rs, us)))∥H−4 ds

]

≲ εqE

[∫ 1−τq+1

1−τq

(∥ws∥Hθ0+1∥ws∥Hθ0+2∥us∥L2 + ∥ws∥Hθ0 ∥ws∥Hθ0+1(∥us∥2L2 + ∥us∥L2∥rs∥L2))ds

]
≲ εqκ

2
qN

2θ0+7
q M2,

and similarly by (4.11)

εqE

[∫ 1−τq+1

1−τq

∥b(b(ws, ws), νAus + b(us, us) + b(rs, us))∥H−4 ds

]
≲ εqκ

2
qN

2θ0+8
q M2,



24 MARTINA HOFMANOVÁ, UMBERTO PAPPALETTERA, RONGCHAN ZHU, AND XIANGCHAN ZHU

εqE

[∫ 1−τq+1

1−τq

∥∥b((−Cε)
−1r̃s, νAus + b(us, us) + b(rs, us))

∥∥
H−4 ds

]
≲ εqκ

2
qN

14+2θ0
q M2.

In addition,

ε1/2q E

[∫ 1−τq+1

1−τq

∥b(ws, b(ws, b(ws, us))∥H−4 ds

]

≲ ε1/2q E

[∫ 1−τq+1

1−τq

∥ws∥Hθ0+1∥ws∥Hθ0 ∥ws∥Hθ0−1∥us∥L2ds

]
≲ ε1/2q κ3/2

q N3θ0
q M,

and

ε1/2q E

[∫ 1−τq+1

1−τq

∥b(b(ws, ws), b(ws, us))∥H−4 ds

]
≲ ε1/2q κ3/2

q N3θ0
q M,

ε1/2q E

[∫ 1−τq+1

1−τq

∥∥b((−Cε)
−1r̃s, b(ws, us))

∥∥
H−4 ds

]
≲ ε1/2q κ3/2

q N6+3θ0
q M,

εqE

[∫ 1−τq+1

1−τq

∥∥b(A(−Cε)
−1b(ws, ws), us)

∥∥
H−4 ds

]
≲ εqκqN

2θ0
q M.

All these quantities are small assuming

εqκ
3
qN

30
q ≤ 1.

For the terms involving stochastic integrals, we have by maximal inequality for stochastic con-
volution [17, Theorem 1.1]

εqE

 sup
t∈[1−τq/2,1−τq+1]

∥∥∥∥∥
∫ t

1−τq

P (t− s)ΠLb(Q
1/2
q dWs, b(ws, us))

∥∥∥∥∥
2

H−4


≲ εq

∑
k,α

∫ 1−τq+1

1−τq

E
[
∥b(θqkak,αek, b(ws, us))∥

2

H−4

]
ds ≲ εqκ

2
qN

4θ0
q M2,

and in the same fashion

εqE

 sup
t∈[1−τq/2,1−τq+1]

∥∥∥∥∥
∫ t

1−τq

P (t− s)ΠLb(ws, b(Q
1/2
q dWs, us))

∥∥∥∥∥
2

H−4

 ≲ εqκ
2
qN

4θ0
q M2,

εqE

 sup
t∈[1−τq/2,1−τq+1]

∥∥∥∥∥
∫ t

1−τq

P (t− s)ΠLb(b(Q
1/2
q dWs, ws), us)

∥∥∥∥∥
2

H−4

 ≲ εqκ
2
qN

4θ0
q M2,

εqE

 sup
t∈[1−τq/2,1−τq+1]

∥∥∥∥∥
∫ t

1−τq

P (t− s)ΠLb(b(ws, Q
1/2
q dWs), us)

∥∥∥∥∥
2

H−4

 ≲ εqκ
2
qN

4θ0
q M2,

which are small under the same assumptions on εq.
As for the other terms, we have

E

[
sup

t∈[1−τq/2,1−τq+1]

∥∥∥∥∥
∫ t

1−τq

P (t− s)ΠLb(us, us)ds

∥∥∥∥∥
H−4

]

≲ E

[
sup

t∈[1−τq/2,1−τq+1]

∫ t

1−τq

∥us∥2L2

(ν + κq)1−δ(t− s)1−δ
ds

]
≲

M2

(ν + κq)1−δ
,
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and recalling (4.12)

E

[
sup

t∈[1−τq/2,1−τq+1]

∥∥∥∥∥
∫ t

1−τq

P (t− s)ΠLb(rs − r̃s, us)ds

∥∥∥∥∥
H−4

]

≲ E

[∫ 1−τq+1

1−τq

∥us∥H1/2∥rs − r̃s∥H−1/2ds

]

≲

(∫ 1−τq+1

1−τq

E∥us∥4H1/2ds

)1/4(∫ 1−τq+1

1−τq

E∥rs − r̃s∥4/3H−1/2ds

)3/4

≲
ε
1/12
q κ2

qN
6
qM

ν1/4
.

Here we additionally need to ask

εqκ
24
q N72

q ≤ 1.(4.15)

The last Itō integral was already controlled in Lemma 3.4 by [24, Lemma 2.5] as

E

 sup
t∈[1−τq/2,1−τq+1]

∥∥∥∥∥
∫ t

1−τq

P (t− s)ΠLb(Q
1/2
q dWs, us)

∥∥∥∥∥
2

H−4

 ≲
M2

(ν + κq)1−δ
.

Putting all together, we get for our choice of parameters (3.6) and (4.15)

E

[
sup

t∈[1−τq/2,1−τq+1]

∥∥UL
t

∥∥
H−4

]
≲

M2

(ν + κq)1−δ
+

ε
1/12
q κ2

qN
6
qM

ν1/4
.

□

We are finally ready to give the proof of our main result.

Proof of Theorem 1.5. The proof is similar to that of Proposition 3.1 in the previous section.
First of all, by Lemma 4.4, (4.7) and condition (4.15) it holds

E

[
sup

t∈[1−τq/2,1−τq+1]

∥∥uL
t

∥∥
H−4

]
≲ E

[
sup

t∈[1−τq/2,1−τq+1]

∥∥UL
t

∥∥
H−4

]
+ o(Mε1/4q )

≤ Cδ

(
M2

(ν + κq)1−δ
+

ε
1/12
q κ2

qN
6
qM

ν1/4

)
=: Mc̃2q.

and therefore with probability at least 1− c̃q we have for every t ∈ [1− τq/2, 1− τq+1]

∥ut∥2H−1 ≤ M3/2∥ut∥1/2H−4 ≤
(
c̃2q +N8(δ−1)

q

)1/4
M2 =: cqM

2.

We take δ, τq, κq and Nq as in Proposition 3.1, and εq satisfying (4.9) and (4.15), for instance

εq = 2−4qκ−36
q N−72

q . From now on the proof goes exactly as that of Proposition 3.1, and we omit
it. □

As already mentioned, the proofs of Theorem 1.1 and Theorem 1.3 descend easily by the same
arguments presented above. Finally, let us give the:

Proof of Corollary 1.2. Let Pρ0
and Pν be as in the statement of the corollary. Without loss of

generality we may assume ∥ρ0∥L2 ≤ M for Pρ0 almost every ρ0. Furthermore, notice that we can

replace the probability measure Pν with an equivalent probability measure P̃ν without affecting the

statement of the corollary. Therefore, replacing Pν with P̃ν(dν) :=
ν1/4Pν(dν)∫ 1
0
ν1/4Pν(dν)

, we can additionally

suppose that the function ν 7→ ν−1/4 is integrable with respect to Pν .
Let us denote P̃ := Pρ0

⊗Pν ⊗P, with expectation Ẽ. For every triple ω̃ = (ρ0, ν, ω) there exists
a unique solution ρ = ρ(ω̃) of (1.1) which satisfies, by the same computations of Lemma 4.4:

Ẽ

[
sup

t∈[1−τq/2,1−τq+1]

∥ρL∥H−4

]
≲

M2

κ
1/5
q

+ ε1/12q κ2
qN

6
qM.
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This implies, arguing as in the proof of Proposition 3.1

P̃(Aq) ≥ 1− c̃q, Aq =

{
E(1− τq+1) ≤ M2 2cq

ντq

}
for every q ∈ N and suitable cq, c̃q, decreasing fast enough so that Borel-Cantelli Lemma gives

lim
t↑1

∥ρt∥L2 = 0 P̃− almost surely.

In particular, by Fubini Theorem we have a full P-probablity set Ω0 = Ω0(Pρ0 ,Pν) ⊂ Ω such that
for every ω ∈ Ω0 it holds limt↑1 ∥ρt∥L2 = 0 for Pρ0

⊗ Pν almost every (ρ0, ν). In particular, total
dissipation for almost every initial condition and viscosity occurs for a generic realization v = v(ω),
ω ∈ Ω0. It is interesting to observe that P(Ω0) = 1. □
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