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For a real-valued stochastic process (Xt)t≥0 we establish conditions
under which the inverse first-passage time problem has a solution for any
random variable ξ > 0. For Markov processes we give additional conditions
under which the solutions are unique and solutions corresponding to ordered
initial states fulfill a comparison principle. As examples we show that these
conditions include Lévy processes with infinite activity or unbounded varia-
tion and diffusions on an interval with appropriate behavior at the boundaries.
Our methods are based on the techniques used in the case of Brownian mo-
tion and rely on discrete approximations of solutions via Γ-convergence from
[3] and [13] combined with stochastic ordering arguments adapted from [35].

1. Introduction. Given a random variable ξ with values in (0,∞) the inverse first-
passage time problem for a stochastic process (Xt)t≥0 with values in R consists of the ques-
tion whether there exists b : [0,∞]→ [−∞,∞] such that the first-passage time

τb := inf{t > 0 :Xt ≥ b(t)}

of b has the same distribution as ξ. If this question can be answered affirmatively, one nat-
urally asks whether these solutions are unique in a reasonable sense and which properties
they have. The terminology is due to the first-passage time problem, where for a stochastic
process (Xt)t≥0 and a function b the question is to determine properties of the distribution
of τb. Primarily, the inverse first-passage time problem was studied for Brownian motion
and revealed relations to free boundary problems, integral equations and optimal stopping
problems and gave rise to applications in mathematical finance. For general processes this
problem is of particular interest due to its possible relevance in applications and the new
theoretical questions it gives rise to.

The inverse first-passage time problem roots back to the broader question of Shiryaev,
whether there is a stopping time with respect to a Brownian motion which is exponentially
distributed. This question was answered by [20] for a general stochastic process by estab-
lishing conditions under which stopping times with given distributions exist. For the inverse
first-passage time problem the existence of lower-semicontinuous solutions was established
in [3] for reflected Brownian motion by a discrete approximation of their epigraphs. In the
case that ξ > 0 has no atoms, existence and uniqueness have been obtained for diffusions in
[14] and [13] via a transfer into a free boundary problem. For Brownian motion uniqueness
was shown for arbitrary ξ > 0 in [22] via discretization of a related optimal stopping problem
and independently deduced in [6] in a more general setting of optimal stopping problems with
distribution constraints. For reflected Brownian motion, in [35] the uniqueness was shown
via a discrete approximation argument paired with stochastic ordering. The discretizations of
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[22] and [35] are related to the approximation in [3]. Conditions for continuity of solutions
were given in [13], [22] and [40], where higher order regularity was studied in [12]. The
inverse first-passage time problem and the first-passage time problem for Brownian motion
are related to certain integral equations, see [39], [14], [22], [29]. Numerical approaches for
the case of Brownian motion are to be found in [47], [1], [45], [26], [34] and for an Ornstein-
Uhlenbeck process in [15]. Applications have been proposed in [27], [4], [41], [42], [19] in
the context of modeling default, neuronal activity or failure. For Brownian motion the modi-
fication of the problem to fix both b and ξ and to ask whether X0 can be randomly distributed
such that τb has distribution according to ξ has been studied in [28], [30], [2], [31] and is
naturally related to our comparison principle. Moreover, the inverse first-passage time prob-
lem for the case of Brownian motion and exponentially distributed ξ is related to [18], [9],
[38], [8] and [7], where hydrodynamic limits of certain particle systems and corresponding
free boundary problems are studied. For general ξ a related particle system whose hydrody-
namic limit is characterized by the inverse first-passage time problem for reflected Brownian
motion has been constructed in [34]. Another so-called soft-killing variant of the problem
asks the same question but with a smoothed-out version of τb, where one additionally waits
for an exponential clock to ring after passing the boundary, and was treated in [23], [24] and
[36]. For a more detailed overview of related work in the case of Brownian motion we refer
to [33]. Another modification of the problem is to fix b and the distributions of ξ and X0 and
to search for a suitable stochastic process (Xt)t≥0 in order to achieve that τb has the same
distribution as ξ. This has been studied in [16] for a certain family of Itô diffusions and in
[17] for a family of processes obtained from deterministically time-changing a fixed Lévy
process.

Let us summarize the methods used in this present paper. For the existence of solutions
we pick up the idea of [3] from the case of reflected Brownian motion. A main ingredient
in the proof of [3] is the continuity of the paths. By a careful adaption of the proof and by
utilizing facts about left and right discontinuity of arbitrary functions we are able to work
with quasi-left-continuous càdlàg paths instead. For the uniqueness of solutions the Markov
property allows to work with stochastic orders as in [35]. In this situation we present a new
and elementary argument how to infer uniqueness from the discretization of [3]. Instead of
using the Wasserstein distance for the marginal distribution as in [35] we use an adapted
approximation of lower semicontinuous functions from [13] and [22].

We want to emphasize the following relations to our results.

• For Brownian motion relations to free boundary problems [13], [9], optimal stopping prob-
lems [22], [6], integral equations [29], [39] and particle systems [18], [34] are known.
Hence the question arises whether such relations extend to other stochastic processes.

• By the comparison principle, the inverse first-passage time problem is related to the first-
passage time problem and the modified problems studied in [28] or [17], which therefore
gain interest in this general setting.

• Continuity of the paths was also a main ingredient in the soft-killing inverse first-passage
time problem for Brownian motion in [24], [36]. Thus it is natural to ask if this can also be
extended to processes with discontinuous paths.

• Our results give more credibility to numerical approaches where existence and uniqueness
were assumed for the underlying processes, see [47], [15].

• The existence result allows more flexibility in applications, since the process used for
modeling purposes as in [27], [41], [19] can be chosen from a broader range.

• The discrete approximation of our approach yields a possible numerical Monte-Carlo type
approximation similar as in [34] for Brownian motion.

• The recent contribution [11] studies the empirical measure of the so-called N -branching
Markov process. Their results rely on the assumption that, for the Markov process X under
study, a solution exists for exponentially distributed ξ.
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The paper is organized as follows. In Section 2 we present our main results regarding
existence, uniqueness and comparison principle as well as the conditions for Lévy processes
and diffusions. The proofs of the main results are to be found in Section 3, Section 4 and
Section 5. The proofs regarding the conditions for Lévy processes as well as for diffusions
are contained in Section 6 and Section 7.

2. Main results.

DEFINITION 2.1. We call a lower semicontinuous function b : [0,∞] → [−∞,∞]
boundary function.

Let (Ω,F ,P) be a probability space endowed with a filtration (Ft)t≥0 fulfilling the usual
conditions. Let (Xt)t≥0 be an adapted stochastic process with values in R. For a boundary
function b define, in addition to τb, the first-passage time variant

τ ′b := inf{t > 0 :Xt > b(t)}.

DEFINITION 2.2. We say that (Xt)t≥0 is quasi-left-continuous, if for any non-decreasing
sequence of stopping times T1 ≤ T2 ≤ . . . and T := limn→∞ Tn it holds that

lim
n→∞

XTn
=XT

almost surely on {T <∞}.

For the existence of solutions the following assumptions are put in force:

(E1) For every t > 0 the probability measure P (Xt ∈ · ) is diffuse.
(E2) (Xt)t≥0 has P-a.s. right-continuous paths and is quasi-left-continuous.
(E3) For any boundary function b it holds P-a.s. that τb = τ ′b.

THEOREM 2.3 (Existence). Assume that (E1), (E2) and (E3) are fulfilled.
Then, given a random variable ξ > 0, there exists a boundary function b such that

τb
d
= ξ.

REMARK 2.4. Let us emphasize that the conditions for existence are not very restrictive.
Condition (E1) is necessary to have solutions for any ξ > 0. Furthermore, although conditions
(E2) and (E3) are primarily employed for technical reasons, they turn out to be very natural.
For example, (E2) includes the class of Hunt processes. A condition as (E3) is needed to
exclude behavior as in Example 2.6.

REMARK 2.5. If the process takes values in an interval (−∞,R] with R <∞, then the
assumption of (E3) implies, by taking b≡R, that P (τR <∞) = 0.

EXAMPLE 2.6. Let Xt =−|Bt+1|, where (Bt)t≥0 is a standard Brownian motion. Then
τ0 has the Lévy distribution with scale 1, in particular it is supported on (0,∞). On the other
hand, for every ξ > 0 which is supported on (0,∞) a solution b must have values in (−∞,0].
This means that such a ξ > 0 whose distribution is strictly larger in the usual stochastic order
than the distribution of τ0 (Definition 2.7) cannot be realized as first-passage time.

DEFINITION 2.7. For two probability measures µ,ν on (R,B(R)), we say µ is smaller
in the usual stochastic order, write µ⪯st ν, if and only if

µ((−∞, c])≥ ν((−∞, c]) ∀c ∈R.
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For a measure µ on R we define its support as

supp(µ) := {x ∈R : µ(U)> 0 whenever U ⊆R is open and x ∈ U}.
For a random variable ξ > 0 we define

tξ := sup supp(P (ξ ∈ · )) = sup{t > 0 : P (ξ > t)> 0}.
For a process taking values in an interval E ⊆ R the following assumptions are put in force
for uniqueness:

(U1) There is a family of probability measures (Px)x∈E such that

Px (Xt ∈E ∀t≥ 0) = 1 ∀x ∈E

and ((Xt)t≥0, (Ft)t≥0, (Px)x∈E) is a Markov process as per [21, Vol.1,p.77].
(U2) For probability measures µ1, µ2 on E and all t > 0, we have that µ1 ⪯st µ2 implies

Pµ1
(Xt ∈ · )⪯st Pµ2

(Xt ∈ · ) .

(U3) For a random variable ξ > 0 there is Iξ ⊆ (0, tξ) such that for any boundary function b

with values in E and τb
d
= ξ we have

b(t) = supsupp(P (Xt ∈ · |τb > t))

for all t ∈ Iξ .

For a probability measure µ on E we define Pµ :=
∫
E Pxµ(dx).

THEOREM 2.8 (Uniqueness). Let E ⊆ R be an interval and denote E = [L,R] with
L,R ∈ [−∞,∞]. Fix a probability measure µ on E. Let ξ > 0 be a random variable. Assume
that (U1), (U2) are fulfilled and (E1), (E2), (E3) and (U3) with P := Pµ and Iξ ⊆ (0, tξ) are
fulfilled.
Then all boundary functions b with values in E and τb

d
= ξ under P coincide on Iξ .

REMARK 2.9. Let us comment on the conditions for uniqueness. (U1) and (U2) are con-
tingent on our method of proof, for which we do not anticipate problems when working with
inhomogeneous Markov processes instead. However, for simplicity we refrain from doing
this. (U3) is necessary for uniqueness, since otherwise we could alter values of a solution b
on the set Iξ without affecting the distribution of the first-passage time τb.

DEFINITION 2.10. For two random variables ξ, ζ > 0 we say ξ is smaller in the hazard
rate order than ζ , write ξ ⪯hr ζ , if

[0, tζ)→ [0,1], t 7→ P (ξ > t)

P (ζ > t)

is a non-increasing function.

THEOREM 2.11 (Comparison principle). Let E ⊆ R be an interval. Fix two probability
measures µ1, µ2 on E such that µ1 ⪯st µ2. Let ξ1, ξ2 > 0 be random variables such that
ξ1 ⪯hr ξ2. Assume that (U1), (U2) are fulfilled and (E1), (E2), (E3) with P := Pµi

are fulfilled.

Then for i ∈ {1,2} there exist boundary functions bi with τbi
d
= ξi under Pµi

such that

b1 ≤ b2

pointwise.

REMARK 2.12. Since in Theorem 2.11 we merely state the existence of ordered solu-
tions, we can spare (U3) in our list of assumptions.
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2.1. Lévy processes. In Section 6 we establish conditions for Lévy processes under
which we can apply Theorem 2.3 and Theorem 2.8. We will summarize these conditions
below in Theorem 2.13.

We say a Lévy process has characteristic a triple (a,σ2,Π) if

− log (E [exp(iθX1)]) = iθa+
σ2

2
θ2 +

∫
R
(1− eiθx + iθx1(−1,1)(x))Π(dx),(1)

where a ∈R, σ2 ≥ 0 and Π is a measure on R \ {0} with
∫
R(1∧ x2)Π(dx)<∞. If (Xt)t≥0

is a Lévy process with P (X0 = 0) = 1, then for x ∈ R let Px be a measure such that
Px ((Xt)t≥0 ∈ · ) := P ((Xt + x)t≥0 ∈ · ). For the following statement note that P0 (X1 ∈ · )
is diffuse if and only if we have that σ2 > 0 or Π(R) =∞, see for instance Theorem 27.4 in
[43]. Equivalently, we could say the Lévy process is not a compound Poisson process with or
without drift. On the other hand, if a probability measure µ on R is diffuse, then Pµ (Xt ∈ · )
is diffuse.

THEOREM 2.13 (Lévy processes). Let (Xt)t≥0 be a Lévy process with characteristic
triple (a,σ2,Π), ξ > 0 be a random variable and µ be a probability measure on R. Then
(U1) and (U2) are fulfilled with E =R and (E2) is fulfilled with P := Pµ.
Existence: We have that (E1) implies (E3). In particular, assuming (E1), there exists a bound-
ary function b such that τb

d
= ξ under P.

Uniqueness:

(a) Let one of the following be fulfilled:
(a.i) (Xt)t≥0 has unbounded variation, i.e. σ2 > 0 or

∫
R(1∧ |x|)Π(dx) =∞,

(a.ii) 0 ∈ supp(Π) and Π((0,∞))> 0.
Then (U3) is fulfilled with Iξ := (0, tξ).

(b) Let 0 ∈ supp(Π) and Π((−∞,0))> 0.
Then (U3) is fulfilled with Iξ := supp(P (ξ ∈ · ))∩ (0, tξ).

In particular, assuming (E1) and ((a) or (b)), all boundary functions b with τb
d
= ξ under P

coincide on Iξ .

REMARK 2.14. In order to demonstrate the phrasing of Theorem 2.13 let us mention
some examples of Lévy processes:

• If the Lévy measure has infinite activity, i.e. Π(R) =∞, then we have 0 ∈ supp(Π) and
(E1), and thus we have existence and uniqueness.

• If (Xt)t≥0 has a Brownian component we have existence and uniqueness.
• If the law of X0 is diffuse and (Xt)t≥0 is a Poisson process with jumps of constant height

we have existence.
• If (−Xt)t≥0 is a Gamma process and ξ ∼ Exp, we have existence and uniqueness of

solutions on (0,∞).

2.2. Diffusions on an interval. In Section 7 we establish conditions for diffusions under
which we can apply Theorem 2.3 and Theorem 2.8. We will summarize these conditions
below in Theorem 2.16.

For the definition of a diffusion on an interval we adapt Definition 5.20 of Chapter 5 of
[32].

DEFINITION 2.15. Let E ⊆ R be an interval and E = [L,R]⊆ [−∞,∞]. Furthermore,
let β : E → R and σ : E → R be Borel-measurable functions. Let (Px)x∈E be a family of
probability measures and (Xt)t≥0, (Bt)t≥0 stochastic processes such that
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(i) ((Xt)t≥0, (Ft)t≥0, (Px)x∈E) is a strong Markov process on E,
(ii) (Xt)t≥0 has continuous paths Px-a.s. and (Bt)t≥0 is a Brownian motion with respect to
(Ft)t≥0 and Px for every x ∈E,

(iii) with strictly monotone sequences (ℓn)n∈N and (rn)n∈N satisfying L < ℓn < rn < R,
limn→∞ ℓn = L and limn→∞ rn =R and

Sn := inf{t≥ 0 :Xt /∈ (ℓn, rn)}

it holds for all t≥ 0 that

Px

(∫ t∧Sn

0
|β(Xs)|+ σ2(Xs)ds <∞

)
= 1

and

Px

(
Xt∧Sn

= x+

∫ t∧Sn

0
β(Xs)ds+

∫ t∧Sn

0
σ(Xs)dBs ∀t≥ 0

)
= 1(2)

for all n ∈N and all x ∈ (L,R).

We call (Xt)t≥0 a diffusion on E with coefficients β and σ.

For the following statement, note that if P (Xt ∈ · ) is diffuse, the process can hit the lower
boundary L in finite time, but it cannot get stuck there.

THEOREM 2.16. Let (Xt)t≥0 be a diffusion on E with coefficients β and σ such that
σ ∈ C1((L,R)), σ > 0 and β is locally bounded on (L,R). Let ξ > 0 be a random variable
and µ be a probability measure on E. If R /∈E, then (U1), (U2) are fulfilled and (E2), (E3)
are fulfilled with P := Pµ. If additionally (E1) holds then we have (U3) with Iξ = (0, tξ).
Existence and uniqueness: In particular, assuming R /∈ E and (E1), there exists a unique
boundary function b on (0, tξ) with values in E such that τb

d
= ξ.

REMARK 2.17. In order to demonstrate the phrasing of Theorem 2.16 and the usage of
the notion of diffusion on an interval, let us mention the following example. If (Xt)t≥0 is a
Bessel process of dimension δ > 0 on E = [0,∞) (cf. [37, p.29]), for X0 > 0 and t < S =
inf{s≥ 0 :Xs = 0} the process fulfills the stochastic integral equation

Xt =X0 +

∫ t

0

δ− 1

2Xs
ds+Bt.

The coefficients fulfill the conditions of Theorem 2.16 on (0,∞). Note that we have R=∞.
Since δ > 0 the law of Xt is absolutely continuous w.r.t. Lebesgue measure and thus (E1) is
fulfilled. This means that we have existence and uniqueness of solutions for any ξ > 0.

3. Existence: Proof of Theorem 2.3. Let us explain the role of the conditions in the
proof of Theorem 2.3, which will give us a common thread. Condition (E1) is necessary to
have solutions for any ξ > 0 and allows for the construction of a discrete approximation. For
this approximation we will use the following notion of Γ-convergence. The conditions (E2)
and (E3) ensure that this approximation provides a solution. The idea of this proof follows
the approach of [3].

DEFINITION 3.1. We call a sequence (bn)n∈N of boundary functions Γ-convergent to a
boundary function b, write bn

Γ→ b, if and only if
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(i) for every convergent sequence (tn)n∈N ⊂ [0,∞] with limn→∞ tn = t holds

lim inf
n→∞

bn(tn)≥ b(t),

(ii) for any t ∈ [0,∞] exists a convergent sequence (tn)n∈N ⊂ [0,∞] with limn→∞ tn = t
such that

lim
n→∞

bn(tn) = b(t).

For a boundary function b and s≥ 0 we define

b|s(t) :=∞1[0,s)(t) + b1[s,∞](t).

PROPOSITION 3.2. Assume that (Xt)t≥0 has a.s. right-continuous paths and is quasi-

left-continuous, i.e. (E2) holds. Let b be a boundary function and assume τb|s
d
= τ ′b|s for every

s > 0. Further let bn
Γ→ b and assume that

lim
s↘0

limsup
n→∞

P (τbn ≤ s) = 0.

Then

τbn
P→ τb

in probability as n→∞.

Proposition 3.2 will be proved after a sequence of preliminary lemmas.

REMARK 3.3. Note that, if ξ > 0 is a random variable and τbn → ξ in distribution, then
it follows by Portmanteau’s theorem that

lim
s↘0

limsup
n→∞

P (τbn ≤ s)≤ lim
s↘0

P (ξ ≤ s) = 0.

REMARK 3.4. For a boundary function b we can rewrite τb as

τb = inf{t > 0 : (t,Xt) ∈ epi(b)},
where

epi(b) := {(t, x) ∈ [0,∞]× [−∞,∞] : x≥ b(t)}.
Since b is lower semicontinuous epi(b) is closed in [0,∞]× [−∞,∞]. If (Xt)t≥0 has right-
continuous paths so has (t,Xt)t≥0, and thus τb as a hitting time of a closed set is a stopping
time, for instance see [5].

LEMMA 3.5. Assume that (Xt)t≥0 has right-continuous paths and b is a boundary func-
tion. Then it holds

Xτb ≥ b(τb)

almost surely.

PROOF. From the definition of the first-passage time we can find a (possibly random)
sequence sn ↘ τb, such that Xsn ≥ b(sn) for all n ∈ N. By the right-continuity it follows
that

Xτb = lim
n→∞

Xsn ≥ lim inf
n→∞

b(sn)≥ b(τb),

where the last inequality follows from the lower semicontinuity.
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For a boundary function b define

τ b := inf{t≥ 0 :Xt ≥ b(t)}.

LEMMA 3.6. Assume that (Xt)t≥0 has right-continuous paths and is quasi-left-continuous.

Furthermore, let bn
Γ→ b. Then on {lim infn→∞ τbn > 0} ∪ {τb = τ b} we have

τb ≤ lim inf
n→∞

τbn

almost surely.

PROOF. We assume that T := lim infn→∞ τbn <∞. Set Tm := infn≥m τbn and fix m ∈N.
There is a sequence (nk)k≥1 ⊆ {n ∈N : n≥m} (possibly random) such that limk→∞ τbnk

=
Tm and τbnk

≥ τbnk+1
for all k ∈ N. If (nk)k∈N is bounded, we can assume without loss of

generality that (nk)k≥1 is a constant sequence and set n(m) := n1. Then, from Lemma 3.5,
we have XTm

≥ bn(m)(Tm) almost surely. On the other hand, if n(m) := limk→∞ nk = ∞,
due to the Γ-convergence and the right-continuity of the paths we have

b(Tm)≤ lim inf
k→∞

bnk
(τbnk

)≤ lim inf
k→∞

Xτbnk
=XTm

almost surely. Note that the (possibly random) sequence of boundary functions

b̃m :=

{
bn(m) : n(m) <∞,

b : n(m) =∞,

Γ-converges to b as m→∞ since n(m) ≥m. Now, since T = limm→∞ Tm, we have, by the
Γ-convergence and the quasi-left-continuity, that

b(T )≤ lim inf
m→∞

b̃m(Tm)≤ lim inf
m→∞

XTm
=XT

almost surely. If T > 0, it follows directly that τb ≤ T = lim infn→∞ τbn . Generally, it follows
τ b ≤ T , which concludes the proof.

LEMMA 3.7. Let bn
Γ→ b. Let t ∈ (0,∞) and assume that

lim inf
s↘t

b(s) = b(t).

Then there exists a sequence tn → t with tn > t such that

bn(tn)→ b(t).

PROOF. Since lim infs↘t b(s) = b(t) there is a sequence rm → t with rm > t such that

b(rm) → b(t) as m → ∞. Since bn
Γ→ b for every m ∈ N there is a sequence rmn → rm

such that bn(rmn )→ b(rm). Without loss of generality we can assume that rmn > t. We now
define two sequences (mk)k∈N and (nk)k∈N by a recursive scheme. For k ∈ N assume that
m1, . . . ,mk−1 and n1, . . . , nk−1 are already defined. Then let mk >mk−1 be large enough
such that

max(rm − t, |b(rm)− b(t)|)≤ 1

k
∀m≥mk.

Further, let nk > nk−1 be large enough such that

max(|rmk
n − rmk

|, |bn(rmk
n )− b(rmk

)|)≤ 1

k
∀n≥ nk.
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Now define for n ∈N the sequence

tn :=

∞∑
k=1

rmk
n 1{nk,...,nk+1−1}(n).

Let ε > 0. Choose k ∈ N such that 2
k < ε. Let n ∈ N. Then, if n ∈ {nk̃, . . . , nk̃+1 − 1} for

k̃ ≥ k, we have

|tn − t| ≤ |rmk̃
n − rmk̃

|+ |rmk̃
− t| ≤ 1

k̃
+

1

k̃
≤ 2

k
< ε.

and

|bn(tn)− b(t)| ≤ |bn(rmk̃
n )− b(rmk̃

)|+ |b(rmk̃
)− b(t)| ≤ 1

k̃
+

1

k̃
≤ 2

k
< ε.

This shows that eventually that tn → t with tn > t and

bn(tn)→ b(t)

as n→∞.

For a boundary function b and ε > 0 we interpret b+ ε as the boundary function given by
(b+ ε)(t) = b(t) + ε.

LEMMA 3.8. Assume that (Xt)t≥0 has right-continuous paths and is quasi-left-continuous.

Furthermore, let bn
Γ→ b and ε > 0. Then

limsup
n→∞

τbn ≤ τb+ε

almost surely.

PROOF. According to Lemma A.4 the set

Sb :=

{
t ∈ [0,∞) : lim inf

s↘t
b(s)> b(t)

}
is countable. By setting b(0) := lim infs↘0 b(s) (which does not affect τb+ε) we can assume
that 0 /∈ Sb. Since b is lower semicontinuous this means that for every t ∈ [0,∞)\Sb we have
lim infs↘t b(s) = b(t). Since (Xt)t≥0 is quasi-left-continuous and has right-continuous paths
we have that

Xt− =Xt ∀t ∈ Sb(3)

almost surely. Assume without loss of generality that τb+ε < ∞. By Lemma 3.5 we have
Xτb+ε

≥ b(τb+ε) + ε. Due to the Γ-convergence we can choose a converging sequence tn →
τb+ε (possibly random) such that bn(tn)→ b(τb+ε) as n→∞. We distinguish two cases.

If τb+ε ∈ Sb, by (3), we can assume that Xτb+ε− =Xτb+ε
. We have therefore

lim
n→∞

Xtn =Xτb+ε
.

If τb+ε ∈ [0,∞) \Sb due to Lemma 3.7, we can assume that tn > τb+ε for all n ∈N. Thus,
since (Xt)t≥0 has right-continuous paths we have

lim
n→∞

Xtn =Xτb+ε
.
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Let N ∈N (possibly random) be large enough such that for every n≥N we have

bn(tn)≤ b(τb+ε) +
ε

2
and Xtn ≥ b(τb+ε) +

ε

2
.

Since tn > 0 it follows that τbn ≤ tn. In particular, we have

limsup
n→∞

τbn ≤ limsup
n→∞

tn = τb+ε.

This shows the desired statement.

REMARK 3.9. Let b be a boundary function. Since τ ′b ≥ τb, if for (Xt)t≥0 it holds that

τb
d
= τ ′b, then we have in fact τb = τ ′b almost surely.

LEMMA 3.10. Let b be a boundary function. Then

lim
ε↘0

τb+ε = τ ′b

almost surely.

PROOF. Note that τb+ε is decreasing in ε and bounded from below by τ ′b. Thus the fol-
lowing limit exists and fulfills

lim
ε↘0

τb+ε ≥ τ ′b

almost surely. Thus it is left to show that limε↘0 τb+ε ≤ τ ′b almost surely. Without loss of
generality we assume that τ ′b <∞. On this event we have that there exists a sequence tn ↘ τ ′b
(possibly random) with

Xtn > b(tn) ∀n ∈N.

If τ ′b = 0 this sequence fulfills tn > 0 for every n ∈ N. Let δ > 0. Then there exists n ∈ N
(possibly random) such that tn ≤ τ ′b + δ. Set

εn :=
1

2
(Xtn − b(tn))> 0

for which holds

Xtn > b(tn) + εn.

Therefore τb+εn ≤ tn ≤ τ ′b + δ. Thus we have that

lim
ε↘0

τb+ε ≤ τb+εn ≤ τ ′b + δ.

Letting δ↘ 0 yields that limε↘0 τb+ε ≤ τ ′b. This proves the desired statement.

LEMMA 3.11. Assume that (Xt)t≥0 has right-continuous paths and is quasi-left-

continuous. Let b be a boundary function and assume τb
d
= τ ′b. Further, let bn

Γ→ b. Then
on {lim infn→∞ τbn > 0} ∪ {τb = τb} we have

lim
n→∞

τbn = τb

almost surely.

PROOF. By combining Lemma 3.6, Lemma 3.8, Lemma 3.10 and Remark 3.9 we have

τb ≤ lim inf
n→∞

τbn ≤ limsup
n→∞

τbn ≤ lim
ε↘0

τb+ε = τb

almost surely on {lim infn→∞ τbn > 0} ∪ {τb = τb}, which concludes the proof.
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REMARK 3.12. If bn
Γ→ b, in general it is not true that for every s > 0 also bn|s

Γ→ b|s.
The following Lemma 3.13 gives a sufficient condition on b such that the convergence is
preserved. By Lemma A.4 we will see that we can find arbitrarily small s > 0 fulfilling this
sufficient condition.

LEMMA 3.13. Let bn
Γ→ b and s > 0. If lim inft↘s b(t) = b(s), then bn|s

Γ→ b|s.

PROOF. If t ∈ [0, s) for every sequence tn → t we have

lim
n→∞

bn|s(tn) = b|s(t) =∞.

If t ∈ [s,∞] and tn → t, then

lim inf
n→∞

bn|s(tn)≥ lim inf
n→∞

bn(tn)≥ b(t) = b|s(t).

Furthermore, due to the Γ-convergence for t ∈ [s,∞] there is a sequence tn → t such that
bn(tn)→ b(t). If t = s, by Lemma 3.7 and our assumption, we can assume that tn ≥ t = s
for every n. Therefore we have

lim
n→∞

bn|s(tn) = lim
n→∞

bn(tn) = b(t) = b|s(t).

Hence it holds bn|s
Γ→ b|s.

LEMMA 3.14. Let b be a boundary function. Then

τb = lim
s↘0

τb|s

almost surely.

PROOF. The random variable τb|s is monotone decreasing in s and bounded from below
by τb. Thus the limit exists and we have τb ≤ lims↘0 τb|s . Without loss of generality assume
τb <∞. For m ∈N there exists a time t > 0 (possibly random) such that t ∈ [τb, τb+

1
m) and

Xt ≥ b(t). Thus, if r ∈ (0, t), then

Xt ≥ b(t) = b|r(t),

which means that τb|r ≤ t < τb +
1
m . Consequently,

τb ≤ lim
s↘0

τb|s ≤ τb|r ≤ τb +
1

m
.

By m→∞ we obtain lims↘0 τb|s = τb almost surely.

REMARK 3.15. It is analogous to show that τ ′b = lims↘0 τ
′
b|s almost surely.

PROOF OF PROPOSITION 3.2. For s > 0 and ε > 0 we have that

P (|τbn − τb|> ε)

≤ P
(
|τbn|s − τbn |>

ε

3

)
+ P

(
|τbn|s − τb|s |>

ε

3

)
+ P

(
|τb|s − τb|>

ε

3

)
≤ P (τbn ≤ s) + P

(
|τbn|s − τb|s |>

ε

3

)
+ P

(
|τb|s − τb|>

ε

3

)
,
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where we have used that

P
(
|τbn|s − τbn |>

ε

3

)
≤ P

(
τbn|s ̸= τbn

)
≤ P (τbn ≤ s) .

Due to Lemma A.4 we can choose arbitrarily small s > 0 such that lim inft↘s b(t) = b(s).

Lemma 3.13 shows that bn|s
Γ→ b|s. Moreover, we have almost surely

lim inf
n→∞

τbn|s ≥ s > 0

and by assumption τb|s
d
= τ ′b|s . Hence we can apply Lemma 3.11 and obtain

lim
n→∞

τbn|s = τb|s

almost surely. By Lemma 3.14 we have

lim
s↘0

τb|s = τb.

almost surely. Thus we have that

limsup
n→∞

P (|τbn − τb|> ε)

≤ lim
s↘0

(
limsup
n→∞

(
P (τbn ≤ s) + P

(
|τbn|s − τb|s |>

ε

3

))
+ P

(
|τb|s − τb|>

ε

3

))
= lim

s↘0
limsup
n→∞

P (τbn ≤ s) = 0,

where the last equality comes from our assumption. This yields the statement.

REMARK 3.16. Analogously as in Theorem 3.1 of [35] it can be shown that the Γ-
convergence coincides with the convergence of the epigraphs in the Hausdorff metric. From
Proposition 2.1.3 of [33] follows that every sequence of boundary functions has a convergent
subsequence.

PROOF OF THEOREM 2.3. For n ∈ N let tnk := k2−n with k ∈ N0. We will inductively
define a boundary function bn, which has only finite values at the discrete timepoints tnk . For
k ∈N let us assume bn(t

n
1 ), . . . , bn(t

n
k−1) are already defined. Since P (Xt ∈ · ) is diffuse, we

can choose a value bn(t
n
k) ∈ [−∞,∞] such that

P
(
Xtnk < bn(t

n
k), . . . ,Xtn1 < bn(t

n
1 )
)
= P (ξ > tnk)

with bn(t
n
k) = −∞ if P (ξ > tnk) = 0. By setting bn(t) =∞ for all t /∈ {k2−n : k ∈ N}, we

obtain a lower semicontinuous function bn. Note, that then by definition

P (τbn > t) = P
(
ξ > ⌊t2n⌋2−n

)
, ∀t≥ 0.

This implies that

τbn
d→ ξ

as n→∞. By the compactness of the set of boundary functions, see Remark 3.16, there is a
lower semicontinuous function b, and a subsequence N ⊂N such that

bn
Γ→ b

along n ∈N . By assumption we have τb|s
d
= τ ′b|s for every s > 0. Moreover, by assumption

we have that (Xt)t≥0 has right-continuous paths and is quasi-left-continuous. From Propo-

sition 3.2 and Remark 3.3 we obtain that τbn
P→ τb in probability along n ∈N . This implies

that τb
d
= ξ.
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4. Uniqueness: Proof of Theorem 2.8. Let us explain beforehand the role of the condi-
tions in the proof of Theorem 2.8. Conditions (U1) and (U2) allow to construct a boundary
function which is a lower bound for any other solution. Conditions (E1), (E2), (E3) will yield
that this lower bound is a solution. Condition (U3) will allow to infer that this lower bound is
the unique solution.

Let E ⊆ R be an interval with E = [L,R] and L,R ∈ [−∞,∞]. Assume that P (Xt ∈ · )
is diffuse for any t > 0 and assume that P (τR <∞) = 0.

Let (tnk)n∈N,k∈{0,1,...,mn} ⊂ [0,∞) with mn ∈N∪ {∞} be such that

0 = tn0 < tn1 < . . . tnmn
.

For k ∈ N, such that P (ξ > tnk) > 0 suppose qn1 , . . . q
n
k−1 are already defined. Since

P
(
Xtnk ∈ ·

)
is diffuse and P

(
Xtnk <R

)
= 1 we can choose qnk ∈E such that

P
(
Xtnk < qnk ,Xtnk−1

< qnk−1, . . . ,Xtn1 < qn1
)
= P (ξ > tnk)

and

P
(
Xtnk < q,Xtnk−1

< qnk−1, . . . ,Xtn1 < qn1
)
< P (ξ > tnk)

for any q < qnk . Note that we have qnk > infE = L since P (ξ > tnk) > 0. For k ∈ N with
P (ξ > tnk) = 0 we set qnk := infE = L. By setting

bn(t) :=

{
qnk : t= tnk ,

supE =R : t /∈ {tnk : k ∈N},
(4)

we obtain a boundary function bn with values in E. Note that by the definition of qnk we
obtain that

bn(t
n
k) = supsupp(P

(
Xtnk ∈ ·

∣∣τbn > tnk
)
).

REMARK 4.1. For Brownian motion on R this discretization appeared in [3] and [35],
and implicitely in [22], [18]. In [35, Lemma 4.1] and [18, Theorem 5] it led to statements
which are special cases of the following Lemma 4.2.

LEMMA 4.2. Let E ⊆R be an interval with E = [L,R]. Let µ be a probability measure
on E. Assume (U1), (U2) and (E1) and P (τR <∞) = 0 with P := Pµ. Let b be a boundary

function with values in E such that τb
d
= ξ. Then for fixed n ∈N we have

P
(
Xtnk ∈ ·

∣∣τbn > tnk
)
⪯st P

(
Xtnk ∈ ·

∣∣τb > tnk
)

∀k ∈N : P (ξ > tnk)> 0.

In particular, it follows that bn(tnk)≤ b(tnk) for all k ∈N.

In order to prove Lemma 4.2 we need one more tool. For a probability measure µ and
α ∈ (0,1] define for A⊆R measurable

Tα(µ)(A) :=
µ(A∩ (−∞, qα(µ)])

µ((−∞, qα(µ)])
,

where

qα(µ) := inf{c ∈R : µ((−∞, c])≥ α}.

The following statement is the one-sided version of Lemma 3.3 in [35]. In the presented
generality we will use it in Section 5.
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LEMMA 4.3. Let µ, ν be probability measures and such that µ is diffuse. Then for
α1, α2 ∈ (0,1] with α1 ≤ α2 we have that µ⪯st ν implies Tα1

(µ)⪯st Tα2
(ν).

PROOF. Since µ is diffuse we have that µ((−∞, qα1
(µ)]) = α1. Assume that µ ⪯st ν.

Then by the definitions we have qα1
(µ) ≤ qα2

(ν) and it suffices to consider the case c ≤
qα1

(µ). Since ν((−∞, qα2
(ν)])≥ α2, we have

Tα1
(µ)((−∞, c]) =

µ((−∞, c])

µ((−∞, qα1
(µ)])

=
µ((−∞, c])

α1
≥ µ((−∞, c])

α2

≥ µ((−∞, c])

ν((−∞, qα2
(ν)])

≥ ν((−∞, c])

ν((−∞, qα2
(ν)])

= Tα2
(ν)((−∞, c]).

This shows Tα1
(µ)⪯st Tα2

(ν).

For a probability measure µ we introduce the mapping Pt by

(5) Pt(µ) := Pµ (Xt ∈ · ) .

PROOF OF LEMMA 4.2. Essentially, we follow the lines of the proof of Lemma 4.1 in
[35], which was conducted in the case of reflected Brownian motion. Fix n ∈ N. We abbre-
viate

µn
k := P

(
Xtnk ∈ ·

∣∣τbn > tnk
)
, µk := P

(
Xtnk ∈ ·

∣∣τb > tnk
)
.

Note that from the Markov property it follows that

µn
k = Tαn

k
◦ Ptnk−tnk−1

◦ . . . ◦ Tαn
1
◦ Ptn1 (µ),(6)

where

αn
k =

P (ξ > tnk)

P
(
ξ > tnk−1

) .
We will prove the statement by induction over k ∈N0 with P (ξ > tnk)> 0, by comparing the
mappings

Hn
k (ν) := Tαn

k
◦ Ptnk−tnk−1

(ν),

where ν is a probability measure on E, and

Hk(ν) := Pν

(
Xtnk−tnk−1

∈ ·
∣∣∣τ

b
tn
k−1

> tnk − tnk−1

)
,

where we used the notation bs(t) := b(t + s) for s > 0. It follows by (6) and the Markov
property that

Hn
k (µ

n
k−1) = µn

k and Hk(µk−1) = µk.

We now claim that we have

Hn
k (µk−1)⪯st Hk(µk−1).(7)

Using the Markov property we obtain

Ptnk−tnk−1
(µk−1) = Pµ

(
Xtnk ∈ ·

∣∣τb > tnk−1

)
.

This shows that Ptnk−tnk−1
(µk−1) is diffuse and we have

Ptnk−tnk−1
(µk−1)((−∞, qαn

k
(Ptnk−tnk−1

(µk−1))]) = αn
k
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and, by the Markov property and the fact that τb
d
= ξ, we have

Pµk−1

(
τ
b
tn
k−1

> tnk − tnk−1

)
= αn

k .

Therefore, if c≤ qαn
k
(Ptnk−tnk−1

(µk−1)), we have

Hn
k (µk−1)((−∞, c]) =

Ptnk−tnk−1
(µk−1)((−∞, c])

αn
k

=
Pµk−1

(
Xtnk−tnk−1

≤ c
)

αn
k

≥
Pµk−1

(
Xtnk−tnk−1

≤ c, τ
b
tn
k−1

> tnk − tnk−1

)
αn
k

=
Pµk−1

(
Xtnk−tnk−1

≤ c, τ
b
tn
k−1

> tnk − tnk−1

)
Pµk−1

(
τ
b
tn
k−1

> tnk − tnk−1

)
= Pµk−1

(
Xtnk−tnk−1

≤ c
∣∣∣τ

b
tn
k−1

> tnk − tnk−1

)
=Hk(µk−1)((−∞, c]).

This shows the claim. Now let us assume that µn
k−1 ⪯st µk−1. Then Lemma 4.3 the fact that

Pt preserves the usual stochastic order and the claim from (7) yield

µn
k =Hn

k (µ
n
k−1)⪯st H

n
k (µk−1)⪯st Hk(µk−1) = µk.

Since µn
0 = µ0 the desired ordering follows by induction. From the ordering it follows that

µn
k((−∞, c])≥ µk((−∞, c]) for all c ∈R, hence

bn(t
n
k) = supsupp(µn

k)≤ sup supp(µk)≤ b(tnk)

for k ∈N with P (ξ > tnk)> 0. Since bn(t
n
k) = infE for k ∈N with P (ξ > tnk) = 0, the proof

is finished.

Let b be a boundary function with values in E. We now introduce a discretization technique
for b, which was already used in [22] and [13] for the case of Brownian motion. We use an
adapted version. Let D(b) be an arbitrary countable set and Dn(b) ⊂ Dn+1(b) finite, such
that

⋃
n∈NDn(b) =D(b). For n ∈N define for every k ∈N

t̃nk := inf

{
t ∈ [k2−n, (k+ 1)2−n] : b(t) = inf

s∈[k2−n,(k+1)2−n]
b(s)

}
.

Set A1
n(b) := {t̃nk : k ∈ {1,2, . . . , n2n}}}. Furthermore, let (sn)n∈N be an enumeration of

{s ∈ [0,∞) : P (τb = s)> 0}. Set A2
n(b) := {s1, . . . , sn}. Finally, set

An(b) :=A1
n(b)∪A2

n(b)∪Dn(b).

By choosing Dn(b) = ∅ we end up with the construction used in [22]. Note that by A1
n(b)⊂

A1
n+1(b) we have

An(b)⊂An+1(b).

For n ∈N let us define the boundary function

b̂n(t) :=

{
b(t) : t ∈An(b),

R : t /∈An(b).
(8)

LEMMA 4.4. For a boundary function b it holds b̂n
Γ→ b as n→∞.
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PROOF. Let t ∈ [0,∞]. Assume tn → t. Then

b̂n(tn)≥ b(tn).

Thus,

lim inf
n→∞

b̂n(tn)≥ lim inf
n→∞

b(tn)≥ b(t).

For the second part of the Γ-convergence we distinguish two cases. Let us first assume that
t ∈
⋃

n∈NAn(b). Then for N large enough we have t ∈An(b) for all n≥N . Hence,

lim
n→∞

b̂n(t) = lim
n→∞

b(t) = b(t).

Assume that t /∈An(b) for all n ∈N. Let n ∈N be large enough and kn(t) ∈N such that

kn(t)2
−n ≤ t≤ (kn(t) + 1)2−n.

Then we have

b(t)≥ inf
s∈[kn(t)2−n,(kn(t)+1)2−n]

b(s) = b(t̃nkn(t)
).

Now define tn := t̃nkn(t)
. We have tn ∈An(b). It follows tn → t and

b(t)≥ limsup
n→∞

b(tn) = limsup
n→∞

b̂n(tn)

≥ lim inf
n→∞

b̂n(tn) = lim inf
n→∞

b(tn)≥ b(t).

This means that b̂n(tn)→ b(t). Altogether we obtain b̂n
Γ→ b.

LEMMA 4.5. Let b1 and b2 be boundary functions with values in E such that τb1
d
= τb2

d
=:

ξ and b1 ≤ b2. Let t ∈ (0, tξ) and assume

b2(t) = supsupp(P (Xt ∈ · |τb2 > t)).

Then b1(t) = b2(t).

PROOF. Assume b1(t)< b2(t). Then by the assumption for the support we would have

P (ξ > t) = P (τb2 > t) = P (τb2 > t,Xt < b2(t))

> P (τb2 > t,Xt < b1(t))≥ P (τb1 > t,Xt < b1(t))

= P (τb1 > t) = P (ξ > t) .

This contradiction shows b1(t) = b2(t).

LEMMA 4.6. Let b1 and b2 be boundary functions and b1n
Γ→ b1 and b2n

Γ→ b2. Assume
that b1n ≤ b2n. Then b1 ≤ b2.

PROOF. Let t ∈ [0,∞]. Let tn → t such that b2n(tn)→ b2(t). Then

b2(t) = lim
n→∞

b2(tn)≥ lim inf
n→∞

b1(tn)≥ b1(t).

This finishes the proof.
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PROOF OF THEOREM 2.8. Let b, β be boundary functions with values in E such that τb
d
=

τβ
d
= ξ. Recall the construction of b̂n and β̂n from (8) for b and β, respectively. In particular,

recall A1
n(b),A

2
n(b) and A1

n(β),A
2
n(β). We can choose

Dn(b) :=A1
n(β)∪A2

n(β), Dn(β) :=A1
n(b)∪A2

n(b).

This means that in the construction from (8) we have

An :=An(b) =An(β).

Note that thus b̂n depends also on β and β̂n on b. Now, since P (Xt ∈ · ) is diffuse we can
construct the boundary function bn from the construction (4), where we choose

{tn0 , tn1 , . . . , tnmn
}= {0} ∪An.

Due to the Markov property and the stochastic order preservation we can apply Lemma 4.2
for the solutions b and β separately but with the same set An of discrete timesteps. With
recalling (8) this leads to

bn(t)≤ b(t) = b̂n(t) and bn(t)≤ b(t) = β̂n(t) ∀t ∈An.

This means that bn ≤ b̂n and bn ≤ β̂ altogether. Now note that, by Remark 3.16, there is a
boundary function b+ and a subsequence N ⊂N such that along N

bn
Γ→ b+.

By Lemma 4.4 we have that

b̂n
Γ→ b and β̂n

Γ→ β.

Thus we have by Lemma 4.6 that

b+ ≤ b and b+ ≤ β.

By the definition of bn from (4) under P we have on the one hand that

τbn
d→ ξ

as n → ∞. By assumption we have τb+|s = τ ′b+|s P-a.s. for s > 0 and (Xt)t≥0 has P-a.s.
right-continuous paths and is quasi-left-continuous. By Proposition 3.2 and Remark 3.3 we
obtain

τbn
P→ τb+

in probability. This means that τb+
d
= ξ under P. Since bn has values in E, by the definition of

the Γ-convergence, it follows that b+ is a boundary function with values in E. By assumption
we have

b(t) = supsupp(P (Xt ∈ · |τb > t)) , β(t) = supsupp(P (Xt ∈ · |τβ > t))

for t ∈ Iξ . Hence Lemma 4.5 yields that

b(t) = b+(t) = β(t)

for every t ∈ Iξ .
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5. Comparison principle: Proof of Theorem 2.11. The following proof essentially fol-
lows the lines of the proof of Theorem 2.2 of [35]. Due to its brevity we include it for com-
pleteness.

PROOF OF THEOREM 2.11. Let tnk := k2−n with k ∈ N0. For the measure Pµi
and the

random variable ξi let bin be the sequence of boundary function constructed in (4). For k ∈N
with P (ξi > tnk)> 0 let

αi,n
k :=

P (ξi > tnk)

P
(
ξi > tnk−1

) .
Since ξ1 ⪯hr ξ2 we have that α1,n

k ≤ α2,n
k . Recall the mapping Pt(µ) = Pµ (Xt ∈ · ) from

(5). Since Pt preserves the order ⪯st and Pµi
(Xt ∈ · ) are diffuse measures, we obtain by

Lemma 4.3 that

Pµ1

(
Xtnk ∈ ·

∣∣τb1n > tnk
)
= Tα1,n

k
◦ Ptnk−tnk−1

◦ . . . Tα1,n
1

◦ Ptn1 (µ1)

⪯st Tα2,n
k

◦ Ptnk−tnk−1
◦ . . . Tα2,n

1
◦ Ptn1 (µ2) = Pµ2

(
Xtnk ∈ ·

∣∣τb2n > tnk
)
.

This implies

b1n(t
n
k) = supsupp(Pµ1

(
Xtnk ∈ ·

∣∣τb1n > tnk
)
)

≤ sup supp(Pµ2

(
Xtnk ∈ ·

∣∣τb2n > tnk
)
) = b2n(t

n
k)

for k ∈ N with P (ξ1 > tnk) > 0. Since tξ1 ≤ tξ2 this means that b1n ≤ b2n. Now let b1, b2 be
accumulation points of the sequences (b1n)n∈N and (b2n)n∈N such that N ⊆N is a subsequence
with bin

Γ→ bi along N . Lemma 4.6 implies that

b1 ≤ b2.

As in the proof of Theorem 2.8 we have that Proposition 3.2 implies that τbi
d
= ξi under

Pµi
.

6. Conditions for Lévy processes: Proof of Theorem 2.13. In this section let (Xt)t≥0

be a Lévy process on R, where we allow P (X0 ∈ · ) to be an arbitrary probability measure
on R. We will show that under suitable conditions (Xt)t≥0 fulfills the conditions of Theo-
rem 2.8, under which we established existence and uniqueness for the inverse first-passage
time problem. This leads to the proof of Theorem 2.13, which is to be found at the end of the
section. At first, we will collect the essential steps in preliminary statements. We begin with
the fact that (E1) already implies (E3) for Lévy processes.

PROPOSITION 6.1. Let (Xt)t≥0 be a Lévy process such that P (X1 ∈ · ) is diffuse. Let b
be a boundary function. Then

τb = τ ′b

almost surely.

The key idea for the proof of the statement is taken from Lemma 6.2 of [22], where the
statement was proved for Brownian motion in an a very similiar manner. For diffusions on R
a corresponding statement was shown in [13].
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PROOF. As first step we will assume that b= b|s for some s > 0. Since Xs is independent
from the future increments and its law is diffuse, we have for t≥ s that the law of

Zt := sup
r∈[s,t]

(Xr − b(r)) =Xs + sup
r∈[s,t]

(Xr −Xs − b(r))

is diffuse. In particular it holds P (Zt = 0) = 0. Recall that for a process with right-continuous
paths we have Xτb ≥ b(τb) almost surely. Moreover, since inft∈[0,s) b(t) = ∞ it holds that
τb ≥ s. For t≥ s we have

{τb ≤ t} ⊆ {Zt ≥ 0}, {Zt > 0} ⊆ {τ ′b ≤ t}.

Consequently, we have for t≥ s that

P (τb ≤ t) = P (τb ≤ t,Zt ≥ 0) = P (τb ≤ t,Zt > 0)

= P
(
τb ≤ t,Zt > 0, τ ′b ≤ t

)
= P

(
τb ≤ t,Zt ≥ 0, τ ′b ≤ t

)
= P

(
τb ≤ t, τ ′b ≤ t

)
= P

(
τ ′b ≤ t

)
.

This shows τb
d
= τ ′b.

For an arbitrary boundary function b and s > 0, since τb|s
d
= τ ′b|s and τb|s ≤ τ ′b|s , it follows

that τb|s = τ ′b|s almost surely. Lemma 3.14 and Remark 3.15 yield

τb = lim
s↘0

τb|s = lim
s↘0

τ ′b|s = τ ′b

almost surely. This finishes the proof.

For a measure µ on R we denote with supp(µ) the closure of supp(µ) in [−∞,∞]. Recall
the definition of a characteristic triple of a Lévy process in (1).

PROPOSITION 6.2. Let (Xt)t≥0 be a Lévy process with characteristic triple (a,σ2,Π)
and X0 = 0.

(I) If 0 ∈ supp(Π) and (Xt)t≥0 is a subordinator without drift, then for every boundary
function b : [0,∞]→ [0,∞] and t > 0 with P (τb > t)> 0 we have

supp(P (Xt ∈ · |τb > t)) = [0, b(t)].

(II) If 0 ∈ supp(Π) and (−Xt)t≥0 is a subordinator without drift, then for every boundary
function b : [0,∞]→ [−∞,0] with P (τb > 0)> 0 and t > 0 with b(t)≤ b(u) for all u ∈
[0, t] we have

supp(P (Xt ∈ · |τb > t)) = (−∞, b(t)].

(III) If one of the following holds,
(i) (Xt)t≥0 has unbounded variation, i.e. σ ̸= 0 or

∫
R(1∧ |x|)Π(dx) =∞,

(ii) 0 ∈ supp(Π) and Π((−∞,0))> 0 and Π((0,∞))> 0,
then for every boundary function b : [0,∞]→ [−∞,∞] and t > 0 with P (τb > t)> 0 we
have

supp(P (Xt ∈ · |τb > t)) = (−∞, b(t)].

The idea of the proof for Proposition 6.2 is to use the Lévy-Itô decomposition and extract
suitable components of the process which lead the path into desired regions with positive
probability. This is inspired by Chapter 5 of [43, p.148]. In order to do so we will have to
make a case distinction since the suitable components of the process differ from case to case.
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We will work with the following general decomposition, which then is specified in the case
distinctions. Let (Xt)t≥0 be a Lévy process with characteristic triple (a,σ2,Π) and X0 = 0.
Let Π1 and Π2 be measures on R such that Π = Π1 + Π2. Let η ∈ (0,1). We decompose
formally

Xt = Yt − a′t+ σBt + P η
t +Mη

t ,(9)

where

a′ = a+

∫
(−1,1)

xΠ1(dx) +

∫
(−1,1)\(−η,η)

xΠ2(dx)

and (Bt)t≥0 is a standard Brownian motion and (Yt)t≥0, (P η
t )t≥0 and (Mη

t )t≥0 are Lévy
processes such that

− log
(
E
[
eiθY1

])
=

∫
R
(1− eiθx)Π1(dx)

and

− log
(
E
[
eiθP

η
1

])
=

∫
R\(−η,η)

(1− eiθx)Π2(dx)

and

− log
(
E
[
eiθM

η
1

])
=

∫
(−η,η)

(1− eiθx + iθx)Π2(dx).

Note that P η
t is a compound Poisson process and Mη

t is a zero-mean square-integrable mar-
tingale with E

[
Mη

t )
2
]
= t
∫
(−η,η) x

2Π(dx). This means that by Doob’s inequality for every
t,C > 0 we can choose η > 0 such that

P
(
sup
s≤t

|Mη
s | ≥C

)
≤ t

C

∫
(−η,η)

x2Π2(dx)< 1.(10)

For treating (III) in Proposition 6.2 we will use the following auxiliary lemma.

LEMMA 6.3. Let (Xt)t≥0 be a Markov process and µ a probability measure on R. As-
sume that for any t > 0 and for any K > x> 0 we have that

supp(Px (Xt ∈ ·, τK > t)) = (−∞,K].

Then we have for any boundary function b : [0,∞]→ [−∞,∞] and t > 0 with Pµ (τb > t)>
0 that

supp(Pµ (Xt ∈ · |τb > t)) = (−∞, b(t)].

PROOF. Let b and t > 0 as in the statement. We abbreviate P = Pµ. It holds b(t) > −∞
since P (τb > t)> 0. Define for 0< δ < t

Kδ := inf
s∈[t−δ,t]

b(s).

Furthermore, since b is lower semicontinuous and P (τb > t)> 0, we have for 0< r < t− δ
that

K1 := inf
s∈[r,t−δ]

b(s) = min
s∈[r,t−δ]

b(s)>−∞.

Let s ∈ [r, t− δ] such that b(s) =K1. Define µs := P (Xs ∈ ·, τb > s). Note that

∅ ̸= supp(µs)⊆ (−∞, b(s)] = (−∞,K1]
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but µs({K1}) = 0. We can write

µt−δ := Pµs
(Xt−δ−s ∈ · , τK1

> t− δ− s)

=

∫
(−∞,K1)

Px (Xt−δ−s ∈ · , τK1
> t− δ− s)µs(dx).

The assumption of the statement ensures that

(−∞,K1)⊆ supp(Px (Xt−δ−s ∈ · , τK1
> t− δ− s))

for every x <K1, which implies

supp(µt−δ) = (−∞,K1]

with µt−δ({K1}) = 0. Now let z ∈ (−∞,Kδ) and ε ∈ (0,Kδ − z). Note that due to the
assumption of the statement we have that

(−∞,Kδ)⊆ supp(Px (Xδ ∈ ·, τKδ
> δ))

for every x <Kδ . Thus, using the Markov property, we have

P (Xt ∈ (z − ε, z + ε), τb > t)

≥ P (Xt ∈ (z − ε, z + ε), τb > s, τK1
/∈ [s, t− δ], τKδ

/∈ [t− δ, t])

=

∫
(−∞,K1)

Px (Xδ ∈ (z − ε, z + ε), τKδ
> δ)µt−δ(dx)> 0.

This means that

(−∞,Kδ)⊆ supp(P (Xt ∈ · , τb > t)).

But since Kδ → b(t) as δ→ 0, we have that

supp(P (Xt ∈ · , τb > t)) = (−∞, b(t)].

This completes the proof.

Let us establish conditions which imply the condition of the auxiliary lemma.

LEMMA 6.4. Let (Xt)t≥0 be a Lévy process with a characteristic triple (a,σ2,Π) and
X0 = 0. If one of the following holds,

(i) (Xt)t≥0 has unbounded variation, i.e. σ ̸= 0 or
∫
R(1∧ |x|)Π(dx) =∞,

(ii) 0 ∈ supp(Π) and Π((−∞,0))> 0 and Π((0,∞))> 0,

then for K > 0 we have

supp(P (Xt ∈ · |τK > t)) = (−∞,K].

We will prove this lemma by using components which have the following form.

LEMMA 6.5. Let (Xt)t≥0 be a Lévy process with a characteristic triple (a,σ2,Π) and

X0 = 0. If σ = 0, Π(R) < ∞ and for γ := −
(
a+

∫
(−1,1) xΠ(dx)

)
one of the following

conditions is fulfilled,

(a) γ ≤ 0 and 0 ∈ supp(Π(· ∩ (0,∞))),
(b) γ ≥ 0 and 0 ∈ supp(Π(· ∩ (−∞,0))),
(c) 0 ∈ supp(Π) and Π((−∞,0))> 0 and Π((0,∞))> 0,
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then for K > 0 we have

supp(P (Xt ∈ · |τK > t)) =


(γt,K] : (a),
(−∞,min(K,γt)] : (b),
(−∞,K] : (c).

PROOF. For Π1 := Π and γ =−a′ the decomposition of (9) reduces to

Xt = Yt + γt

For c1 < c2 and κ1 < κ2 let us define

Y c
t :=

∫ t

0
(Xs −Xs−)dN

c
s , Y κ

t :=

∫ t

0
(Xs −Xs−)dN

κ
s ,

into independent processes, where

N c
t :=

∑
s≤t

1(c1,c2)(Xs −Xs−), Nκ
t :=

∑
s≤t

1(κ1,κ2)(Xs −Xs−)

are Poisson processes with intensities Π((c1, c2)) and Π((κ1, κ2)), respectively.
Assume condition (a). Let x ∈ (γt,K) and let ε > 0 such that

ε <min{x− γt,K − x}.

Since 0 ∈ supp(Π(· ∩ (0,∞))) there is κ ∈ (0, ε/2)∩ supp(Π). Let δ ∈ (0, t) so that

−γδ <
ε

2
.

Since κ < ε/2 and γ(t− δ)< x− ε/2 there is nκ ∈N such that

γ(t− δ) + nκ · κ ∈
(
x− ε

2
, x+

ε

2

)
.

There are 0< κ1 < κ< κ2 < ε/2 such that

γ(t− δ) + nκ · (κ1, κ2)⊆
(
x− ε

2
, x+

ε

2

)
.

Since κ ∈ supp(Π) we have that Π((κ1, κ2))> 0. With the decomposition

Yt = Y 0
t + Y κ

t

we observe that

{Ys = 0 ∀s≤ t− δ} ∩
{
Y 0
s = 0 ∀s≤ t

}
∩ {Nκ

t = nκ}

⊆ {Yt + γt ∈ (x− ε,x+ ε)} ∩
{
sup
s≤t

(Ys + γs)<K

}
.

By independence, the Markov property, the fact that the intensity of (Ys)s≥0 and (Y 0
s )s≥0 is

finite and that Π((κ1, κ2))> 0, we have that

P
(
Ys = 0 ∀s≤ t− δ,Y 0

s = 0 ∀s≤ t,Nκ
t = nκ

)
= P (Ys = 0 ∀s≤ t− δ)P

(
Y 0
s = 0 ∀s≤ δ

)
P (Nκ

δ = nκ)> 0.

This means that in the situation of (a) we have that

supp(P (Xt ∈ · , τK > t)) = [γt,K].
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Assume condition (b). Let x ∈ (−∞,min(K,γt)) and let ε <min(K,γt)− x. Let δ ∈
(0, t) such that

γδ <K.

Since 0 ∈ supp(Π(·∩(−∞,0))) there is κ ∈ (−ε,0)∩supp(Π). Since |κ|< ε and x+ε < γt
there is nκ ∈N such that

γt+ nκ · κ ∈ (x− ε,x+ ε) .

There are −ε < κ1 < κ< κ2 < 0 such that

γt+ nκ · (κ1, κ2)⊆ (x− ε,x+ ε) .

Since κ ∈ supp(Π) we have that Π((κ1, κ2))> 0. With the decomposition

Yt = Y 0
t + Y κ

t

we observe that {
Y 0
s = 0 ∀s≤ t

}
∩ {Nκ

δ = nκ} ∩ {Nκ
s = nκ ∀δ ≤ s≤ t}

⊆
{
Yt + γt ∈ (x− ε,x+ ε) , sup

s≤t
(Ys + γs)<K

}
.

By independence, the Markov property, the fact that the intensity of (Ys)s≥0 and (Y 0
s )s≥0 is

finite and that Π((κ1, κ2))> 0, we have that

P
(
Y 0
s = 0 ∀s≤ t,Nκ

δ = nκ,N
κ
s = nκ ∀δ ≤ s≤ t

)
= P

(
Y 0
s = 0 ∀s≤ t

)
P (Nκ

δ = nκ)P (Nκ
s = 0 ∀0≤ s≤ t− δ)> 0.

This means that in the situation of (b) we have that

supp(P (Xt ∈ · , τK > t)) = (−∞,min(K,γt)].

Assume the case (c). We have that

(c.1) 0 ∈ supp(Π(· ∩ (0,∞))) or (c.2) 0 ∈ supp(Π(· ∩ (−∞,0))).

Suppose that (c.1) holds: Let x ∈ (−∞,K) and ε > 0 such that

ε <K − x.

Let δ1, δ2 ∈ (0, t) such that

γδ1 <K and |γδ2|<
ε

2
.

By condition (c) there is c ∈ (−∞,0)∩ supp(Π). Thus there is mc ∈N such that

mc · c+ γ(t− δ2)< x− ε

2
.

Since 0 ∈ supp(Π(· ∩ (0,∞))) there is κ ∈ (0, ε)∩ supp(Π). Since κ < ε and mc · c+γ(t−
δ2)< x− ε/2 there is nκ ∈N such that

mc · c+ γ(t− δ2) + nκ · κ ∈
(
x− ε

2
, x+

ε

2

)
.

There are c1 < c < c2 < 0 and 0< κ1 < κ< κ2 < ε such that

mc · (c1, c2) + γ(t− δ2) + nκ · (κ1, κ2)⊆
(
x− ε

2
, x+

ε

2

)
.
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Since c,κ ∈ supp(Π) we have that Π((c1, c2))> 0 and Π((κ1, κ2))> 0. Now observe that{
Y 0
s = 0 ∀s≤ t

}
∩ {N c

s =mc ∀δ1 ≤ s≤ t} ∩ {Nκ
s = 0 ∀s≤ t− δ2} ∩ {Nκ

t = nκ}

⊆
{
Yt + γt ∈ (x− ε,x+ ε), sup

s≤t
(Ys + γs)<K

}
.

By independence, the Markov property and the fact that the intensities of (Y 0
s )s≥0, (Y η

s )s≥0

and (Y c
s )s≥0 are finite and for (Y η

s )s≥0 and (Y c
s )s≥0 even positive, we have that

P
(
Y 0
s = 0 ∀s≤ t,N c

s =mc ∀δ1 ≤ s≤ t,Nκ
s = 0 ∀s≤ t− δ2,N

κ
t = nκ

)
= P

(
Y 0
s = 0 ∀s≤ t

)
P
(
N c

δ1 =mc

)
P (N c

s = 0 ∀s≤ t− δ1)

· P (Nκ
s = 0 ∀s≤ t− δ2)P

(
Nκ

δ2 = nκ

)
> 0.

This finishes the proof of the lemma for the case (c.1).
Suppose that (c.2) holds: Let x ∈ (−∞,K) and ε > 0 such that

ε <K − x.

Let δ1, δ2 ∈ (0, t) such that

γδ1 <K and |γδ2|<
ε

2
.

By condition (c) there is c ∈ (0,∞)∩ supp(Π). Thus there is mc ∈N such that

mc · c+ γ(t− δ2)> x+
ε

2
.

Since 0 ∈ supp(Π(· ∩ (−∞,0))) there is κ ∈ (−ε,0)∩ supp(Π). Since |κ|< ε and mc · c+
γ(t− δ2)> x+ ε/2 there is nκ ∈N such that

mc · c+ γ(t− δ2) + nκ · κ ∈
(
x− ε

2
, x+

ε

2

)
There are 0< c1 < c < c2 and −ε < κ1 < κ< κ2 < 0 such that

mc · (c1, c2) + γ(t− δ2) + nκ · (κ1, κ2)⊆
(
x− ε

2
, x+

ε

2

)
Since c,κ ∈ supp(Π) we have Π((c1, c2))> 0 and Π((κ1, κ2))> 0. By decomposing

Yt = Y 0
t + Y c

t + Y κ
t

we observe that{
Y 0
s = 0 ∀s≤ t

}
∩ {Nκ

s = nκ ∀δ1 ≤ s≤ t} ∩ {N c
s = 0 ∀s≤ t− δ2} ∩ {N c

t =mc}

⊆
{
Yt + γt ∈ (x− ε,x+ ε), sup

s≤t
(Ys + γs)<K

}
.

By independence, the Markov property and the fact that the intensities of (Y 0
s )s≥0, (Y κ

s )s≥0

and (Y c
s )s≥0 are finite and for (Y κ

s )s≥0 and (Y c
s )s≥0 even positive, we have

P
(
Y 0
s = 0 ∀s≤ t,Nκ

s = nκ ∀δ1 ≤ s≤ t,N c
s = 0 ∀s≤ t− δ2,N

c
t =mc

)
= P

(
Y 0
s = 0 ∀s≤ t

)
P
(
Nκ

δ1 = nκ

)
P (Nκ

s = 0 ∀s≤ t− δ1)

· P (N c
s = 0 ∀s≤ t− δ2)P

(
N c

δ2 =mc

)
> 0.

This finishes the proof of (c.2) and thus for the situation of (c).
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PROOF OF LEMMA 6.4. Let us consider the case σ > 0. For Π2 := Π and η ∈ (0,1) the
decomposition of (9) reads

Xt =−aηt+ σBt + P η
t +Mη

t

with aη = a+
∫
(−1,1)\(−η,η) xΠ(dx).

Now let x ∈ (−∞,K). Let ε > 0 be such that

ε <min{K − x,K} .

Due to (10) we can choose η > 0 such that

P
(
sup
s≤t

|Mη
s | ≥

ε

2

)
< 1.

Further we have that P (P η
s = 0 ∀s≤ t) > 0. Let f : [0, t] → R be defined by f(s) := s

tx.
From the theory of Brownian motion we know that

P
(
|σBs − aηs− f(s)|< ε

2
∀s ∈ [0, t]

)
> 0,

for example see Theorem 38 in [25]. Note that{
|σBs − aηs− f(s)|< ε

2
∀s ∈ [0, t]

}
⊆
{
|σBt − aηt− x|< ε

2

}
∩
{
sup
s≤t

|σBs − aηs|<
ε

2
+max{0, x}

}
.

This means{
|σBs − aηs− f(s)|< ε

2
∀s ∈ [0, t]

}
∩ {P η

s = 0 ∀s≤ t} ∩
{
sup
s≤t

|Mη
s |<

ε

2

}
⊆ {|Xt − x|< ε} ∩

{
sup
s≤t

Xs <K

}
.

This yields

0< P
(
|σBs − aηs− f(s)|< ε

2
∀s≤ t

)
P (P η

s = 0 ∀s≤ t)P
(
sup
s≤t

|Mη
s |<

ε

2

)
≤ P

(
Xt ∈ (x− ε,x+ ε), sup

s≤t
Xs <K

)
= P (Xt ∈ (x− ε,x+ ε), τK > t) .

Thus we have supp(P (Xt ∈ · , τK > t)) = (−∞,K].
Now assume that σ2 = 0. Define Π1(dx) := x21(−1,1)(x)Π(dx) and Π2 := Π−Π1. Ob-

serve that it holds Π1(R)<∞. For η ∈ (0,1) the decomposition of (9) reads

Xt = Yt − aηt+ P η
t +Mη

t

with a1 := a+
∫
R xΠ1(dx) and aη = a1 +

∫
(−1,1)\(−η,η) xΠ2(dx).

In the following we distinguish the following three cases.

(I) Π((−∞,0)) = 0 and
∫
R(1∧ |x|)Π(dx) =∞,

(II) Π((0,∞)) = 0 and
∫
R(1∧ |x|)Π(dx) =∞,

(III) 0 ∈ supp(Π) and Π((−∞,0))> 0 and Π((0,∞))> 0.
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Note that these cases are exhausting for (i) and (ii) if σ2 = 0.
Let t > 0 and K > 0. Let x ∈ (−∞,K) and ε > 0 such that

ε <min{K − x,K}.

We first claim that for all three cases there exists η > 0 such that

P
(
sup
s≤t

|Mη
s | ≥

ε

2

)
< 1

and

P
(
|Yt − taη − x|< ε

2
, sup
s≤t

(Ys − saη)<K − ε

2

)
> 0.

Let us assume for the moment that the claim is true. We will finish the proof of the theorem
from here and prove the claim further below. Recall that Xt = Yt − aηt+ P η

t +Mη
t , thus{

|Yt − taη − x|< ε

2
, sup
s≤t

(Ys − saη)<K − ε

2

}
∩ {P η

s = 0 ∀s≤ t} ∩
{
sup
s≤t

|Mη
s |<

ε

2

}
⊆
{
|Xt − x|< ε, sup

s≤t
Xs <K

}
= {Xt ∈ (x− ε,x+ ε), τK > t}.

Note that P (P η
s = 0 ∀s≤ t) > 0 and P

(
sups≤t |M

η
s |< ε

2

)
> 0 and by independence of the

events we obtain

P (Xt ∈ (x− ε,x+ ε), τK > t)> 0,

which implies the statement of the theorem, since x ∈ (−∞,K) was arbitrary.
Let us now prove the claim for every case separately.

Let us assume (I). This implies that for all η > 0 we have Π((0, η)) =∞, hence

0 ∈ supp(Π(· ∩ (0,∞))).

Moreover, this implies that for η ∈ (0,1) we have aη = a1 +
∫
[η,1) xΠ2(dx) and∫

(0,1)
xΠ2(dx) =∞,

which implies limη→0 aη =∞. With (10) in mind we can choose η > 0 such that

aηt≥max{−(x− ε/2),0} and P
(
sup
s≤t

|Mη
s | ≥

ε

2

)
< 1.

Observe that, since 0 ∈ supp(Π1(· ∩ (0,∞))) and aη ≥ 0, the condition (a) of Lemma 6.5 is
fulfilled for the process X̃t = Yt − aηt, thus we have that

supp

(
P
(
Yt − aηt ∈ · , sup

s≤t
(Ys − aηs)<K − ε

2

))
=
(
−aηt,K − ε

2

]
,

which implies the assertion of the claim. This finishes the proof for the case (I).
Let us assume (II). Then for all η > 0 we have Π((−η,0)) =∞, hence

0 ∈ supp(Π(· ∩ (−∞,0))).

Moreover, this implies that for η ∈ (0,1) we have aη = a1 +
∫
(1,−η] xΠ2(dx) and∫

(−1,0)
xΠ2(dx) =−∞,



EXISTENCE AND UNIQUENESS OF THE INVERSE FIRST-PASSAGE TIME PROBLEM 27

which implies limη→0 aη =−∞. With (10) in mind we can choose η > 0 such that

−aηt≥K − ε

2
and P

(
sup
s≤t

|Mη
s | ≥

ε

2

)
< 1.

Observe that now condition (b) of Lemma 6.5 is fulfilled for the process X̃t = Yt − aηt, thus
we have that

supp

(
P
(
Yt − aηt ∈ · , sup

s≤t
(Ys − aηs)<K − ε

2

))
=
(
−∞,K − ε

2

]
,

which implies the assertion of the claim. This finishes the proof for the case (II).
Let us assume (III). Due to (10) we can choose η > 0 such that

P
(
sup
s≤t

|Mη
s | ≥

ε

2

)
< 1.

The process X̃t = Yt − aηt inherits the properties of (ii) and fulfills the conditions of (c) of
Lemma 6.5. Thus we have that

supp

(
P
(
Yt − aηt ∈ · , sup

s≤t
(Ys − aηs)<K − ε

2

))
=
(
−∞,K − ε

2

]
.

This implies the assertion of the claim. This finishes the proof for the case (III).

PROOF OF PROPOSITION 6.2. Regarding (III) note that by translation of the starting
point Lemma 6.4 yields that for any t > 0 and for any K > x> 0 we have that

supp(Px (Xt ∈ ·, τK > t)) = (−∞,K].

Thus we obtain by Lemma 6.3 that for any boundary function b : [0,∞] → [−∞,∞] and
t > 0 with P (τb > t)> 0 it holds

supp(P (Xt ∈ · |τb > t)) = (−∞, b(t)].

This finishes the proof for (3).
Let us prove (I) and (II): For −1< κ1 < κ2 < 1 define Π1(dx) := |x|1(κ1,κ2)(x)Π(dx)

and Π2 := Π−Π1. For η ∈ (0,1) the decomposition of (9) reads

Xt = Yt + P η
t + Sη

t ,

where Sη
t :=Mη

t − aηt and since there is no drift, i.e. aη =
∫
(−η,η) xΠ2(dx),

− log
(
E
[
eiθS

η
1

])
=

∫
(−η,η)

(1− eiθx)Π2(dx).

Let us denote

τηb := inf{t > 0 : Sη
t ≥ b(t)}.

Since there is no drift, in both of the cases (1) or (2) the process (|Sη
t |)t≥0 is a subordinator

with E [Sη
t ] = t

∫
(−η,η) |x|Π2(dx). This means that by Markov’s inequality for every C > 0

we can choose η > 0 such that

P
(
sup
s≤t

|Sη
s | ≥C

)
= P (|Sη

t | ≥C)≤ t

C

∫
(−η,η)

|x|Π2(dx)< 1.(11)
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For κ1 < κ2 we write

Yt =

∫ t

0
(Ys − Ys−)dN

κ
s with Nκ

t :=
∑
s≤t

1R\{0}(Ys − Ys−),

and Nκ
t is a Poisson process with rate Π1((κ1, κ2))≥ 0.

Now we treat (1) and (2) separately.
Assume the conditions of (I). Assume that P (τb > t) > 0 for t > 0. We have supp(Π) ⊆
[0,∞). Thus we have Xr ≥Nη

r almost surely. This implies

0< P (τb > t)≤ P
(
τηb > t

)
.

Let δ ∈ (0, t) and define

Kδ := inf
s∈[t−δ,t]

b(s)> 0.

Let x ∈ (0,Kδ) and 0< ε<min(x,Kδ − x). By (11) choose η ∈ (0,1) such that

P
(
sup
s≤t

|Sη
s | ≥

2ε

3

)
< P (τb > t) .

Since τηb ≥ τb almost surely, we have that

P
(
sup
s≤t

|Sη
s |<

2ε

3
, τηb > t

)
≥ P

(
sup
s≤t

|Sη
s |<

2ε

3
, τb > t

)
≥ P (τb > t)− P

(
sup
s≤t

|Sη
s | ≥

2ε

3

)
> 0.

Further, since 0 ∈ supp(Π) ⊆ [0,∞) we have that there is κ ∈ supp(Π) ∩ (0, ε/3). Since
κ < ε/3 there is nκ ∈N and 0< κ1 < κ< κ2 < ε/3 such that

(κ1, κ2) · nκ ⊆
(
x− ε

3
, x+

ε

3

)
.

Now observe, since (Ys)s≥0 only has jumps of size contained in (κ1, κ2), that{
sup
s≤t

|Sη
s |<

2ε

3
, τηb > t

}
∩ {P η

s = 0 ∀s≤ t} ∩ {Nκ
s = 0 ∀s≤ t− δ} ∩ {Nκ

t = nκ}

⊆
{
sup
s≤t

|Sη
s |<

2ε

3

}
∩ {τb > t− δ} ∩ {P η

s = 0 ∀s≤ t}

∩
{
Yt ∈

(
x− ε

3
, x+

ε

3

)}
⊆ {τb > t− δ} ∩ {τKδ

/∈ [t− δ, t]} ∩ {Xt ∈ (x− ε,x+ ε)}

⊆ {τb > t} ∩ {Xt ∈ (x− ε,x+ ε)} .

By independence and the Markov property the event on the left-hand-side has positive prob-
ability and thus we obtain

(0,Kδ)⊆ supp(P (Xt ∈ · , τb > t)).

Since Kδ → b(t) for δ→ 0, we obtain that

supp(P (Xt ∈ · , τb > t)) = [0, b(t)].
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Assume the conditions of (II). Let x ∈ (−∞, b(t)) and ε ∈ (0, b(t) − x). By (11) choose
η ∈ (0,1) such that

P
(
sup
s≤t

|Sη
s |<

2ε

3

)
> 0.

Assume P (τb > 0)> 0. By Blumenthal’s law we have that τb > 0 almost surely. Now, since
Π1(R)<∞ and Π2(R \ (−η, η))<∞, we have

0< P (Ys = 0 ∀s≤ t,P η
s = 0 ∀s≤ t) = P (Ys = 0 ∀s≤ t,P η

s = 0 ∀s≤ t, τb > 0)

= P
(
Ys = 0 ∀s≤ t,P η

s = 0 ∀s≤ t, τηb > 0
)

= P (Ys = 0 ∀s≤ t,P η
s = 0 ∀s≤ t)P

(
τηb > 0

)
.

Consequently we have τηb > 0 almost surely. Hence there is δ ∈ (0, t) such that

P
(
sup
s≤t

|Sη
s |<

2ε

3
, τηb > δ

)
> 0.

Now since 0 ∈ supp(Π) ∩ (−∞,0) there is κ ∈ supp(Π) ∩ (−ε,0). Since |κ| < ε there is
nκ ∈N and −ε < κ1 < κ< κ2 < 0 such that

(κ1, κ2) · nκ ⊆
(
x− ε

3
, x+

ε

3

)
.

Since in the situation of (II) we have supp(Π) ⊆ (−∞,0], it follows that Xr ≤ Sη
r . Hence

also τb ≥ τηb . Therefore, with using that b(t)≤ b(u) for all u ∈ [0, t], we have{
sup
s≤t

|Sη
s |<

2ε

3
, τηb > δ

}
∩ {P η

s = 0 ∀s≤ t} ∩ {Nκ
δ = nκ} ∩ {Nκ

δ = nκ ∀s ∈ [δ, t]}

⊆
{
sup
s≤t

|Sη
s |<

2ε

3

}
∩ {τb > δ} ∩ {P η

s = 0 ∀s≤ t}

∩
{
Y κ
s < b(t)− 2ε

3
∀s ∈ [δ, t]

}
∩
{
Yt ∈

(
x− ε

3
, x+

ε

3

)}
⊆ {τb > δ} ∩ {τb /∈ [δ, t]} ∩ {Xt ∈ (x− ε,x+ ε)}

= {τb > t} ∩ {Xt ∈ (x− ε,x+ ε)} .

By independence and the Markov property the event on the left-hand-side has positive prob-
ability and thus we obtain

(−∞, b(t))⊆ supp(P (Xt ∈ · , τb > t)).

This finishes the proof.

PROOF OF THEOREM 2.13. A Lévy process has right-continuous paths by definition.
Furthermore, as a càdlàg Feller-process a Lévy process is quasi-left-continuous and a Markov
process, see Proposition 7 and Proposition 6 of [10]. This gives (E2) and (U1). For the order-
preservation, note that, by Theorem 1.A.1 of [44], we have µ1 ⪯st µ2 if and only if there
exist random variables Zi ∼ µi such that Z1 ≤ Z2. We can choose them independently from
(Xt)t≥0, hence we have that Z1 +Xt ≤ Z2 +Xt and P0 (Zi +Xt ∈ · ) = Pµ (Xt ∈ · ). By
Theorem 1.A.1 of [44] it follows that Pµ1

(Xt ∈ ·)⪯st Pµ2
(Xt ∈ ·). This gives (U2).

Existence: By Proposition 6.1 we obtain that ((E1) ⇒ (E3)). Assuming (E1) therefore im-
plies that the conditions of Theorem 2.3 are fulfilled, and thus a solution for the inverse
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first-passage time problem exists if (E1) holds.
Uniqueness: It is left to show that in the situation of (a) or (b) we have (U3) for the corre-
sponding Iξ ⊂ (0, tξ). Let b be a boundary function with τb

d
= ξ. We want to apply Proposi-

tion 6.2.
Assume (a): Let t ∈ Iξ = (0, tξ). We can exhaust (a) by the case distinction

(a.i) (Xt)t≥0 has unbounded variation,
(a.ii.1) 0 ∈ supp(Π) and Π((−∞,0))> 0 and Π((0,∞))> 0,
(a.ii.2’) 0 ∈ supp(Π) and Xt = Yt + γt, where (Yt)t≥0 is a subordinator without drift and

γ ∈R.

Note that the case (a.ii.2’) can be rephrased as the case that 0 ∈ supp(Π) and Π((−∞,0)) =
0 and (Xt)t≥0 has bounded variation. Observe, if x ∈ R, then by a translation according
to x and Proposition 6.2 we have for t > 0 with Px (τb > t) > 0 (for (a.ii.2’) this implies
x+ γt < b(t)) that

supp(Px (Xt ∈ · |τb > t)) =

{
(−∞, b(t)] : (a.i) or (a.ii.1)
[x+ γt, b(t)] : (a.ii.2’).

Due to t ∈ (0, tξ) we have P (τb > t)> 0. Since P=
∫
R Pxµ(dx), we obtain

sup supp(Pµ (Xt ∈ · |τb > t)) = b(t).

Assume (b): Let t ∈ Iξ = supp(P (ξ ∈ · )) ∩ (0, tξ). The case that (Xt)t≥0 has unbounded
variation is already covered by (a). Let us therefore assume that (Xt)t≥0 has bounded varia-
tion. This implies that Xt = X̃t + γt, where (−X̃t)t≥0 is a subordinator without drift. With-
out loss of generality we can assume that γ = 0 by considering the process (X̃t)t≥0 and the
boundary b̃(t) = b(t)− γt instead. Hence from now on we assume that (−Xt)t≥0 is a subor-
dinator without drift and 0 ∈ supp(Π). Suppose there is 0≤ u < t such that b(t)> b(u). For
ε ∈ (0, b(t)− b(u)) there exists δ ∈ (0, t− u) such that

inf
s∈[t−δ,t+δ]

b(s)≥ b(t)− ε > b(u).

But this implies, since (Xt)t≥0 has non-increasing paths, that

0< P (ξ ∈ (t− δ, t+ δ)) = P (τb ∈ (t− δ, t+ δ)) = P (τb ∈ (t− δ, t+ δ), τb > u)

≤ P (∃s ∈ (t− δ, t+ δ) :Xs ≥ b(u),∀s≥ u :Xs < b(u)) = 0.

This contradiction shows that b(t) ≤ b(u) for all u ≤ t. For x ∈ R with Px (τb > 0) > 0, by
Proposition 6.2, we get that

supp(Px (Xt ∈ · |τb > t)) = (−∞,min(x, b(t))]

Since (Xt)t≥0 has non-increasing paths and t ∈ supp(P (τb ∈ · )) we have

µ({x≥ b(t) : Px (τb > 0)> 0})> 0.

This implies that

sup supp(Pµ (Xt ∈ · |τb > t)) = b(t).

Therefore, under the assumptions that (E1) and ((a) or (b)) are fulfilled, and hence, by Theo-
rem 2.8, the boundary function b with τb

d
= ξ is unique on Iξ .
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7. Conditions for diffusions on an interval. In this section we establish conditions un-
der which a diffusion process in an interval, which satisfies a stochastic differential equation
up to an explosion time, fulfills the assumptions required for existence and uniqueness of
solutions in the inverse first-passage time problem. The proof of Theorem 2.16 is to be found
at the end of the section. At first, we will collect the essential steps in preliminary statements.
Let (Xt)t≥0 be a diffusion on an interval E according to Definition 2.15.

PROPOSITION 7.1. Assume that R /∈ E. Further, assume that σ ∈ C1((L,R)), σ > 0
and that β is locally bounded on (L,R). Let x ∈E. Let b : [0,∞)→ [−∞,∞] be a boundary
function. It holds that

Px

(
τb = τ ′b

)
= 1.

In the case of Brownian motion the following statement was proved in Proposition 6.1 in
[22].

PROPOSITION 7.2. Let b : [0,∞) → E be a boundary function. Assume that σ ∈
C1((L,R)), σ > 0 and that β is locally bounded on (L,R). Let µ be a probability measure
on E. Assume that Pµ (τb > 0)> 0 and that Pµ (Xt ∈ ·) is diffuse for every t > 0. Then

supp(Px (Xt ∈ · |τb > t)) = [L, b(t)]

for every t < inf{s > 0 : b(s) = L}.

The first step towards Proposition 7.1 will be the following.

LEMMA 7.3. Let b : [0,∞)→ E be a boundary function. Assume that σ ∈ C1((L,R)),
σ > 0 and that β is locally bounded. Then for x ∈ (L,R) we have

Px

(
τb < τ ′b ∧ S

)
= 0,

where S := limn→∞ Sn, where Sn are defined in Definition 2.15 (iii).

The idea is to reduce the situation to Brownian motion and use the fact that for Brownian
motion the desired statements are already known. For example, Proposition 2 in [13] and
Lemma 6.2 in [22] prove that for Brownian motion it holds τb = τ ′b almost surely. For this
we follow the idea of [13] from Proposition 2 therein. We first scale the process in the spatial
coordinate as in (4.2) in [13] and then change the measure by using the Girsanov theorem.

For simplicity we assume that σ ∈ C1((L,R)), σ > 0 and that β is locally bounded. Let
c ∈ (L,R) be fixed and for x ∈ (L,R) define

f(x) :=

∫ x

c

1

σ(z)
dz.(12)

We have f ∈ C2(L,R) and that f is strictly increasing and invertible. Let n ∈ N. Under Px

the process (Xt∧Sn
)t≥0 is a semimartingale and due to the Itô formula it follows that

f(Xt∧Sn
) = f(X0) +

∫ t∧Sn

0

(
β(Xs)

σ(Xs)
− 1

2
σ′(Xs)

)
ds+Bt∧Sn

.

This means that the process given by Yt := f(Xt) fulfills

Yt∧Sn
= Y0 +

∫ t∧Sn

0
β̃(Ys)ds+Bt∧Sn

,
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where

β̃(y) :=
β(f−1(y))

σ(f−1(y))
− 1

2
σ′(f−1(y)).

Note that β̃(Yt) is uniformly bounded in t≤ Sn. Let T > 0 be fixed. Then

Ut := exp

(
−
∫ t∧T∧Sn

0
β̃(Ys)dBs −

1

2

∫ t∧T∧Sn

0
(β̃(Ys))

2 ds

)
defines a uniformly integrable positive martingale. By Girsanov the measure

dP̃n,T
x := UT dPx(13)

defined on FT∧Sn
is equivalent to Px on FT∧Sn

and (Yt∧T∧Sn
)t≥0 is a local martingale.

Since its quadratic variation is (t∧ T ∧ Sn)t≥0, Lévy’s characterization of Brownian motion
shows that (Yt∧T∧Sn

)t≥0 is a Brownian motion stopped at T ∧ Sn.

PROOF OF LEMMA 7.3. Recall f from (12) and consider Yt = f(Xt). Define b̃ := f(b),
where we allow f(R) ∈ (−∞,∞] and f(L) ∈ [−∞,∞). Note that

τb = inf{t > 0 : Yt ≥ b̃(t)}, τ ′b = inf{t > 0 : Yt > b̃(t)}.

Since under P̃n,T
x from (13) the stopped process (Yt∧T∧Sn

)t≥0 is a stopped Brownian motion
we have that

P̃n,T
x

(
τb < τ ′b ∧ T ∧ Sn

)
= 0.

Due to the equivalence of the measures P̃n,t
x and Px it follows that

Px

(
τb < τ ′b ∧ T ∧ Sn

)
= 0.

By first letting T →∞ and then n→∞ it follows that

Px

(
τb < τ ′b ∧ S

)
= 0.

This finishes the proof.

PROOF OF PROPOSITION 7.1. The idea of this proof is to split the path into suitable ex-
cursions away from the lower boundary and to apply Lemma 7.3 for every excursion. We
begin with assumptions by which we do not lose generality in order to reduce the complexity
of the boundary involved.

Since R /∈ E we can assume that b takes values in E. Due to the a.s. convergence of
lims↘0 τb|s = τb and lims↘0 τ

′
b|s = τ ′b we can assume that there is s > 0 such that b(t) =R for

t < s. Furthermore, we have τb ≤ τ ′b ≤ inf{t > 0 : b(t) = L}. If τb < τ ′b we have consequently
τb < inf{t > 0 : b(t) = L}. We will therefore assume that there is u < inf{t > 0 : b(t) =
L} such that b(t) = R for all t > u and b(t) > L for all t ∈ [s,u]. Thus, using the lower
semicontinuity, we now treat the case that b(t) =R for t /∈ [s,u] and

L< inf
t∈[s,u]

b(t)≤ sup
t∈[s,u]

b(t)≤R.

For x ∈ (L,R) let us define

Tx := inf{t≥ 0 :Xt ≤ x}.

Let xℓ, xr ∈ {ℓn : n ∈N} such that L< xℓ < xr < inft∈[s,u] b(t). For k ∈N let us inductively
define ρ0 := 0,

λk := inf{t≥ ρk−1 :Xt ≤ xℓ}
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and

ρk := inf{t≥ σk :Xt ≥ xr}.

Since Xt ≤ xr < inft∈[s,u] b(t) for all t ∈ [λk, ρk] and all k ∈N we have that, if τb ̸= τ ′b, then
there is k ∈N0 such that

ρk <∞ and τb ∈ (ρk, λk) and τb < τ ′b.

For x ∈E we have that

Px

(
τb ∈ (ρk, λk), τb < τ ′b, ρk <∞

)
= Ex

[
PXρk

(
τbθ ∈ (0, Txℓ

), τbθ < τ ′bθ
)
θ=ρk

1{ρk<∞}1{ρk<τb}

]
,

where bθ(t) = b(θ + t). For the moment fix θ ≥ 0 and note that bθ is a boundary function
taking values in E. Since (Xt)t≥0 has continuous paths and R /∈ E we have limn→∞ τrn =
∞, where (rn)n∈N is the sequence from Definition 2.15 (iii). Therefore we have that Txℓ

≤
S = limn→∞ Sn and therefore for z ∈ (L,R), by using Lemma 7.3, it holds

Pz

(
τbθ ∈ (0, Txℓ

), τbθ < τ ′bθ
)
≤ Pz

(
τbθ < τ ′bθ ∧ S

)
= 0.

Using this for z =Xρk
∈ {X0, xr} ⊂ (L,R) and plugging it back into the expectation above

we have therefore

Px

(
τb ∈ (ρk, λk), τb < τ ′b, ρk <∞

)
= 0.

This implies

Px

(
τb ̸= τ ′b

)
≤
∑
k∈N0

Px

(
τb ∈ (ρk, λk), τb < τ ′b, ρk <∞

)
= 0.

This finishes the proof of the first part.

PROOF OF PROPOSITION 7.2. Let t < inf{s > 0 : b(s) = L} and z ∈ (L, b(t)) and
ε > 0 such that [z − ε, z + ε] ⊆ (L, b(t)). Since Pµ (τb > 0) > 0 there is s ∈ (0, t) with
Pµ (τb > s) > 0. And since Pµ (Xs ∈ ·) is diffuse there is y ∈ (L, b(s)) such that y ∈
supp(Pµ (Xs ∈ · , τb > s)). Set bs(t) = b(s+ t). Due to

Pµ (Xt ∈ (z − ε, z + ε), τb > t)

≥
∫
R
Pu (Xt−s ∈ (z − ε, z + ε), τbs > t− s)Pµ (Xs ∈ du, τb > s)

it suffices to show that we have

Pu (Xt−s ∈ (z − ε, z + ε), τbs > t− s)> 0(14)

for u ∈ U , where U ⊆ (L, b(s)) is a neighborhood of y. For this, let n ∈ N be large enough
such that

y ∈ (ℓn, rn), (z − ε, z + ε)⊆ (ℓn, rn).

Further, choose T > t− s. Recall f from (12). Let a : [0, t− s]→R be a continuous function
and δ > 0 such that

• a(0) = f(y) and (a(r)− δ, a(r) + δ)⊆ (f(ℓn), f(rn)) for all r ∈ [0, t− s],
• (a(t− s)− δ, a(t− s) + δ)⊆ (f(z − ε), f(z + ε)),
• f(a(r) + δ)< f(b(s+ r)) for all r ∈ [0, t− s].
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An explicit construction of the function a can be made as in Lemma 2.3.6 of [33]. The last
point is possible since b(sr)> L for all r ∈ [0, t− s] and b is lower semicontinuous. Recall
Yr = f(Xr) and P̃n,T

u from (13) and that under P̃n,T
u the stopped process (Yr∧T∧Sn

)r≥0 is
a stopped Brownian motion. Note that it happens with positive probability that a Brownian
motion started at f(u) ∈ (f(y)− δ, f(y) + δ) stays up to time t− s in a tube which follows
a continuous function, for instance see Theorem 38 of [25]. This argument was already used
in Proposition 3.1 of [22] in case of Brownian motion. This leads to

P̃n,T
u (Yt−s ∈ (f(z − ε), f(z + ε)), τbs > t− s,Sn > t− s)

≥ P̃n,T
u (|Yr − a(r)|< δ ∀r ∈ [0, t− s])> 0.

Due to the equivalence of the measures P̃n,T
x and Px we obtain that (14) is true. All in all,

since z was arbitrary, this means that

supp(Px (Xt ∈ · |τb > t)) = [L, b(t)].

This finishes the proof of the statement.

PROOF OF THEOREM 2.16. By our definition of a diffusion on an interval we already as-
sumed that the process has continuous paths and is a strong Markov process. This gives (E2)
and (U1). Since (Xt)t≥0 is a strong Markov process and has continuous paths, the transition
probabilities preserve the usual stochastic order, since paths that started from different posi-
tions can be let run together after they have met, for details see Lemma A.6.1 in [33]. Hence
we have (U2). Moreover, due to the assumptions on the coefficients and that R /∈ E we can
apply Proposition 7.1 and obtain (E3).

Now assume that (E1) holds. Let t ∈ (0, tξ) and assume that τb
d
= ξ. Since Pµ (τb > t)> 0

we have that t < inf{s > 0 : b(s) = L}. Therefore, Proposotion 7.2 implies that

sup supp(Pµ (Xt ∈ · , τb > t)) = b(t).

This gives (U3), and therefore there exists a boundary function b with τb
d
= ξ is unique on

(0, tξ).

APPENDIX

The following statement follows from Theorem 6 in [46], but for completeness we give an
own proof, which makes use of probabilistic arguments.

LEMMA A.4. Let b : [0,∞]→ [−∞,∞] be an arbitrary function. Then the set{
t ∈ (0,∞) : max

(
lim inf
s↗t

b(s), lim inf
s↘t

b(s)

)
> b(t)

}
is countable.

PROOF. We only consider the set

Sb :=

{
t ∈ (0,∞) : lim inf

s↗t
b(s)> b(t)

}
since then the statement follows for the remaining points by consideration of the map
(0,∞) ∋ t 7→ b(1/t).

Further, let

φ : [−∞,∞]→ [−1,1], φ(x) :=
x

1 + |x|
1R(x) + sgn(x)1{−∞,∞}(x)
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and set b̃(t) := φ(b(t)). Since Sb ⊆ Sb̃ we can assume that b takes values in [−1,1].
The function defined by

b∗(t) :=min
(
lim inf
s→t

b(s), b(t)
)

is lower semicontinuous and it holds Sb ⊆ Sb∗ . Thus without loss of generality we can assume
that b is a lower semicontinuous function.

Let t ∈ Sb. Then there is ε > 0 such that there exists δ > 0 with

b(s)≥ b(t) + ε ∀s ∈ (t− δ, t).

Let (Bt)t≥0 be a Brownian motion starting from a deterministic point B0 = x < −1. For a
function f : [0,∞]→R define

τf := inf{s > 0 :Bs ≥ f(s)}.

Let K := b(t) + ε. Then we have

P (τb = t)≥ P (τ−1 > t− δ, τK > t,Bt ∈ (b(t), b(t) + ε))

= P

(
sup

s∈[0,t−δ]
Bs <−1, sup

s∈[t−δ,t]
Bs <K,Bt ∈ (b(t), b(t) + ε)

)
> 0.

Therefore, we have

Sb ⊆ {t ∈ (0,∞) : P (τb = t)> 0},

where the right-hand side is a countable set. This finishes the proof.

Acknowledgments. Alexander Klump gratefully acknowledges the support of a post-
doctoral fellowship from the German Academic Exchange Service (DAAD) and the hospi-
tality of the Institute of Mathematics and Informatics of the Bulgarian Academy of Sciences.

Mladen Savov acknowledges - "This study is financed by the European Union-NextGenerationEU,
through the National Recovery and Resilience Plan of the Republic of Bulgaria, project No
BG-RRP-2.004-0008"

Mladen Savov acknowledges that part of this work was done as part of his duties as a pro-
fessor at the Institute of Mathematics and Informatics at the Bulgarian Academy of Sciences.

REFERENCES

[1] ABUNDO, M. (2006). Limit at zero of the first-passage time density and the in-
verse problem for one-dimensional diffusions. Stoch. Anal. Appl. 24 1119–1145.
https://doi.org/10.1080/07362990600958804 MR2273773

[2] ABUNDO, M. (2013). The double-barrier inverse first-passage problem for Wiener process with ran-
dom starting point. Statist. Probab. Lett. 83 168–176. https://doi.org/10.1016/j.spl.2012.09.006
MR2998739

[3] ANULOVA, S. V. (1980). On Markov stopping times with a given distribution for a Wiener process. Theory
Probab. Appl. 25 362–366.

[4] AVELLANEDA, M. and ZHU, J. (2001). Modeling the Distance-to-Default Process of a Firm. Risk 14 125–
129.

[5] BASS, R. F. (2010). The measurability of hitting times. https://doi.org/10.48550/ARXIV.1001.3619
[6] BEIGLBÖCK, M., EDER, M., ELGERT, C. and SCHMOCK, U. (2018). Geometry of distribution-

constrained optimal stopping problems. Probab. Theory Related Fields 172 71–101.
https://doi.org/10.1007/s00440-017-0805-x MR3851830

[7] BERESTYCKI, J., BRUNET, E., NOLEN, J. and PENINGTON, S. (2021). A free boundary problem aris-
ing from branching Brownian motion with selection. Trans. Amer. Math. Soc. 374 6269–6329.
https://doi.org/10.1090/tran/8370 MR4302161

https://doi.org/10.1080/07362990600958804
https://mathscinet.ams.org/mathscinet-getitem?mr=2273773
https://doi.org/10.1016/j.spl.2012.09.006
https://mathscinet.ams.org/mathscinet-getitem?mr=2998739
https://doi.org/10.48550/ARXIV.1001.3619
https://doi.org/10.1007/s00440-017-0805-x
https://mathscinet.ams.org/mathscinet-getitem?mr=3851830
https://doi.org/10.1090/tran/8370
https://mathscinet.ams.org/mathscinet-getitem?mr=4302161


36

[8] BERESTYCKI, J., BRUNET, É., NOLEN, J. and PENINGTON, S. (2022). Brownian bees in the infinite swarm
limit. Ann. Probab. 50 2133–2177. https://doi.org/10.1214/22-AOP1578

[9] BERESTYCKI, J., BRUNET, E. and PENINGTON, S. (2019). Global existence for a free boundary problem of
Fisher-KPP type. Nonlinearity 32 3912–3939. https://doi.org/10.1088/1361-6544/ab25af MR4012576

[10] BERTOIN, J. (1996). Lévy processes. Camb. Tracts Math. 121. Cambridge: Cambridge Univ. Press.
[11] BÉRARD, J. and FRÉNAIS, B. (2023). Hydrodynamic limit of N-branching Markov processes.

https://doi.org/10.48550/arXiv.2311.12453
[12] CHEN, X., CHADAM, J. and SAUNDERS, D. (2022). Higher-order regularity of the free boundary in the in-

verse first-passage problem. SIAM J. Math. Anal. 54 4695–4720. https://doi.org/10.1137/21M1466797
[13] CHEN, X., CHENG, L., CHADAM, J. and SAUNDERS, D. (2011). Existence and uniqueness of solu-

tions to the inverse boundary crossing problem for diffusions. Ann. Appl. Probab. 21 1663–1693.
https://doi.org/10.1214/10-AAP714 MR2884048

[14] CHENG, L., CHEN, X., CHADAM, J. and SAUNDERS, D. (2006). Analysis of an inverse first passage
problem from risk management. SIAM J. Math. Anal. 38 845–873. https://doi.org/10.1137/050622651
MR2262945

[15] CIVALLERO, A. and ZUCCA, C. (2019). The inverse first passage time method for a two dimen-
sional Ornstein Uhlenbeck process with neuronal application. Math. Biosci. Eng. 16 8162–8178.
https://doi.org/10.3934/mbe.2019412

[16] DAVIS, M. H. A. and PISTORIUS, M. R. (2010). Quantification of Counterparty Risk Via Bessel Bridges.
SSRN Electronic Journal. https://doi.org/10.2139/ssrn.1722604

[17] DAVIS, M. H. A. and PISTORIUS, M. R. (2015). Explicit solution of an inverse first-passage time
problem for Lévy processes and counterparty credit risk. Ann. Appl. Probab. 25 2383–2415.
https://doi.org/10.1214/14-AAP1051

[18] DE MASI, A., FERRARI, P. A., PRESUTTI, E. and SOPRANO-LOTO, N. (2019). Hydrodynamics of the
N -BBM process. In Stochastic dynamics out of equilibrium. Springer Proc. Math. Stat. 282 523–549.
Springer, Cham. https://doi.org/10.1007/978-3-030-15096-9_18 MR3986078

[19] DENG, Y., BARROS, A. and GRALL, A. (2014). Calculation of failure level based on in-
verse first passage problem. In 2014 Reliability and Maintainability Symposium 1-6.
https://doi.org/10.1109/RAMS.2014.6798459

[20] DUDLEY, R. M. and GUTMANN, S. (1977). Stopping times with given laws. In Séminaire de Probabilités,
XI (Univ. Strasbourg, Strasbourg, 1975/1976) 51–58. Lecture Notes in Math., Vol. 581. MR0651553

[21] DYNKIN, E. B. (1965). Markov processes. Vols. I, II. Grundlehren Math. Wiss. 121/122. Springer, Cham.
[22] EKSTRÖM, E. and JANSON, S. (2016). The inverse first-passage problem and optimal stopping. Ann. Appl.

Probab. 26 3154–3177. https://doi.org/10.1214/16-AAP1172
[23] ETTINGER, B., EVANS, S. N. and HENING, A. (2014). Killed Brownian motion with a prescribed lifetime

distribution and models of default. Ann. Appl. Probab. 24 1–33. https://doi.org/10.1214/12-AAP902
MR3161639

[24] ETTINGER, B., HENING, A. and WONG, T. K. (2020). The inverse first passage time problem for
killed Brownian motion. Ann. Appl. Probab. 30 1251–1275. https://doi.org/10.1214/19-AAP1529
MR4133373

[25] FREEDMAN, D. (1983). Brownian Motion and Diffusion. New York, Springer.
[26] GÜR, S. and PÖTZELBERGER, K. (2021). On the empirical estimator of the boundary in inverse first-exit

problems. Comput. Statist. 36 1809–1820. https://doi.org/10.1007/s00180-020-00989-x MR4302860
[27] HULL, J. C. and WHITE, A. D. (2001). Valuing credit default swaps II: Modeling default correlations. The

Journal of derivatives 8 12–21.
[28] JACKSON, K., KREININ, A. and ZHANG, W. (2009). Randomization in the first hitting time problem.

Statist. Probab. Lett. 79 2422–2428. https://doi.org/10.1016/j.spl.2009.08.016 MR2556323
[29] JAIMUNGAL, S., KREININ, A. and VALOV, A. (2009). Integral Equations and the First Passage Time of

Brownian Motions. https://doi.org/10.48550/ARXIV.0902.2569
[30] JAIMUNGAL, S., KREININ, A. and VALOV, A. (2009). Randomized First Passage Times.

https://doi.org/10.48550/ARXIV.0911.4165
[31] JAIMUNGAL, S., KREININ, A. and VALOV, A. (2014). The generalized Shiryaev problem and Sko-

rokhod embedding. Theory Probab. Appl. 58 493–502. https://doi.org/10.1137/S0040585X97986734
MR3403010

[32] KARATZAS, I. and SHREVE, S. E. (1991). Brownian motion and stochastic calculus., 2nd ed. ed. Grad.
Texts Math. 113. New York etc.: Springer-Verlag.

[33] KLUMP, A. (2022). The classical and the soft-killing inverse first-passage time problem: A stochastic order
approach. Thesis (Ph.D.) – Paderborn University. https://doi.org/10.17619/UNIPB/1-1648

[34] KLUMP, A. (2023). The Inverse First-passage Time Problem as Hydrodynamic Limit of a Particle System.
Methodol. Comput. Appl. Probab. 25 42. https://doi.org/10.1007/s11009-023-10020-7 MR4559059

https://doi.org/10.1214/22-AOP1578
https://doi.org/10.1088/1361-6544/ab25af
https://mathscinet.ams.org/mathscinet-getitem?mr=4012576
https://doi.org/10.48550/arXiv.2311.12453
https://doi.org/10.1137/21M1466797
https://doi.org/10.1214/10-AAP714
https://mathscinet.ams.org/mathscinet-getitem?mr=2884048
https://doi.org/10.1137/050622651
https://mathscinet.ams.org/mathscinet-getitem?mr=2262945
https://doi.org/10.3934/mbe.2019412
https://doi.org/10.2139/ssrn.1722604
https://doi.org/10.1214/14-AAP1051
https://doi.org/10.1007/978-3-030-15096-9_18
https://mathscinet.ams.org/mathscinet-getitem?mr=3986078
https://doi.org/10.1109/RAMS.2014.6798459
https://mathscinet.ams.org/mathscinet-getitem?mr=0651553
https://doi.org/10.1214/16-AAP1172
https://doi.org/10.1214/12-AAP902
https://mathscinet.ams.org/mathscinet-getitem?mr=3161639
https://doi.org/10.1214/19-AAP1529
https://mathscinet.ams.org/mathscinet-getitem?mr=4133373
https://doi.org/10.1007/s00180-020-00989-x
https://mathscinet.ams.org/mathscinet-getitem?mr=4302860
https://doi.org/10.1016/j.spl.2009.08.016
https://mathscinet.ams.org/mathscinet-getitem?mr=2556323
https://doi.org/10.48550/ARXIV.0902.2569
https://doi.org/10.48550/ARXIV.0911.4165
https://doi.org/10.1137/S0040585X97986734
https://mathscinet.ams.org/mathscinet-getitem?mr=3403010
https://doi.org/10.17619/UNIPB/1-1648
https://doi.org/10.1007/s11009-023-10020-7
https://mathscinet.ams.org/mathscinet-getitem?mr=4559059


EXISTENCE AND UNIQUENESS OF THE INVERSE FIRST-PASSAGE TIME PROBLEM 37

[35] KLUMP, A. and KOLB, M. (2023). Uniqueness of the Inverse First-Passage Time Problem and
the Shape of the Shiryaev Boundary. Theory of Probability & Its Applications 67 570-592.
https://doi.org/10.1137/S0040585X97T991155

[36] KLUMP, A. and KOLB, M. (2023). An elementary approach to the inverse first-passage time problem for
soft-killed Brownian motion.

[37] LAWLER, G. F. (2009). Notes on the Bessel process.
[38] LEE, J. M. (2020). Free boundary problems and biological systems with selection rules. Arch. Math. (Basel)

114 85–95. https://doi.org/10.1007/s00013-019-01362-1 MR4047660
[39] PESKIR, G. (2002). On integral equations arising in the first-passage problem for Brownian motion. J.

Integral Equations Appl. 14 397–423. https://doi.org/10.1216/jiea/1181074930 MR1984752
[40] POTIRON, Y. (2021). Existence in the inverse Shiryaev problem.

https://doi.org/10.48550/ARXIV.2106.11573
[41] SACERDOTE, L. and ZUCCA, C. (2005). Inverse First Passage Time Method in the Analysis of Neuronal

Interspike Intervals of Neurons Characterized by Time Varying Dynamics. In Brain, Vision, and Arti-
ficial Intelligence 69–77. https://doi.org/10.1007/11565123_7

[42] SACERDOTE, L. and ZUCCA, C. (2007). Statistical study of the inverse first passage time algorithm.
In Noise and Fluctuations in Photonics, Quantum Optics, and Communications 6603 66030N.
https://doi.org/10.1117/12.725681

[43] SATO, K.-I. (1999). Lévy processes and infinitely divisible distributions. Camb. Stud. Adv. Math. 68. Cam-
bridge: Cambridge University Press.

[44] SHAKED, M. and SHANTHIKUMAR, J. G. (2007). Stochastic Orders. Springer Series in Statistics. Springer
New York.

[45] SONG, J.-S. and ZIPKIN, P. (2011). An approximation for the inverse first passage time problem. Adv. in
Appl. Probab. 43 264–275. https://doi.org/10.1239/aap/1300198522 MR2761157

[46] YOUNG, W. H. (1907). On the distinction of right and left at points of discontinuity. The Quarterly Journal
of Pure and Applied Mathematics 39 67–83.

[47] ZUCCA, C. and SACERDOTE, L. (2009). On the inverse first-passage-time problem for a Wiener process.
Ann. Appl. Probab. 19 1319–1346. https://doi.org/10.1214/08-AAP571 MR2538072

https://doi.org/10.1137/S0040585X97T991155
https://doi.org/10.1007/s00013-019-01362-1
https://mathscinet.ams.org/mathscinet-getitem?mr=4047660
https://doi.org/10.1216/jiea/1181074930
https://mathscinet.ams.org/mathscinet-getitem?mr=1984752
https://doi.org/10.48550/ARXIV.2106.11573
https://doi.org/10.1007/11565123_7
https://doi.org/10.1117/12.725681
https://doi.org/10.1239/aap/1300198522
https://mathscinet.ams.org/mathscinet-getitem?mr=2761157
https://doi.org/10.1214/08-AAP571
https://mathscinet.ams.org/mathscinet-getitem?mr=2538072

	Introduction
	Main results
	Lévy processes
	Diffusions on an interval

	Existence: Proof of Theorem 2.3
	Uniqueness: Proof of Theorem 2.8
	Comparison principle: Proof of Theorem 2.11
	Conditions for Lévy processes: Proof of Theorem 2.13
	Conditions for diffusions on an interval
	Appendix
	Acknowledgments
	References

