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Abstract. In this paper we are concerned with the 2D incompressible Navier-Stokes equations
driven by space-time white noise. We establish existence of infinitely many global-in-time prob-
abilistically strong and analytically weak solutions u for every divergence free initial condition
u0 ∈ Lp ∪ C−1+δ , p ∈ (1, 2), δ > 0. More precisely, there exist infinitely many solutions such
that u− z ∈ C([0,∞);Lp) ∩ L2

loc([0,∞);Hζ) ∩ L1
loc([0,∞);W

1
3
,1) for some ζ ∈ (0, 1), where z is

the solution to the linear equation. This result in particular implies non-uniqueness in law. Our
result is sharp in the sense that the solution satisfying u − z ∈ C([0,∞);L2) ∩ L2

loc([0,∞);Hζ)

for some ζ ∈ (0, 1) is unique.
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1. Introduction

In this paper, we consider the following two dimensional Navier–Stokes system on T2 = R2/Z2

driven by a space-time white noise
du+ div(u⊗ u)dt+∇pdt = ∆udt+ dBt,

divu = 0,

u(0) = u0, (1.1)
where p is the associated pressure. Here B is a cylindrical Wiener process on some stochastic basis
(Ω,F , (Ft)t⩾0,P). The time derivative of B is the delta correlated space-time white noise. Such a
noise appears in a scaling limit of point vortex approximation and the vorticity form of the 2D Euler
equations perturbed by a certain transport type noise (cf. [FL20, FL21, LZ21]). More precisely,
the scaling limit is described by the vorticity form of the 2D Navier-Stokes system driven by the
curl of a space-time white noise, which is equivalent to the 2D Navier-Stokes equations driven by a
space-time white noise in terms of velocity-pressure variables.

Specifically, it can be shown that under parabolic scaling the space-time white noise in spatial
dimension d is a random distribution of space-time regularity −(d+2)/2−κ for any κ > 0. According
to Schauder’s estimates, we expect that solutions will have at most −d/2+1−κ regularity. Therefore,
in two dimensions, solutions are already not functions. As a result, the product in the convective
term is analytically undefined, and probabilistic arguments are necessary to make sense of the
equations.

Da Prato and Debussche [DPD02] initially solved this problem locally in time by decomposing
(1.1) into a linear equation and nonlinear equation (see (1.2) and (1.3) below). Moreover, by utilizing
the properties of the Gaussian invariant measure, they were able to obtain global-in-time existence
for almost every initial condition with respect to the invariant measure. Through the strong Feller
property in [ZZ17], global-in-time existence for every initial condition could be derived.

Recently, Hairer and Rosati [HR24] employed dynamic high-low frequency decomposition and
paraproduct to establish the existence of a unique global-in-time solution for initial conditions in
L2 ∪ C−1+δ, without relying on any knowledge of invariant measures. Here C−1+δ denotes the
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Hölder–Besov space, whose definition is postponed to Section 2 below. However, their methods
depend on the solution to the linear equation being a log-correlated field and it is not clear that
whether their method are applicable to even slightly more irregular noise.

In a more singular case, such as the 3D case, Hofmanová, Zhu, and the second named author
of this paper [HZZ23] established global existence and non-uniqueness of strong solutions in a
paracontrolled sense, with the help of the convex integration method. The first goal of this paper
is to extend the result in [HZZ23] to the two-dimensional case. However, the convex integration
method in the 2D case is more complex than in the 3D case since there is less freedom in dimensions,
and a space-time intermittent variant of the framework is required (see [CL23, CL22]).

Additionally, the nonlinearity in the Navier-Stokes system appears similar to the one in the
Langevin dynamics for the Yang-Mills measure, which is the stochastic quantization of the Yang-
Mills field. Local-in-time solutions for this case were constructed in [She21, CCHS22, CCHS24].
However, the existence of global solutions is still an open question. The idea is to use dynamics
and PDE techniques to study properties of the field. Formally, these equations have the law of the
associated field as an invariant measure. In the case of stochastic quantization of the Euclidean
field theory, it was possible to use dynamics to construct and study properties of the corresponding
measure (see [MW17a, MW17b, GH21] and [SZZ23]). As stochastic quantization of the 2D Yang-
Mills field is much simpler than the 3D case, and global existence for the Langevin dynamics for the
2D Yang-Mills measure is unattainable using classical PDE techniques, we hope that our extension
to the 2D case can provide some insight into this problem.

It is also natural to investigate the sharpness of uniqueness/non-uniqueness in this setting. In the
deterministic case, the classical Ladyzhenskaya-Prodi-Serrin criterion ensures that there exists at
most one solution in the class CtL

d, d ⩾ 3, without any additional regularity assumptions [FLRT00,
LM01]. However, it is unclear whether such a result holds in the 2D case. Moreover, in our setting,
if the solution u to (1.1) minus the solution to the linear equation has no further regularity, the
nonlinear term cannot be well-defined. Although [HR24] provides a unique solution space for (1.1),
it is interesting to determine whether such a space is sharp, i.e., whether we could find more solutions
in a slightly larger space. Therefore, the second aim of this paper is to provide an answer to this
problem. Our results are twofold:

• We prove that there exists at most one solution u satisfying u − z ∈ C([0,∞);L2) ∩
L2

loc([0,∞);Hζ) for some ζ ∈ (0, 1), which can be viewed as Ladyzhenskaya-Prodi-Serrin
criteria in this setting. Here z is defined in (1.4) below.

• The above result is sharp in the sense that there exists infinitely many solutions in a slightly
larger space. More precisely, for every divergence free initial condition in Lp, p ∈ (1, 2) we
show existence of infinite many global in time probabilistically strong and analytically weak
solutions u such that

u− z ∈ C([0,∞);Lp) ∩ L2
loc([0,∞);Hζ)

P-a.s. for some ζ ∈ (0, 1). We also emphasize that our method also applies to more rough
noise.

1.1. Main result. Using Da Prato-Debussche’s trick, we divide the equation (1.1) into two parts:
the following linear equation:

dz −∆zdt+∇pz = dB,

divz = 0,

z(0) = 0, (1.2)
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and the following random PDE:
dv −∆vdt+ div((v + z)⊗ (v + z))dt+∇pvdt = 0,

divv = 0, (1.3)
v(0) = u0.

The solution to (1.2) can be written as

z(t) := PH

∫ t

0

e(t−s)∆dBs, (1.4)

where et∆ is the heat semigroup and PH is the Helmholtz projection. Note that here we do not
choose z being stationary, since the zero initial condition will be convenient to deal with the Lp

initial condition. Similar to [DPD02], Gaussian computation guarantees we still have z ∈ CTC
−κ

for κ > 0 and give a meaning to div(z ⊗ z) by Wick product. More details can be seen in Section
3.1.

Let us now formulate the definition of the probabilistically strong and analytically weak solutions
to (1.1). To this end, we recall that Bt is the given R2-valued cylindrical Wiener process defined on
a stochastic basis (Ω,F , (Ft)t⩾0,P).

Definition 1.1. We say that an (Ft)t⩾0-adapted process u is a probabilistically strong and analyt-
ically weak solution to the Navier-Stokes system (1.1) provided

(1). u− z ∈ C([0,∞);L1) ∩ L2
loc([0,∞);L2) ∩ L1

loc([0,∞);W
1
3 ,1) P-a.s., where z(t) is defined in

(1.4).
(2). for every 0 ⩽ s ⩽ t <∞ it holds P-a.s.

⟨(u− z)(t), ψ⟩+
∫ t

s

⟨div
(
(u− z)⊗ (u− z) + (u− z)⊗ z + z ⊗ (u− z) + z:2:

)
, ψ⟩dr

= ⟨(u− z)(s), ψ⟩+
∫ t

s

⟨∆(u− z), ψ⟩dr

for all ψ ∈ C∞(T2), divψ = 0. Here z:2: is defined as a Wick product of z ⊗ z and we refer to
Proposition 3.1 for the detailed definition.

Our first main result concerns the existence of infinitely many global solutions for any initial
condition in Lp ∪ C−1+δ, with p ∈ (1, 2), δ > 0.

Theorem 1.2. Let u0 ∈ Lp ∪ C−1+δ with some p ∈ (1, 2), δ > 0 P-a.s. be a divergence free initial
condition independent of the Wiener process B. Then there exist infinitely many probabilistically
strong and analytically weak solutions u to the equation (1.1) on [0,∞) in the sense of Definition
1.1.

Moreover, if u0 ∈ Lp with some p ∈ (1, 2), then for any 0 < κ < (1 − 1
p ) ∧ ( 2p − 1) ⩽ 1

3 it holds
that

z ∈ Cloc([0,∞);C−κ),

u− z ∈ C([0,∞);Lp) ∩ L2
loc([0,∞);Hζ) ∩ L1

loc([0,∞);W
1
3 ,1)

P-a.s. for some ζ ∈ (0, 1) independent of κ, where z is defined in (1.4).

Remark 1.3. We could also cover the case introduced in [HR24]
du+ div(u⊗ u)dt+∇pdt = ∆udt+ Zdt+ dB,
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divu = 0, u(0) = u0,

where Z is in the parabolically scaled Hölder-Besov space C−2+3κ
parab as defined in [Hai14, Definition

3.7] with s = (2, 1). In this case, we could set z = PH

∫ t

0
e(t−s)∆dBs + PH

∫ t

0
e(t−s)∆Zds and

then do the same decomposition. Here by the regularity of Z, the Schauder estimate leads to∫ t

0
e(t−s)∆Zds ∈ CTC

2κ. Then we define

z:2:(t) :=:
(
PH

∫ t

0

e(t−s)∆dBs

)2
: +2PH

∫ t

0

e(t−s)∆dBsPH

∫ t

0

e(t−s)∆Zds+
(
PH

∫ t

0

e(t−s)∆Zds
)2
.

Then z ∈ CTC
−κ and z:2: ∈ CTC

−2κ, where we used renormalization of :
(
PH

∫ t

0
e(t−s)∆dBs

)2
: in

CTC
−2κ.

Furthermore, our construction directly implies the following result.
Corollary 1.4. Non-uniqueness in law holds for the Navier–Stokes system (1.1) for every given
initial law supported on divergence free vector fields in Lp ∪ C−1+δ for p ∈ (1, 2), δ > 0.

In the present paper, our idea is to utilize convex integration method in order to construct
global-in-time solutions. This iterative technique allows us to construct solutions step by step, with
each iteration explicitly addressing a specific scale. This method heavily relies on the structure of
the nonlinearity, which propagates oscillations and reduces the Reynolds stress error term as we
progress through the iteration, gradually bringing us closer to a solution. In this study, we employ
the accelerating jets technique proposed in [CL23] for the two-dimensional case. Compared to the
spatially intermittent framework used in [HZZ23] that was based on [BV19a], the accelerating jets
with space-time intermittent variant allow us more flexibility in terms of the non-uniqueness range
scaling. The accelerating jets used time periodicity and in the stochastic setting we have to modify
some estimate (see Remark B.2 and Theorem C.1) to adjust the stopping time. For more information
on convex integration, please refer to section 1.2.

To enable convex integration in the singular setting of equation (1.3), we adopt a further decom-
position of the Navier-Stokes system (1.3), following the approach in [HZZ23]. Specifically, we split
v into et∆u0 + v1 + v2, where v1 represents the irregular part and v2 represents the regular part.
The equation for v1 is linear, while the equation for v2 contains the quadratic nonlinearity. The
equation for v1 can be solved using a fixed point argument, and we apply convex integration on the
level of v2. Since the equation for v2 is coupled with the equation for v1, we propose a joint iterative
procedure that approximates both equations. Compared to [HZZ23], we separate the initial value
part as our initial value is only in the Lp space. This also leads to a different extension for the initial
value part with e|t|∆u0 to negative time for the mollification around t = 0, which is required in the
convex integration estimate. Additionally, in [HZZ23], to handle the singularity of v1 around zero,
the authors put some regular terms into the equation of v1. In this paper, as we use the accelerating
jets introduced in [CL23] and only control the L1

TL
1 norm of the Reynolds stress, we could keep

these regular terms in the equation of v2. To maintain the same initial value during the iteration,
the oscillation can only be added for positive times. In our setting, we need to take care the term
that arises from the noise part in a small time interval near zero (see Remark 3.7).

Finally we obtain the following sharp uniqueness result in the space C([0,∞);L2)∩L2
loc([0,∞);Hζ)

which can be viewed as Ladyzhenskaya-Prodi-Serrin criteria in this setting.
Theorem 1.5. There exists at most one probabilistically strong and analytically weak solution u
to the equation (1.1) on [0,∞) in the sense of Definition 1.1 such that u − z ∈ C([0,∞);L2) ∩
L2
loc([0,∞);Hζ) P-a.s. for some ζ ∈ (0, 1), where z is defined in (1.4).
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Remark 1.6. If u0 ∈ L∞ there exists exactly one solution u such that u − z ∈ C([0,∞);L2) ∩
L2
loc([0,∞);Hζ) by [HR24].

Remark 1.7. The uniqueness result in Theorem 1.5 also holds for the deterministic 2D Navier-
Stokes equations, i.e. B = 0. The proof follows by the same argument.
1.2. Convex integration. Convex integration was first introduced to fluid dynamics by De Lellis
and Székelyhidi Jr. [DLS09, DLS10, DLS13]. Since then, this method has led to several break-
throughs in the field, including the proof of Onsager’s conjecture for the incompressible Euler equa-
tions [Ise18, BDLSV19]. Also the question of well/ill-posedness of the three dimensional Navier-
Stokes equations has experienced an immense breakthrough: Buckmaster and Vicol [BV19b] es-
tablished non-uniqueness of weak solutions with finite kinetic energy, Buckmaster, Colombo and
Vicol [BCV21] were able to connect two arbitrary strong solutions via a weak solution. Sharp non-
uniqueness results for the Navier-Stokes equations in dimension d ⩾ 2 were obtained by Cheskidov
and Luo [CL23, CL22]. We refer to the reviews [BV19a, BV21] for further details and references.

The first work on convex integration in the stochastic setting is due to Breit, Feireisl and Hof-
manová [BFH20]. Later in [HZZ24, HLP24, Pap24], non-uniqueness in law of weak solutions to
the Navier-Stokes equation driven by additive, linear multiplicative, transport noise, and nonlinear
noise of cylindrical type was established. In [HZZ22a], similar results were obtained, along with the
existence and non-uniqueness of strong Markov solutions for the Euler equations. The long-standing
problem of constructing probabilistically strong global solutions to the Navier-Stokes equation per-
turbed by trace-class noise, along with non-uniqueness statements for such solutions, was solved
in [HZZ23b, CDZ24]. By combining convex integration techniques with tools from paracontrolled
calculus [GIP15] for singular SPDEs, [HZZ23] was able to study the Navier-Stokes equation per-
turbed by space-time white noise, yielding global existence and non-uniqueness of weak solutions.
Remarkably, the interplay of techniques allows pushing the solution theory even further into the
regimes of so-called supercritical equations [HZZ23a] that are inaccessible by standard theories for
singular SPDEs such as paracontrolled calculus or regularity structures [Hai14]. Finally, in the
most recent works [CDZ24, HZZ22b], a stochastic convex integration theory is developed, leading
to non-uniqueness of stationary ergodic solutions to stochastic perturbations of the Navier-Stokes
and Euler equations.

Convex integration has also been applied to other related equations with weaker diffusion, such as
power-law fluids with a small parameter p (see [BMS21], and [LZ23] for the stochastic setting), and
hypodissipative type Navier-Stokes equations (see [CDLDR18, RS23, Yam22a, Yam22b, Yam22c,
Yam24a, Yam24b]).

In summary, the convex integration method has been successfully applied in fluid dynamics to
study the incompressible Euler and Navier-Stokes equations, as well as their stochastic counterparts.
However, constructing Leray solutions using convex integration remains an open problem, and a
recent non-uniqueness result for Leray solution with forced Navier-Stokes system was obtained by
a different method [ABC22].
Organization of the paper. In Section 2 we collect the basic notations and preliminaries used
throughout the paper. In Section 3 we recall the construction of stochastic objects and present a
formal decomposition of the system into the system for v1 and v2 as discussed above. Then we
explain the set-up of the iterative convex integration procedure and provide proofs of our main
results, namely, Theorem 1.2 and Corollary 1.4. We give estimates of v1q in Section 4. Section 5 is
devoted to the core of the convex integration construction, namely, the iteration Proposition 3.6.
The proof of Theorem 1.5 is shown in Section 6. Finally in Appendix we collect several auxiliary
results.
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2. Preliminaries

Throughout the paper, we employ the notation a ≲ b if there exists a constant c > 0 such that
a ⩽ cb.

2.1. Function spaces. Given a Banach space E with a norm ∥ · ∥E and T > 0, we write CTE =
C([0, T ];E) for the space of continuous functions from [0, T ] to E, equipped with the supremum
norm ∥f∥CTE = supt∈[0,T ] ∥f(t)∥E . For α ∈ (0, 1) we define Cα

TE as the space of α-Hölder contin-
uous functions from [0, T ] to E, endowed with the norm ∥f∥Cα

TE = sups,t∈[0,T ],s ̸=t
∥f(s)−f(t)∥E

|t−s|α +

supt∈[0,T ] ∥f(t)∥E . Here we use Cα
T to denote the case when E = R. For p ∈ [1,∞] we write

Lp
TE = Lp([0, T ];E) for the space of Lp-integrable functions from [0, T ] to E, equipped with the

usual Lp-norm. We use Lp to denote the set of standard Lp-integrable functions from T2 to R2. For
s > 0, p > 1 we set W s,p := {f ∈ Lp; ∥(I−∆)

s
2 f∥Lp <∞} with the norm ∥f∥W s,p = ∥(I−∆)

s
2 f∥Lp .

For T > 0 and a domain D ⊂ R+ we denote by CN
T,x and CN

D,x, respectively, the space of CN -
functions on [0, T ]× T2 and on D × T2, respectively, N ∈ N0 := N ∪ {0}. The spaces are equipped
with the norms

∥f∥CN
T,x

=
∑

0⩽n+|α|⩽N

n∈N0,α∈N2
0

∥∂nt Dαf∥L∞
T L∞ , ∥f∥CN

D,x
=

∑
0⩽n+|α|⩽N

n∈N0,α∈N2
0

sup
t∈D

∥∂nt Dαf∥L∞ .

We define the projection onto null-mean functions is P ̸=0f := f −
∫
Td− fdx. For a tensor T , we

denote its traceless part by T̊ := T − 1
d tr(T )Id. By Sd×d we denote the space of symmetric matrix

and by Sd×d
0 the space of symmetric trace-free matrix.

We use (∆i)i⩾1 to denote the Littlewood-Paley blocks corresponding to a dyadic partition of unity.
Besov spaces on the torus with general indices α ∈ R, p, q ∈ [1,∞] are defined as the completion of
C∞(T2) with respect to the norm

∥u∥Bα
p,q

:=
( ∑

j⩾−1

2jαq∥∆ju∥qLp

)1/q
.

The Hölder–Besov space Cα is given by Cα = Bα
∞,∞, and we also set Hα = Bα

2,2, α ∈ R.
The following embedding results will be frequently used.

Lemma 2.1. (1).([GIP15, Lemma A.2]) Let 1 ⩽ p1 ⩽ p2 ⩽ ∞ and 1 ⩽ q1 ⩽ q2 ⩽ ∞, and let α ∈ R.
Then Bα

p1,q1 ⊂ B
α−2(1/p1−1/p2)
p2,q2 .

(2).([Tri78, Theorem 4.6.1])Let s ∈ R, 1 < p < ∞, ε > 0. Then W s,2 = Bs
2,2 = Hs, and Bs

p,1 ⊂
W s,p ⊂ Bs

p,∞ ⊂ Bs−ϵ
p,1 .

2.2. Paraproducts. Paraproducts were introduced by Bony in [Bon81] and they permit to decom-
pose a product of two distributions into three parts which behave differently in terms of regularity.
More precisely, using the Littlewood-Paley blocks, the product fg of two Schwartz distributions
f, g ∈ S ′(T2) can be formally decomposed as

fg = f ≺ g + f ≻ g + f ◦ g,

with
f ≺ g = g ≻ f =

∑
j⩾−1

∑
i<j−1

∆if∆jg, f ◦ g =
∑

|i−j|⩽1

∆if∆jg.
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Here, the paraproducts ≺ and ≻ are always well-defined and critical is the resonant product denoted
by ◦. In general, it is only well-defined provided the sum of the regularities of f and g in terms of
Besov spaces is strictly positive. Moreover, we have the following paraproduct estimates.

Lemma 2.2. ([GIP15, Lemma 2.1],[MW17a, Proposition A.7]) Let β ∈ R, p, p1, p2, q ∈ [1,∞] such
that 1

p = 1
p1

+ 1
p2

. Then it holds

∥f ≺ g∥Bβ
p,q

≲ ∥f∥Lp1 ∥g∥Bβ
p2,q

,

and if α < 0 then
∥f ≺ g∥Bα+β

p,q
≲ ∥f∥Bα

p1,q
∥g∥Bβ

p2,q
.

If α+ β > 0 then it holds
∥f ◦ g∥Bα+β

p,q
≲ ∥f∥Bα

p1,q
∥g∥Bβ

p2,q
.

We denote ⪰= ◦+ ≻, ⪯= ◦+ ≺.
Analogously to the the real-valued case, we may define paraproducts for vector-valued distribu-

tions. More precisely, for two vector-valued distributions f, g ∈ S ′(Td;Rm), we use the following
tensor paraproduct notation

f ⊗ g = (figj)
m
i,j=1 = f ≺⃝g + f ⊚ g + f ≻⃝ g = (fi ≺ gj)

m
i,j=1 + (fi ◦ gj)mi,j=1 + (fi ≻ gj)

m
i,j=1,

and note that Lemma 2.2 carries over mutatis mutandis. We also denote ≽⃝ = ⊚+ ≻⃝, ≼⃝ = ⊚+ ≺⃝.
We also recall the following lemma for the Helmholtz projection PH

Lemma 2.3. ([HZZ23, Lemma 2.5]) Assume that α ∈ R and p ∈ [1,∞]. Then for every k, l = 1, 2

∥Pkl
H f∥Bα

p.∞
≲ ∥f∥Bα

p.∞
.

Finally, we introduce localizers in terms of Littlewood-Paley expansions. Let J ∈ N0. For
f ∈ S ′(T2) we define

∆>Jf =
∑
j>J

∆jf, ∆⩽Jf =
∑
j⩽J

∆jf.

Then it holds in particular for α ⩽ β ⩽ γ

∥∆>Jf∥Cα ≲ 2−J(β−α)∥f∥Cβ , ∥∆⩽Jf∥Cγ ≲ 2J(γ−β)∥f∥Cβ . (2.1)

2.3. Anti-divergence operators. We recall the following anti-divergence operator R from [CL23,
Appendix D], which acts on vector fields v as

(Rv)ij = Rijkvk

where
Rijk = −∆−1∂kδij +∆−1∂iδjk +∆−1∂jδik.

Then Rv(x) is a symmetric trace-free matrix for each x ∈ T2, and R is a right inverse of the
div operator, i.e. div(Rv) = v −

∫
T2− vdx By a direct computation we have for any divergence-free

v ∈ C∞(T2,R2)

R∆v = ∇v +∇T v. (2.2)

Let C∞
0 (T2,R2) be the set of smooth functions with zero mean. By [CL23, Theorem D.2] we

know for any 1 ⩽ p ⩽ ∞, σ ∈ N, f ∈ C∞
0 (T2,R2)

∥Rf(σ·)∥Lp ≲ σ−1∥f∥Lp . (2.3)
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Let C∞
0 (T2,R2×2) be the set of smooth matrix valued functions with zero mean. We also introduce

the bilinear version B : C∞(T2,R2)× C∞
0 (T2,R2×2) → C∞(T2,S2×2

0 ) by

(B(v,A))ij = vlRijkAlk −R(∂ivlRijkAlk).

Then by [CL23, Theorem D.3] we have div(B(v,A)) = vA−
∫
T2− vAdx and for any 1 ⩽ p ⩽ ∞

∥B(v,A)∥Lp ≲ ∥v∥C1∥RA∥Lp . (2.4)

2.4. Probabilistic elements. Regarding the driving noise, we assume that B is a vector-valued
L2-cylindrical Wiener process on some stochastic basis (Ω,F ,P). The time derivative of B is the
space-time white noise.

3. Convex integration set-up and results

This section is devoted to the proof of Theorem 1.2 and Corollary 1.4. The goal is to establish
existence of non-unique global-in-time probabilistically strong solutions to (1.3) for every given
divergence free initial condition in Lp ∪ C−1+δ for p ∈ (1, 2), δ > 0.

3.1. Stochastic objects. Let us recall that due to [DPD02], the equation (1.3) is locally well-posed
for initial conditions in C−1+δ. The solution u belongs to C([0, t0);C

−1+δ) where t0 is a strictly
positive stopping time so that ∥uϵ − u∥Ct0C

−1+δ → 0 in probability. Here, uϵ denotes the solution
to the regularized Navier–Stokes system

∂uϵ + div(uϵ ⊗ uϵ) +∇pϵ = ∆uϵ + ζϵ, divuϵ = 0,

where ζϵ is a mollification of the space-time white noise ζ = dB
dt . To summarize the main ideas, let

zϵ be the solution to
∂tzϵ +∇pzϵ = ∆zϵ + ζϵ, divzϵ = 0, zϵ(0) = 0.

Then zϵ → z in Lp(Ω, CTC
−κ) for every p ∈ [1,∞), κ ∈ (0,∞). Moreover, the renormalized

product z:2: can be defined as a Wick product in the sense that for any t ∈ [0, T ] there exist
diverging constants Cϵ(t) ∈ R2×2, Cij

ϵ (t) → ∞, so that

z:2:ϵ (t) = zϵ ⊗ zϵ(t)− Cϵ(t)

has a well-defined limit in Lp(Ω, CTC
−κ) for p ∈ [1,∞). In fact, Cϵ(t) = E[zϵ⊗zϵ(t)], which implies

div(z:2:ϵ (t)) = div(zϵ⊗ zϵ(t)). We recall the following result from [DPD02, Lemma 3.2, Theorem 5.1]

Proposition 3.1. For every κ > 0, 0 < δ < 1
4 , there exist random distribution z, z:2: such that

zϵ → z in CTC
−κ ∩ Cδ/2

T C−κ−δ and z:2:ϵ → z:2: in CTC
−2κ ∩ Cδ/2

T C−2κ−δ P-a.s. as ε→ 0.

Remark 3.2. In fact for equation (1.3) if regularity of z in CTC
−κ and z:2: in CTC

−2κ, κ ∈ (0, 13 )

our argument also works, which can be seen in (3.8) below. Here κ < 1
3 is necessary otherwise the

term v ⊗ z + z ⊗ v in (1.3) is not well-defined and we need to perform a further decomposition.

3.2. Formal decomposition. Following the way in [HZZ23, HZZ23b] we begin by constructing
local probabilistically strong solutions with Cauchy problem for the initial condition in Lp for p ∈
(1, 2). Then we use the final value at the stopping time of any such convex integration solution as
a new initial condition for the convex integration procedure. This way we are able to extend the
convex integration solutions as probabilistically strong solutions defined on the whole time interval
[0,∞).
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To this end, we intend to prescribe an arbitrary random initial condition u0 ∈ Lp independent
of the given Wiener process B. Let (Ft)t⩾0 be the augmented joint canonical filtration on (Ω,F)
generated by B and u0. Then B is a (Ft)t⩾0-Wiener process and u0 is F0-measurable.

To deal with (1.3) we split v = zin + v1 + v2 where zin = et∆u0 and et∆ is the heat semigroup.
The equation for v1 contains all the irregular terms of the product (v + z) ⊗ (v + z), whereas
the regular ones are put in v2. Additionally, the equation for v1 shall be linear so that it can be
solved by a fixed point argument. The decomposition can be done as follows. The product z ⊗ z
needs to be constructed by renormalization as a Wick product denoted by z:2: and it is of spatial
regularity C−2κ. So we have the first irregular term z:2:. Then with the help of paraproducts and
Littlewood-Paley projectors defined in Section 2, we write

(v1 + v2 + zin)⊗ z = (v1 + v2 + zin) ≺⃝ ∆>Rz

+ (v1 + v2 + zin) ≽⃝ ∆>Rz + (v1 + v2 + zin)⊗∆⩽Rz,

where the first line on the right hand side is irregular and the second and the third are regular. We
treat the symmetric term z ⊗ (v1 + v2 + zin) the same way. Here we included a suitable cut-off R
to be chosen appropriately in Section 4. This eventually simplifies the fixed point argument used to
establish, for a given convex integration iteration v2q , the existence and uniqueness of v1q . Finally,
we have the regular term (v1 + v2 + zin)⊗ (v1 + v2 + zin). This leads to

(∂t −∆)v1 +∇p1 + div(z:2: + (v1 + v2 + zin) ≺⃝∆>Rz +∆>Rz ≻⃝(v1 + v2 + zin)) = 0,

divv1 = 0, (3.1)
v1(0) = 0.

(∂t −∆)v2 +∇p2 + div((v1 + v2 + zin)⊗∆⩽Rz +∆⩽Rz ⊗ (v1 + v2 + zin))

+ div((v1 + v2 + zin)⊗ (v1 + v2 + zin))

+ div((v1 + v2 + zin) ≽⃝∆>Rz +∆>Rz ≼⃝ (v1 + v2 + zin)) = 0,

divv2 = 0, (3.2)
v2(0) = 0.

It is easy to see that v = zin + v1 + v2 solves (1.3). As in [HZZ23], these equations need to be
considered together with in the convex integration scheme and we put forward a joint iterative
procedure.

Remark 3.3. Compared to [HZZ23] we do not include the terms ∆>Rz ≼⃝ (v1+zin) and (v1+zin)
≽⃝ ∆>Rz in (3.1). These terms require regularity of v1 + zin and lead to a negative power of t in
the estimate of R̊q. In [HZZ23], the authors bound the CtL

1 norm of R̊q, whereas here we bound it
in a weaker L1

tL
1
x-norm.

3.3. Convex integration set-up. The convex integration iteration is indexed by a parameter
q ∈ N0. It will be seen that the Reynolds stress R̊q is only required for the approximations v2q of v2,
whereas the approximations v1q of v1 are obtained by a fixed point argument.

We consider an increasing sequence {λq}q∈N0 ⊂ N which diverges to ∞, and a sequence {δq}q∈N0∪{−1}
⊂ (0, 1) which decreases to 0. We choose a ∈ N, b ∈ N, β ∈ (0, 1) and let

λq = a(b
q), q ∈ N0, δq =

1

2
λ2β1 λ−2β

q , q ∈ N, δ0 = δ−1 = 1,
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where β will be chosen sufficiently small and a as well as b will be chosen sufficiently large. In
addition, we used

2δq+1 ⩽ δq (3.3)

for q ∈ N0 and ∑
q⩾1

δ1/2q ⩽ 1√
2

∑
q⩾1

abβ−qbβ ⩽ 1√
2

1

1− a−bβ
⩽ 1, (3.4)

which boils down to
a2β(b−1) ⩾ 2, abβ ⩾ 4 > 2 +

√
2. (3.5)

We assume (3.3)-(3.5) from now on. Then we choose α ∈ (0, 1) small enough and define f(q)

satisfying 2f(q) = λ
α/8
q . We require that f(q) ∈ N, which can be satisfied by choosing an appropriate

value of a. More details on the choice of these four parameters a, b, α, β will be given in Section 5.1
below.

At each step q, a triple (v1q , v
2
q , R̊q) is constructed solving the following system:

(∂t −∆)v1q +∇p1q+div(z:2: + (v1q + v2q + zin) ≺⃝∆⩽f(q)∆>Rz)

+div(∆⩽f(q)∆>Rz ≻⃝(v1q + v2q + zin)) = 0,

divv1q = 0,

v1q (0) = 0. (3.6)

(∂t −∆)v2q +∇p2q + div((v1q + v2q + zin)⊗ (v1q + v2q + zin))

+ div((v1q + v2q + zin)⊗∆⩽Rz +∆⩽Rz ⊗ (v1q + v2q + zin))

+ div((v1q + v2q + zin) ≽⃝∆>Rz +∆>Rz ≼⃝(v1q + v2q + zin)) = divR̊q,

divv2q = 0,

v2q (0) = 0. (3.7)

Here we add the localizers ∆⩽f(q) in the equation of v1q+1, which are used to control the blow up of
a certain norm of v1q as q → ∞. Note that the Reynolds stress R̊q is only included in the equation
for v2q . Indeed, the equation of v2q contains the quadratic nonlinearity which is used in the convex
integration to reduce the stress.

At each iteration step q+1, we first use the previous stress R̊q to define the principle part of the
corrector w(p)

q+1, the incompressibility corrector w(c)
q+1 and the time corrector w(t)

q+1 in terms of the
accelerating jet flows introduced in Appendix B. This gives the next iteration v2q+1 and consequently
we obtain v1q+1 by a fixed point argument.

As the next step, we define a stopping time which controls suitable norms of all the required
stochastic objects. Namely, by Proposition 3.1, for L ⩾ 2 we define κ0 := (1− 1

p )∧ ( 2p − 1) ⩽ 1
3 and

let for some 0 < κ < κ0

TL : = T 1
L ∧ T 2

L ∧ T 3
L, (3.8)

T 1
L : = inf{t ⩾ 0, ∥z(t)∥C−κ ⩾ L1/4} ∧ L,

T 2
L : = inf{t ⩾ 0, ∥z∥

C
κ0/2
t C−κ−κ0

⩾ L1/4} ∧ inf{t ⩾ 0, ∥z∥
C

1
4
(1−2κ−κ0)

t C− 1
2
+

κ0
2

⩾ L1/4} ∧ L,
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T 3
L : = inf{t ⩾ 0, ∥z:2:(t)∥C−2κ ⩾ L1/2} ∧ L.

Then TL is P-a.s. strictly positive stopping time and it holds that TL → ∞ as L→ ∞ P-a.s.
We intend to solve (1.3) for any given divergence free initial condition u0 ∈ Lp measurable with

respect to F0. However, in the first step, we take the following additional assumption: Let N ⩾ 2
be given and assume in addition that P-a.s.

∥u0∥Lp ⩽ N. (3.9)

We keep this additional assumption on the initial condition throughout the convex integration step
in Proposition 3.6. In Theorem 3.10 it is relaxed to u0 ∈ Lp P-a.s and finally, Corollary 3.11 proves
the result if u0 ∈ Lp ∪ C−1+δ, δ > 0 P-a.s. We suppose that there is a deterministic constant
ML(N) ⩾ max{L9, N2L2}, In the following we write ML instead of ML(N) for simplicity. We
denote A = ([ 3p

p−1 ] + 1)ML, σq = δq, q ∈ N0 ∪ {−1}, γq = δq, q ∈ N0\{3}, γ3 = K. K > 1 is a large
constant which is used to distinguish different solutions.

Remark 3.4. Comparing to [HZZ23], here we choose σq = δq for q ∈ N0 ∪ {−1} and γq = δq for
q ∈ N0\{3} to deduce v ∈ L2([0, TL];H

ζ) for some ζ > 0 (see (3.24) below for details).

To handle the mollification around t = 0 needed in the convex integration below, we require that
(3.7) is satisfied also for some negative times, namely, it holds on an interval [tq, TL] for certain
tq < 0. More precisely, we let tq := −1 +

∑
1⩽r⩽q δ

1/2
r and by (3.4) we obtain −1 ⩽ tq ⩽ 0. Here

we defined
∑

1⩽r⩽0 := 0. For q ∈ N0, t ∈ [tq, 0) we assume zin(t) = e|t|∆u0, z(t) = v1q (t) = v2q (t) =

0, R̊q(t) = zin(t)⊗̊zin(t). As v2q equals zero near zero, ∂tv2q (0) = 0, which implies by our extension
that the equation (3.7) holds also for t ∈ [tq, 0).

Remark 3.5. Comparing to [HZZ23], we do not extend zin and R̊q by their values at time zero as
u0 is only in Lp for p ∈ (1, 2) and we need to ensure zin⊗zin in L1

tL
1
x within the estimate for R̊q.

The key result is the following iterative proposition, which will be proved in Section 5 below.

Proposition 3.6. Let p ∈ (1, 2), L,N ⩾ 2 and assume (3.9). There exists a choice of parameters
a, b, α, β such that the following holds true: Let (v1q , v

2
q , R̊q) for some q ∈ N0 be an (Ft)t⩾0-adapted

solution to (3.6) and (3.7) satisfying
∥v2q∥L2

[0,TL]
L2 ⩽M0(M

3/4
L

q∑
m=1

δ1/2m +
√
2M

1/4
L

q∑
m=1

γ1/2m ) +
√
2M0(ML +A)1/2

q−1∑
m=1

(mσm−1)
1/2

⩽M0M
3/4
L +

√
2M0M

1/4
L (K1/2 + 1) + 17M0(ML +A)1/2,

v2q (t) = 0, t ∈ [tq, σq ∧ TL],
(3.10)

for a universal constant M0, where we define
∑

1⩽r⩽−1 := 0,
∑

1⩽r⩽0 := 0, and

∥v2q∥C1
t,x

⩽ λ4qM
1/2
L , t ∈ [0, TL], (3.11)

∥v2q∥CTL
Lp ⩽M

1/2
L

q∑
m=1

δ1/2m ⩽M
1/2
L , (3.12)
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∥R̊q∥L1
(σq−1∧TL,TL]

L1 ⩽MLδq+1,

∥R̊q∥L1
[0,TL]

L1 ⩽MLδq+1 + 2(q + 1)Aσ
2− 2

p
q ,

sup
tq⩽a⩽(σq∧TL)−h

∥R̊q∥L1
[a,a+h]

L1 ⩽ 2(q + 1)A(
h

2
)2−

2
p for any h ∈ (0, (σq ∧ TL)− tq].

(3.13)

Then there exists an (Ft)t⩾0-adapted process (v1q+1, v
2
q+1, R̊q+1) which solves (3.6) and (3.7) on the

level q + 1 and satisfies

∥v2q+1 − v2q∥CTL
Lp ⩽M

1/2
L λ−α

q+1 ⩽M
1/2
L δ

1/2
q+1, (3.14)

∥v2q+1 − v2q∥CTL
W 1/2,6/5 ⩽M

1/2
L λ−α

q+1 ⩽M
1/2
L δ

1/2
q+1, (3.15)

∥v2q+1 − v2q∥L2
((2σq−1)∧TL,TL]

L2 ⩽M0(M
1/2
L δ

1/2
q+1 + γ

1/2
q+1)(M

1/2
L − 2σq−1)

1/2,

∥v2q+1 − v2q∥L2
(σq+1∧TL,(2σq−1)∧TL]

L2 ⩽M0((ML + qA)1/2 + γ
1/2
q+1)(2σq−1)

1/2,

v2q+1(t) =0, for t ∈ [tq+1, σq+1 ∧ TL].

(3.16)

Consequently, (v1q+1, v
2
q+1, R̊q+1) obeys (3.10)-(3.13) at the level q + 1. Furthermore,

|∥v2q+1∥2L2
(2∧TL,TL]

L2 − ∥v2q∥2L2
(2∧TL,TL]

L2 − 2γq+1(TL − 2 ∧ TL)| ⩽ 5MLδq+1. (3.17)

Remark 3.7. As we used accelerating jets introduced in [CL23], the bound for v2q is L2 in time
and for R̊q is L1 in time compared to [HZZ23]. Moreover, we have extra (q + 1)A term in (3.13),
which comes from the noise part and propagates to all the other estimates. To still obtain R̊q → 0

in L1([0, TL];L
1), we keep track of the length of interval in the estimate of R̊q, which present in the

last line of (3.13).

Note that Proposition 3.6 does not include any bounds on v1q , v1q+1. Indeed, the definition of the
new velocity v2q+1 does not require v1q+1. Once v2q+1 is obtained, all the necessary bounds for v1q+1

can be deduced from Section 4 below. Specifically, in Section 4, we demonstrate the following.

Proposition 3.8. Under the assumptions of Proposition 3.6, it holds for 0 < κ < κ0

∥v1q+1 − v1q∥CTL
L2 ≲ ∥v1q+1 − v1q∥CTL

B
1−κ−κ0
p,∞

≲M
1/2
L (λ−α

q+1 + L5/4λ
−α

8 κ0
q ) ⩽M

1/2
L δ

1/2
q+1, (3.18)

∥v1q∥CTL
L2 ≲ ∥v1q∥CTL

B
1−κ−κ0
p,∞

≲ L3/2 + L−3/4(M
1/2
L +N) ⩽M

1/2
L , (3.19)

∥v1q∥CTL
C

1
2
≲ L2M

1/2
L λαq . (3.20)

We intend to start the iteration from v20 = 0 on [0, TL]. Then (3.10)-(3.12) hold. In that case, we
obtain v10 by (3.6) and R̊0 is the trace-free part of the matrix

(v10 + zin)⊗∆⩽Rz +∆⩽Rz⊗(v10 + zin) + (v10 + zin)⊗(v10 + zin)

+ (v10 + zin) ≽⃝∆>Rz +∆>Rz ≼⃝(v10 + zin).

By (2.1), (3.8) and the choice of R in Section 4 we obtain
∥∆⩽Rz∥CtL∞ + ∥z∥CtC−κ ≲ ∥∆⩽Rz∥CtCκ0/8 + ∥z∥CtC−κ

≲ (2(
1
8κ0+κ)R + 1)∥z∥CtC−κ ≲ (2

9
8κ0R + 1)∥z∥CtC−κ ≲ L5/2. (3.21)
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By [DV15, Lemma 9] we obtain for t ∈ [0, TL], p ∈ (1, 2)

∥zin(t)∥W 2/p−1,p + ∥zin(t)∥L2 ≲ (1 + t
1
2−

1
p )∥u0∥Lp .

With these bounds in hand, by Lemmas 2.1, 2.2 with 2/p−1−κ > 0, 1−2κ−κ0 > 0 and Proposition
3.8 we have for t ∈ [0, TL]

∥R̊0(t)∥L1 ⩽ 2(∥v10∥CtB
1−κ−κ0
p,∞

+ ∥zin(t)∥W 2/p−1,p)(∥∆⩽Rz∥CtL∞ + ∥z∥CtC−κ) + ∥v10(t) + zin(t)∥2L2

≲ (∥v10∥CtB
1−κ−κ0
p,∞

+ ∥zin(t)∥W 2/p−1,p)2 + (∥∆⩽Rz∥CtL∞ + ∥z∥CtC−κ)2 + ∥v10(t) + zin(t)∥2L2

≲ (L3/2 + L−3/4(M
1/2
L +N))2 + (1 + |t|1/2−1/p)2N2 + L5

≲ L5 + L−3/2ML +N2(1 + |t|1−2/p), (3.22)

which implies that

∥R̊0∥L1
[0,TL]

L1 ≲ L6 + L−1/2ML +N2(L+ L2−2/p) ⩽ 1

2
ML.

Here and in the following we used L large enough to absorb the implicit constant.
For 0 < t ⩽ σ0 ∧ TL ⩽ 1, we have t1−2/p ⩾ 1 as 1− 2/p < 0. Then we have

∥R̊0(t)∥L1 ⩽ (2− 2/p)At1−2/p.

For −1 ⩽ t0 ⩽ t < 0 we have R̊0(t) = zin⊗̊zin and |t|1−2/p ⩾ 1 as 1− 2/p < 0. Therefore we obtain

∥R̊0(t)∥L1 ≲ ∥zin(t)∥2L2 ≲ N2(1 + |t|1−2/p) ⩽ML|t|1−2/p. (3.23)

Combining the two inequalities above and by straightforward calculations we obtain for any 0 <
h ⩽ σ0 ∧ TL − t0

sup
t0⩽a<a+h⩽σ0∧TL

∥R̊0∥L1
[a,a+h]

L1 ⩽ 2A(
h

2
)2−2/p.

Hence (3.13) is satisfied on the level q = 0 as δ1 = 1/2.

3.4. Proof of the main results. We first deduce the following result by using Propositions 3.6
and 3.8.

Theorem 3.9. There exists a P-a.s. strictly positive stopping time TL, arbitrarily large by choosing
L large, such that for any F0-measurable divergence-free initial condition u0 ∈ Lp, p ∈ (1, 2) P-a.s.
the following holds true: There exists an (Ft)t⩾0-adapted process (v1, v2) such that

v1 ∈ C([0, TL];H
ζ) ∩ C([0, TL];B1−κ−κ0

p,∞ ),

v2 ∈ C([0, TL];L
p) ∩ L2([0, TL];H

ζ) ∩ C([0, TL];W
1
2 ,

6
5 )

P-a.s. for 0 < κ < κ0, ζ ∈ (0, 1) independent of κ, and is an analytically weak solution to (3.1) and
(3.2) with zin(t) = et∆u0, v

1(0) = v2(0) = 0. There are infinitely many such solutions v2 and also
infinitely many solutions v = v1 + v2 + zin to (1.3) on [0, TL] satisfying

v ∈ C([0, TL];L
p) ∩ L2([0, TL];H

ζ) ∩ L1([0, TL];W
1
3 ,1)

P-a.s. for some ζ ∈ (0, 1).
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Proof. First we consider u0 ∈ Lp satisfying ∥u0∥Lp ⩽ N . Letting v20 ≡ 0, we repeatedly apply
Proposition 3.6 and obtain (Ft)t⩾0-adapted processes (v1q , v

2
q , R̊q), q ∈ N. By (3.18), (3.20) and

interpolation we obtain∑
q⩾0

∥v1q+1 − v1q∥CTL
Hζ ≲

∑
q⩾0

∥v1q+1 − v1q∥
1−3ζ
CTL

L2∥v1q+1 − v1q∥
3ζ
CTL

H1/3

≲
∑
q⩾0

∥v1q+1 − v1q∥
1−3ζ
CTL

L2∥v1q+1 − v1q∥
3ζ
CTL

C1/2

≲
∑
q⩾0

(MLδq+1)
1−3ζ

2 (L2M
1/2
L λq+1)

3ζ ≲ML

∑
q⩾0

δ
1−3ζ−3ζ/β

2
q+1 ≲ML,

where we chose 0 < ζ < β
3+3β and used δq ⩽ 2−q to deduce

∑
q⩾0 δ

1−3ζ−3ζ/β
2

q+1 < ∞. As a result a
limit v1 = limq→∞ v1q exists and lies in C([0, TL];H

ζ). By (3.4) and (3.18) we obtain v1q → v1 in
C([0, TL];B

1−κ−κ0
p,∞ ) as q → ∞. Using (3.4), (3.14) and (3.15) we obtain v2 = limq→∞ v2q exists and

lies in C([0, TL];L
p) ∩ C([0, TL];W 1/2,6/5). By (3.16) we obtain

∥v2q+1 − v2q∥L2
[0,TL]

L2 ⩽ 2M0(M
1/2
L δ

1/2
q+1 + γ

1/2
q+1)M

1/4
L +M0(ML + qA)1/2(2σq−1)

1/2 ≲M0MLδ
1/3
q−1,

where in the last inequality we used (3.3) to deduce √
qδ

1/6
q−1 ≲ √

q2−q/6 ≲ 1. And we note that the
implicit constant depends on K as γ3 = K. Then together with (3.11), interpolation and Hölder’s
inequality we obtain that∫ TL

0

∥v2q+1 − v2q∥2Hζdt ⩽
∫ TL

0

∥v2q+1 − v2q∥
2(1−ζ)
L2 ∥v2q+1 − v2q∥

2ζ
H1dt

⩽
(∫ TL

0

∥v2q+1 − v2q∥2L2dt

)1−ζ (∫ TL

0

∥v2q+1 − v2q∥2H1dt

)ζ

≲ (M2
0M

2
Lδ

2/3
q−1)

1−ζ(MLλ
8
q+1)

ζ ≲M2
0M

2
Lδ

2
3 (1−ζ)− 4ζb2

β

q−1 , (3.24)

where we chose 0 < ζ < β
β+6b2 such that 2

3 (1 − ζ) − 4ζb2

β > 0. Thus we obtain v2q → v2 in
L2([0, TL];H

ζ).
For zin part, by [DV15, Lemma 9] we have

∥zin(t)∥Lp ≲ ∥u0∥Lp , ∥zin(t)∥Hζ ≲ (1 + t
1
2−

1
p−

ζ
2 )∥u0∥Lp , ∥zin(t)∥

W
1
3
,1 ≲ (1 + t−

1
6 )∥u0∥Lp .

Then we chose 0 < ζ < 2− 2
p and obtained zin ∈ C([0, TL];L

p)∩L2([0, TL];H
ζ)∩L1([0, TL];W

1
3 ,1)

by calculation. Thus we obtain v ∈ C([0, TL];L
p) ∩ L2([0, TL];H

ζ) ∩ L1([0, TL];W
1
3 ,1) P-a.s.

Furthermore by (3.13) we obtain R̊q → 0 in L1([0, TL];L
1) as q → ∞. Thus (v1, v2) satisfies

equations (3.1) and (3.2) before TL in the analytic weak sense. Since v1q (0) = v2q (0) = 0 we deduce
v1(0) = v2(0) = 0. Hence v defined above solves (1.3).

Next, we prove non-uniqueness of the constructed solutions. In view of (3.4) and (3.17), we have

| ∥v2∥2L2
(2∧TL,TL]

L2 − 2K(TL − 2 ∧ TL)|

⩽
∞∑
q=0

∣∣∣∣∥v2q+1∥2L2
(2∧TL,TL]

L2 − ∥v2q∥2L2
(2∧TL,TL]

L2 − 2γq+1(TL − 2 ∧ TL)
∣∣∣∣+ 2

∑
q ̸=2

γq+1M
1/2
L
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⩽ 5ML

∞∑
q=0

δq+1 + 2
∑
q ̸=2

γq+1M
1/2
L := c,

and by (3.4), (3.18) and (3.19) we obtain

∥v1∥L2
(2∧TL,TL]

L2 ⩽ ∥v10∥L2
(2∧TL,TL]

L2 +

∞∑
q=0

∥v1q+1 − v1q∥L2
(2∧TL,TL]

L2

⩽M
1/2
L (1 +

∞∑
q=0

δ
1/2
q+1)T

1/2
L ⩽ML,

which imply non-uniqueness by choosing different K. More precisely, for a given L ⩾ 2 sufficiently
large it holds P(4 < TL) > 0. The parameters L,N determine ML(N) and consequently by choosing
different K = K(L,N) and K ′ = K ′(L,N) so that

√
4K ′ − c −ML > ML +

√
2KM

1/2
L + c, we

deduce that the corresponding solutions vK = v1K+zin+v2K and vK′ = v1K′+zin+v2K′ have different
L2L2-norms on the set {4 < TL}. In fact, it is easy to see

∥v1K + v2K∥L2
(2,TL]

L2 ⩽ML +

√
2KM

1/2
L + c <

√
4K ′ − c−ML ⩽ ∥v1K′ + v2K′∥L2

(2,TL]
L2 .

By the choice of K,K ′ we have different solutions.
The choice of ζ depends on p, β, b, which are independent of N,L,K and κ, see Section 5.1. Thus

for a general initial condition u0 ∈ Lp P-a.s., define ΩN := {N − 1 ⩽ ∥u0∥Lp < N} ∈ F0. Then the
first part of this proof gives the existence of infinitely many adapted solutions (v1,N , v2,N ) on each
ΩN . Letting v1 :=

∑
N∈N v

1,N1ΩN
, v2 :=

∑
N∈N v

2,N1ΩN
concludes the proof. □

Theorem 3.10. Let u0 ∈ Lp, p ∈ (1, 2) P-a.s. be an F0-measurable divergence free initial condition.
Then there exist infinitely many probabilistically strong and analytically weak solutions v to (1.3)
on [0,∞). Moreover, it holds

v ∈ C([0,∞);Lp) ∩ L2
loc([0,∞);Hζ) ∩ L1

loc([0,∞);W
1
3 ,1)

P-a.s. for some ζ ∈ (0, 1).

Proof. For u0 ∈ Lp, p ∈ (1, 2), by Theorem 3.9 we constructed a probabilistically strong solution v
before the stopping time TL starting from the given initial condition u0 ∈ Lp P-a.s. Since TL > 0 P-
a.s.,we know

∥v2(TL)∥Lp + ∥v1(TL)∥Lp + ∥zin(TL)∥Lp <∞.

Hence we can use the value (v1 + v2 + zin)(TL) as a new initial condition in Theorem 3.9. More
precisely, now we aim at solving the original system on the time interval [TL, TL + T̂L] by applying
Theorem 3.9 with some stopping time T̂L > 0 P -a.s.

To this end, we define ẑin(0) = (v1 + v2 + zin)(TL), and we consider ẑ(t) = z(t + TL), ẑ
:2:(t) =

z:2:(t+ TL). Then we define the stopping time

T̂L : = T̂ 1
L ∧ T̂ 2

L ∧ T̂ 3
L,

T̂ 1
L : = inf{t ⩾ 0, ∥ẑ(t)∥C−κ ⩾ (L+ 1)1/4} ∧ (L+ 1),

T̂ 2
L : = inf{t ⩾ 0, ∥ẑ∥

C
κ0/2
t C−κ−κ0

⩾ (L+ 1)1/4}

∧ inf{t ⩾ 0, ∥ẑ∥
C

1−2κ−κ0
4

t C− 1
2
+

κ0
2

⩾ (L+ 1)1/4} ∧ (L+ 1),
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T̂ 3
L : = inf{t ⩾ 0, ∥ẑ:2:(t)∥C−2κ ⩾ (L+ 1)1/2} ∧ (L+ 1).

Then we find TL+1−TL ⩽ T̂L. Similarly we construct a solution (v̂1, v̂2, ẑin) on [0, T̂L], which is still
adapted to (Ft+TL

)t⩾0. We define v1(t) = (v1+v2+zin)(t)1{t⩽TL}+(v̂1+ v̂2+ ẑin)(t−TL)1{t>TL}.
By a similar argument as [HZZ23b, Theorem 1.1] we obtain that v1 satisfies the equation (3.1) in
[0, TL+1] and is adapted to the natural filtration (Ft)t⩾0.

Now, we can iterate the above steps to obtain v̄ = v1{t⩽TL} +
∑∞

k=1 vk1{TL+k−1<t⩽TL+k} and
v̄ ∈ C([0,∞);Lp) ∩ L2

loc([0,∞);Hζ) ∩ L1
loc([0,∞);W

1
3 ,1) for some ζ ∈ (0, 1), is a probabilistically

strong solution.
Furthermore, as in the proof of Theorem 3.9 we obtain infinitely many such solutions by choosing

different K. □

Corollary 3.11. Let u0 ∈ Lp ∪ C−1+δ, p ∈ (1, 2), δ > 0 P-a.s. be an F0-measurable divergence
free initial condition. Then there exist infinitely many probabilistically strong and analytically weak
solutions v to the equation (1.3) on [0,∞).

Proof. If u0 ∈ C−1+δ with δ > 0, by the same argument as [DPD02] there exists a stopping time
0 < t ⩽ TL and a local solution v to (1.3). Now v(t) ∈ C1−κ and we can start from v(t) and obtain
infinitely many global solutions by using Theorem 3.10. □

Accordingly Theorem 1.2 is proved.

Proof of Corollary 1.4. Let L > 1 be such that P(4 < TL) > 1/2. With the notation from the proof
of Theorem 3.9 and particularly in view of (3.17), we choose again K,K ′ so that

√
4K − c > ML,

√
4K ′ − c−ML > ML +

√
2KM

1/2
L + c.

The corresponding solutions then satisfy

P(
√
4K − c−ML ⩽ ∥v1K + v2K∥L2

(2,TL]
L2 ⩽ML +

√
2KM

1/2
L + c) >

1

2
,

P(
√
4K ′ − c−ML ⩽ ∥v1K′ + v2K′∥L2

(2,TL]
L2 ⩽ML +

√
2K ′M

1/2
L + c) >

1

2
.

Since the two intervals [
√
4K − c−ML,ML+

√
2KM

1/2
L + c] and [

√
4K ′ − c−ML,ML+

√
2K ′M

1/2
L + c]

are disjoint, the laws of vK and vK′ are different. This carries over to the solutions vK and vK′ as
well as to the final solutions obtained at the end of the proof of Theorem 3.10. □

4. Estimate of v1q

In this section, we work under the assumptions of Proposition 3.6. The main aim is to prove the
bounds (3.18)-(3.20). Moreover, we recall that the equation for v1q is linear. Hence, for a given v2q
we obtain the existence and uniqueness of solution v1q to (3.6) by a fixed point argument together
with the uniform estimate derived in the sequel. Also, if v2q is (Ft)t⩾0-adapted, so is v1q . This in
particular gives the existence of v1q+1 in Proposition 3.6, once the new velocity v2q+1 was constructed
in Section 5.

In the following, similar to [HZZ23] we make use of the localizers ∆>R present in the equation
for v1q in (3.1). Namely, by an appropriate choice of R we can always apply (2.1) to get a small
constant in front of terms which contain v1q . We are therefore able to absorb them into the left hand
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sides of the estimates without a Gronwall argument. In the following, all the estimates are pathwise
and valid before the stopping time TL.

By Lemma C.3, Lemma 2.2, (2.1), (3.8) and interpolation we have for 1 < p < 2, 0 < κ < κ0

∥v1q∥
C

1
4
(1−2κ−κ0)

t B
1/2−κ0/2
p,∞

≲ ∥v1q∥CtB
1−κ−κ0
p,∞

+ ∥v1q∥
C

1
2
(1−κ−κ0)

t Lp

≲ L∥z:2:∥CtC−κ−κ0 + L∥v1q + v2q + zin∥CtLp∥∆>Rz∥CtC−κ−κ0

≲ L∥z:2:∥CtC−2κ + ∥v1q + v2q + zin∥CtLpL5/42−κ0R

≲ L3/2 + (∥v1q∥CtL2 + ∥v2q∥CtLp + ∥zin∥CtLp)L5/42−κ0R.

Then we choose R such that 2κ0R = 4CL2 with C being the implicit constant. Together with (3.9)
and (3.12) we obtain

∥v1q∥CtL2 ≲ ∥v1q∥CtB
1−κ−κ0
p,∞

≲ L3/2 + L−3/4(∥v2q∥CtLp + ∥u0∥CtLp)

≲ L3/2 + L−3/4(M
1/2
L +N) ⩽M

1/2
L ,

where in the first inequality we used the embedding Lemma 2.1 to deduce B1−κ−κ0
p,∞ ⊂ L2 with

1 − κ − κ0 > 2( 1p − 1
2 ), i.e. κ < κ0 ⩽ 1 − 1

p . In the last inequality we used ML ⩾ L4 and chose L
large enough to absorb the universal constants. Then (3.19) follows. Moreover we have

∥v1q∥
C

1
4
(1−2κ−κ0)

t B
1/2−κ0/2
p,∞

≲M
1/2
L . (4.1)

Similarly we have
∥v1q+1 − v1q∥CtB

1−κ−κ0
p,∞

≲ L∥v1q+1 + v2q+1 − v1q − v2q∥CtLp∥∆>Rz∥CtC−κ−κ0

+ L∥v1q + v2q∥CtLp∥(∆⩽f(q+1) −∆⩽f(q))∆>Rz∥CtC−κ−κ0

≲ L5/42−κ0R∥v1q+1 + v2q+1 − v1q − v2q∥CtLp + ∥v1q + v2q∥CtLpL5/4λ
−α

8 κ0
q ,

which by (3.12), (3.14) and (3.19) implies that
∥v1q+1 − v1q∥CtL2 ≲ ∥v1q+1 − v1q∥CtB

1−κ−κ0
p,∞

≲ ∥v2q+1 − v2q∥CtLp + ∥v1q + v2q∥CtLpL5/4λ
−α

8 κ0
q

≲M
1/2
L λ−α

q+1 +M
1/2
L L5/4λ

−α
8 κ0

q ⩽M
1/2
L δ

1/2
q+1.

where we used the conditions on the parameters in Section 5.1 below to deduce α > β, α8 κ0 > βb

and L5/4λ
−ακ0

8 +bβ
q ≪ 1 by choosing a large enough. Then (3.18) follows.

Finally we estimate the following bound used below. These norms may priori blow up during the
iteration. By Lemma C.3, (3.8), (3.9), (3.12) and (3.19)

∥v1q∥
C

1
4
t L∞

+ ∥v1q∥CtC
1
2
≲ L∥z:2:∥CtC−2κ + L∥v1q + v2q + zin∥CtC−2/p∥∆⩽f(q)∆>Rz∥

CtC
2
p
− 1

2

≲ L3/2 + L5/4λ
α
8 ( 2

p−
1
2+κ)

q ∥v1q + v2q + zin∥CtLp

≲ L2M
1/2
L λ

α
8 ( 2

p−
1
2+κ0)

q ≲ L2M
1/2
L λαq ,

where we used the embedding Lp ⊂ C−2/p by Lemma 2.1 in the second step and used 2
p −

1
2 +κ0 < 2

in the last step.
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5. The main iteration-proof of Proposition 3.6

The proof proceeds in several main steps which are the same in many convex integration schemes.
First of all, we start the construction by fixing the parameters in Section 5.1 and proceed with a
mollification step in Section 5.2. Section 5.3 introduces the new iteration v2q+1. This is the main part
of the construction which used the accelerating jets introduced in Appendix B. Section 5.4 contains
the inductive estimates of v2q+1, whereas in Section 5.5 we show how the energy is controlled. Finally,
in Section 5.6, we define the new stress R̊q+1 and establish the inductive moment estimate on R̊q+1

in Section 5.7.

5.1. Choice of parameters. In the sequel, additional parameters will be indispensable and their
value has to be carefully chosen in order to respect all the compatibility conditions appearing in
the estimates below. First we denote κ1 := κ0

4 ∧ ( 16 − κ0

2 ). For a sufficiently small α ∈ (0, 1) to be
chosen below, we define l := λ

− 3α
2

q+1 λ
−2
q and have l−1 ⩽ λ2αq+1 and lλ4q ⩽ λ−α

q+1 provided αb > 4.
In addition, we also introduce a small constant γ ∈ (0, 1) such that γ∗ := 1

γ ∈ N and satisfies the
following bounds

γ <
1

56
, (

1

2
− 1

p
)(2− 8γ) < −10γ.

In the sequel, we use the following bounds

α <
1

144
γ, α >

4

3κ1
βb, α >

16

κ0
βb2, αb >

16

3κ1
.

In addition, we postulate

ML +K + qA ⩽ l−1, (λ−α+2βb
q+1 + L5/4λ

−α
8 κ0+2βb2

q )(ML + qA+K)
1
2 +M

1/2
L λ

− 3
2κ1α+2βb

q+1 ≪ 1,

(5.1)
which can be satisfied by choosing a large enough.

The above can be obtained by choosing α = 1
145γ∗ , and choosing b ∈ γ∗N large enough such that

b > 16
3κ1α

, and finally choosing β small such that α > 4
3κ1

βb, α > 16
κ0
βb2. In the end we choose

a ∈ 28×145γ∗N large enough such that (3.5) and (5.1) hold. The choice of a above ensures f(q) ∈ N.
In the sequel, we increase a to absorb various implicit and universal constants. From here we could
choose the value of b and β depend only on p, and are independent of L, N,K and κ.

5.2. Mollification. We intend to replace v2q by a mollified velocity field vl, and we define

vl = (v2q ∗x φl) ∗t ϕl, R̊l = (R̊q ∗x φl) ∗t ϕl,

where φl := 1
l2φ(

·
l ) is a family of standard mollifiers on R2, and ϕl :=

1
lϕ(

·
l ) is a family of standard

mollifiers with support on (0, 1). Here the one side mollifier is used to preserve adaptedness. Then
since l ⩽ δ

1/2
q+1 = tq+1 − tq, by calculating and (3.7) we obtain on [tq+1, TL]

(∂t −∆)vl +∇pl + divNcom = div(R̊l +Rcom), (5.2)
divvl = 0.

where
Ncom := (v1q + v2q + zin)⊗∆⩽Rz +∆⩽Rz ⊗ (v1q + v2q + zin) + (v1q + v2q + zin)⊗ (v1q + v2q + zin)

+ (v1q + v2q + zin) ≽⃝∆>Rz +∆>Rz ≼⃝(v1q + v2q + zin),
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and Rcom is the trace-free part of Ncom −Ncom ∗x φl ∗t ϕl,

pl := (p2q ∗x φl) ∗t ϕl −
1

2
tr(Ncom −Ncom ∗x φl ∗t ϕl).

5.3. Construction of v2q+1. Let us now proceed with the construction of the perturbation wq+1

which then defines the next iteration by v2q+1 := vl +wq+1. To this end, we employ the accelerating
jet flows introduced in [CL23, Section 3], which we recall in Appendix B. In particular, the building
blocks W(ξ) for ξ ∈ Λ are defined in (B.4) and the set Λ is introduced in Lemma B.1. The necessary
estimates are collected in (B.7). For the accelerating jet flows we choose the following parameters

σ = λ2γq+1, η = λ16γq+1, ν = λ1−8γ
q+1 , µ = λq+1, θ = λ1+5γ

q+1 .

It is required that b ∈ γ∗N to ensure the above parameters are integers.
As the next step, we shall define certain amplitude functions used in the definition of the pertur-

bations wq+1 similarly as [HZZ23b, Section 5.1.2],

ρ := 2

√
l2 + |R̊l|2 + γq+1,

it follows that ρ is (Ft)t⩾0-adapted. Then by the estimate of ρ in Appendix A we have for N ⩾ 1

∥ρ∥CN
[(2σq−1)∧TL,TL],x

≲ l2−7Nδq+1ML + γq+1,

∥ρ∥CN
[0,TL],x

≲ l2−7N (ML + qA) + γq+1. (5.3)

We define the amplitude functions

a(ξ)(ω, x, t) := ρ1/2(ω, x, t)γξ(Id − R̊l(ω, x, t)

ρ(ω, x, t)
), (5.4)

where γξ is introduced in Lemma B.1. By |Id− R̊l

ρ − Id| ⩽ 1
2 , it holds by Lemma B.1

ρId − R̊l =
∑
ξ∈Λ

ργ2ξ (Id − R̊l

ρ
)ξ ⊗ ξ =

∑
ξ∈Λ

a2(ξ)ξ ⊗ ξ. (5.5)

Then by the estimate of a(ξ) in Appendix A we have for N ⩾ 0

∥a(ξ)∥CN
[(2σq−1)∧TL,TL],x

≲ l−8−7N (δ
1/2
q+1M

1/2
L + γ

1/2
q+1),

∥a(ξ)∥CN
[0,TL],x

≲ l−8−7N ((ML + qA)1/2 + γ
1/2
q+1). (5.6)

With these preparations in hand, similarly as [CL23, Section 3.4] we define the principal part

w
(p)
q+1 :=

∑
ξ∈Λ

a(ξ)g(ξ)W(ξ), (5.7)

where W(ξ), g(ξ) are introduced in Appendix B. Then by (B.5), (B.6) and (5.5) we obtain

w
(p)
q+1 ⊗ w

(p)
q+1 + R̊l =

∑
ξ∈Λ

a2(ξ)g
2
(ξ)(W(ξ) ⊗W(ξ))−

∑
ξ∈Λ

a2(ξ)ξ ⊗ ξ + ρId

=
∑
ξ∈Λ

a2(ξ)g
2
(ξ)P ̸=0(W(ξ) ⊗W(ξ)) +

∑
ξ∈Λ

a2(ξ)(g
2
(ξ) − 1)ξ ⊗ ξ + ρId, (5.8)

where we recall the notation P ̸=0f := f −
∫
T2− fdx.
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We define the incompressibility corrector by

w
(c)
q+1 :=

∑
ξ∈Λ

(
a(ξ)g(ξ)W

(c)
(ξ) + σ−1∇⊥a(ξ)g(ξ)Ψ(ξ)

)
, (5.9)

where W (c)
(ξ) and Ψ(ξ) are introduced in Appendix B. By (B.9) we have

w
(p)
q+1 + w

(c)
q+1 = σ−1

∑
ξ∈Λ

∇⊥[a(ξ)g(ξ)Ψ(ξ)], (5.10)

therefore div(w
(p)
q+1 + w

(c)
q+1) = 0.

The temporal corrector w(t)
q+1 is defined as

w
(t)
q+1 = w

(o)
q+1 + w

(a)
q+1, (5.11)

where w(o)
q+1 is the temporal oscillation corrector

w
(o)
q+1 := −σ−1PHP ̸=0

∑
ξ∈Λ

h(ξ)div(a
2
(ξ)ξ ⊗ ξ), (5.12)

and w
(a)
q+1 is the acceleration corrector

w
(a)
q+1 := −θ−1σPHP ̸=0

∑
ξ∈Λ

a2(ξ)g(ξ)|W(ξ)|2ξ. (5.13)

Here PH is the Helmholtz projection, and h(ξ), g(ξ) are given in Appendix B.
Since ρ and R̊l are (Ft)t⩾0-adapted, we know a(ξ) is (Ft)t⩾0-adapted. Moreover, as W(ξ),W

(c)
(ξ) ,

Ψ(ξ), g(ξ) are deterministic, w(p)
q+1, w

(c)
q+1, w

(t)
q+1 are also (Ft)t⩾0-adapted.

Let us introduce a smooth cut-off function

χ(t) =


0, t ⩽ σq+1,

∈ (0, 1), t ∈ (σq+1, 2σq+1),

1, t ⩾ 2σq+1.

(5.14)

Note that ∥χ′∥C0
t
⩽ σ−1

q+1 which has to be taken into account in the estimates of C1
t,x and R̊q+1

below.
We define the perturbations w̃(p)

q+1, w̃
(c)
q+1, w̃

(t)
q+1 as follows:

w̃
(p)
q+1 = w

(p)
q+1χ, w̃

(c)
q+1 = w

(c)
q+1χ, w̃

(t)
q+1 = w

(t)
q+1χ

2.

Then w̃
(p)
q+1, w̃

(c)
q+1, w̃

(t)
q+1 are (Ft)t⩾0-adapted.

Finally, the total perturbation wq+1 is defined by

wq+1 := w̃
(p)
q+1 + w̃

(c)
q+1 + w̃

(t)
q+1,

which is (Ft)t⩾0-adapted and divergence-free with mean zero.
The new velocity v2q+1 is defined as

v2q+1 = vl + wq+1.

which is (Ft)t⩾0-adapted and divergence-free with mean zero.
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5.4. Verification of the inductive estimates for v2q+1. First we estimate Lm-norm for m ∈
(1,∞) and then verify the inductive estimates (3.14)-(3.16) and (3.10)-(3.12) at the level q + 1.

We first consider bound w
(p)
q+1 in L2. We know that W(ξ) is (T/σ)2-periodic, so by (5.4), (5.6),

(5.7), (B.7) and applying Theorem C.1 with p = 2 we obtain for t ∈ ((2σq−1) ∧ TL, TL]

∥w̃(p)
q+1(t)∥L2 ≲

∑
ξ∈Λ

|g(ξ)(t)|(∥a(ξ)(t)∥L2∥W(ξ)∥CtL2 + σ−1/2∥a(ξ)(t)∥C1∥W(ξ)∥CtL2)

≲
∑
ξ∈Λ

|g(ξ)(t)|(∥a(ξ)(t)∥L2 + λ30α−γ
q+1 (δ

1/2
q+1M

1/2
L + γ

1/2
q+1))

≲
∑
ξ∈Λ

|g(ξ)(t)|(∥ρ(t)∥
1/2
L1 + δ

1/2
q+1M

1/2
L + γ

1/2
q+1),

where we used the conditions on the parameters to deduce 30α− γ < 0. Then we obverse that g(ξ)
is T/σ-periodic. To again apply Lemma C.1, it is possible to find n1, n2 ∈ N satisfying 0 ⩽ n1−1

σ <

(2σq−1) ∧ TL ⩽ n1

σ ,
n2−1

σ ⩽ TL <
n2

σ , and we define ρ(t) = ρ(TL) for t ∈ (TL,
n2

σ ]. Then by Lemma
C.1 we obtain∥∥∥g(ξ)(t)∥ρ(t)∥1/2L1

∥∥∥L2
((2σq−1)∧TL,TL]

≲ ∥g(ξ)∥L2

[
n1−1

σ
,
n1
σ

]

∥ρ∥1/2
C0

[0,TL],x

+
∥∥∥g(ξ)(t)∥ρ(t)∥1/2L1

∥∥∥
L2

[
n1
σ

,
n2
σ

]

≲ ∥g(ξ)∥L2

[
n1−1

σ
,
n1
σ

]

∥ρ∥1/2
C0

[0,TL],x

+ ∥g(ξ)∥L2([0,1])∥ρ∥
1/2

L1

[
n1
σ

,
n2
σ

]
L1

+ ∥g(ξ)∥L2([0,1])σ
− 1

2

∥∥∥∥ρ(·)∥1/2L1

∥∥∥
C0,1([

n1
σ ,

n2
σ ])

(TL − (2σq−1) ∧ TL +
1

σ
)

1
2 .

Then by the definition of ρ, (3.13) and (A.2) we have

∥ρ∥1/2
C0

[0,TL],x

≲ l−2(ML + qA+ γq+1)
1/2,

∥ρ∥1/2
L1

[
n1
σ

,
n2
σ

]
L1 ≲ (l + ∥R̊q∥L1

(σq−1∧TL,TL]
L1 + γq+1)

1
2 (TL − (2σq−1) ∧ TL +

1

σ
)

1
2

≲ (δ
1/2
q+1M

1/2
L + γ

1/2
q+1)(TL − (2σq−1) ∧ TL +

1

σ
)

1
2 ,

and
∂t(∥ρ(t)∥1/2L1 ) ≲ ∥ρ(t)∥−1/2

L1 ∥∂tρ(t)∥L1 ≲ l−1/2∥∂tρ(t)∥L1 ,

which together with (5.3) imply that∥∥∥∥ρ(·)∥1/2L1

∥∥∥
C0,1([

n1
σ ,

n2
σ ])

≲ l−1/2∥ρ∥C1
[0,TL],x

≲ l−11/2(ML + qA+ γq+1).

So together with (5.3), (B.1) and Remark B.2 we obtain∥∥∥g(ξ)(t)∥ρ(t)∥1/2L1

∥∥∥
L2

((2σq−1)∧TL,TL]

≲ σ−1/2l−2(ML + qA+ γq+1)
1/2 + (δ

1/2
q+1M

1/2
L + γ

1/2
q+1)(TL − (2σq−1) ∧ TL +

1

σ
)

1
2

+ σ− 1
2 l−11/2(ML + qA+ γq+1)(TL − (2σq−1) ∧ TL +

1

σ
)

1
2

≲ (δ
1/2
q+1M

1/2
L + γ

1/2
q+1)(TL − (2σq−1) ∧ TL +

1

σ
)

1
2 ,
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where we used the conditions on the parameters to deduce ML + qA+K ⩽ l−1 and 13α− γ < −β.
With these bounds we can deduce by Remark B.2

∥w̃(p)
q+1∥L2

((2σq−1)∧TL,TL]
L2 ≲ (δ

1/2
q+1M

1/2
L + γ

1/2
q+1)(TL − (2σq−1) ∧ TL +

2

σ
)1/2

⩽ 1

2
M0(δ

1/2
q+1M

1/2
L + γ

1/2
q+1)(M

1/2
L − 2σq−1)

1/2. (5.15)

Here M0 is a universal constant. Also we used

TL − (2σq−1) ∧ TL +
2

σ
⩽M

1/2
L − 2σq−1. (5.16)

In fact for 2σq−1 ⩾ TL we have TL − (2σq−1) ∧ TL + 2
σ = 2

σ ⩽ M
1/2
L − 2σq−1 by the choice of ML,

and for 2σq−1 < TL we have TL − (2σq−1) ∧ TL + 2
σ = TL − 2σq−1 +

2
σ ⩽M

1/2
L − 2σq−1.

And similarly for t ∈ (σq+1 ∧ TL, TL] we obtain

∥w̃(p)
q+1(t)∥L2 ≲

∑
ξ∈Λ

|g(ξ)(t)|(∥ρ(t)∥
1/2
L1 + (ML + qA)1/2 + γ

1/2
q+1).

By the similar argument above, it is possible to find n3, n4 ∈ N satisfying n3−1
σ < σq+1 ∧ TL ⩽ n3

σ ,
n4−1

σ < (2σq−1)∧TL ⩽ n4

σ , and define ρ(t) = ρ(TL) for t ∈ (TL,
n4

σ ] if TL < 2σq−1. Then by Lemma
C.1, (5.3), (A.2), (B.1), Remark B.2 we obtain

∥w̃(p)
q+1∥L2

(σq+1∧TL,(2σq−1)∧TL]
L2 ⩽ ∥w̃(p)

q+1∥L2

[
n3−1

σ
,
n4
σ

]
L2

≲ ((ML + qA)1/2 + γ
1/2
q+1)((2σq−1) ∧ TL − σq+1 ∧ TL +

2

σ
)1/2 +

∑
ξ∈Λ

∥g(ξ)∥L2[0,1]∥ρ∥
1/2

L1

[
n3−1

σ
,
n4
σ

]
L1

+
∑
ξ∈Λ

∥g(ξ)∥L2[0,1]σ
− 1

2

∥∥∥∥ρ(·)∥1/2L1

∥∥∥
C0,1[

n3−1
σ ,

n4
σ ]

(
(2σq−1) ∧ TL − σq+1 ∧ TL +

2

σ

) 1
2

≲ ((ML + qA)1/2 + γ
1/2
q+1 + λ11α−γ

q+1 (ML + qA+ γq+1))(2σq−1)
1/2

⩽ 1

2
M0((ML + qA)1/2 + γ

1/2
q+1))(2σq−1)

1/2, (5.17)

where we used the conditions on the parameters to deduce ML + qA +K ⩽ l−1 and 12α − γ < 0.
Here M0 is a universal constant. Also we used

(2σq−1) ∧ TL − σq+1 ∧ TL +
2

σ
⩽ 2σq−1. (5.18)

In fact by the choice of parameters we have γ > β which yields that σq+1 >
2
σ . Thus for TL > σq+1

we have (2σq−1) ∧ TL − σq+1 ∧ TL + 2
σ ⩽ 2σq−1 − σq+1 +

2
σ ⩽ 2σq−1, and for TL ⩽ σq+1 we obtain

(2σq−1) ∧ TL − σq+1 ∧ TL + 2
σ = 2

σ < σq+1 ⩽ 2σq−1.
Thus by (5.15) and (5.17) we obtain the following bound, which is used below,

∥w̃(p)
q+1∥L2

(σq+1∧TL,TL]
L2 ≲ ((ML + qA)1/2 + γ

1/2
q+1)M

1/4
L . (5.19)

For general Lm-norm with m ∈ (1,∞), by (5.6), (5.7) and (B.7), for t ∈ ((2σq−1) ∧ TL, TL] we
have

∥w(p)
q+1(t)∥Lm ≲

∑
ξ∈Λ

∥a(ξ)(t)∥L∞ |g(ξ)(t)|∥W(ξ)(t)∥Lm
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≲
∑
ξ∈Λ

(M
1/2
L δ

1/2
q+1 + γ

1/2
q+1)l

−8|g(ξ)(t)|(νµ)1/2−1/m,

≲ (M
1/2
L δ

1/2
q+1 + γ

1/2
q+1)λ

16α+(1/2−1/m)(2−8γ)
q+1

∑
ξ∈Λ

|g(ξ)(t)|. (5.20)

By (5.6), (5.9) and (B.7) we obtain

∥w(c)
q+1(t)∥Lm ≲

∑
ξ∈Λ

|g(ξ)(t)|
(
∥a(ξ)(t)∥L∞∥W (c)

(ξ) (t)∥Lm + σ−1∥∇⊥a(ξ)(t)∥L∞∥Ψ(ξ)(t)∥Lm

)
≲
∑
ξ∈Λ

|g(ξ)(t)|(M
1/2
L δ

1/2
q+1 + γ

1/2
q+1)l

−15(νµ−1(νµ)1/2−1/m + σ−1µ−1(νµ)1/2−1/m)

≲ (M
1/2
L δ

1/2
q+1 + γ

1/2
q+1)λ

30α+(1/2−1/m)(2−8γ)−8γ
q+1

∑
ξ∈Λ

|g(ξ)(t)|. (5.21)

By (5.6), (5.12), (B.2) and (B.7) we obtain

∥w(o)
q+1(t)∥Lm ≲ σ−1

∑
ξ∈Λ

∥h(ξ)(t)∥L∞∥div(a2(ξ)(t)ξ ⊗ ξ)∥Lm

≲ (M
1/2
L δ

1/2
q+1 + γ

1/2
q+1)

2λ46α−2γ
q+1 . (5.22)

By (5.6), (5.13) and (B.7) we obtain

∥w(a)
q+1(t)∥Lm ≲ σθ−1

∑
ξ∈Λ

|g(ξ)(t)|∥a(ξ)(t)∥2L∞∥W(ξ)(t)∥2L2m

≲
∑
ξ∈Λ

(M
1/2
L δ

1/2
q+1 + γ

1/2
q+1)

2l−16σθ−1|g(ξ)(t)|(νµ)1−1/m

≲ (M
1/2
L δ

1/2
q+1 + γ

1/2
q+1)

2λ
32α+(1−1/m)(2−8γ)−3γ−1
q+1

∑
ξ∈Λ

|g(ξ)(t)|. (5.23)

And for t ∈ (σq+1∧TL, TL] the estimates are similar with (M
1/2
L δ

1/2
q+1+γ

1/2
q+1) replaced by ((ML+

qA)1/2 + γ
1/2
q+1). More specifically for m ∈ (1,∞)

∥w(p)
q+1(t)∥Lm ≲ ((ML + qA)1/2 + γ

1/2
q+1)λ

16α+(1/2−1/m)(2−8γ)
q+1

∑
ξ∈Λ

|g(ξ)(t)|, (5.24)

∥w(c)
q+1(t)∥Lm ≲ ((ML + qA)1/2 + γ

1/2
q+1)λ

30α+(1/2−1/m)(2−8γ)−8γ
q+1

∑
ξ∈Λ

|g(ξ)(t)|, (5.25)

∥w(o)
q+1(t)∥Lm ≲ ((ML + qA)1/2 + γ

1/2
q+1)

2λ46α−2γ
q+1 , (5.26)

∥w(a)
q+1(t)∥Lm ≲ ((ML + qA)1/2 + γ

1/2
q+1)

2λ
32α+(1−1/m)(2−8γ)−3γ−1
q+1

∑
ξ∈Λ

|g(ξ)(t)|. (5.27)

Combining (5.21)-(5.23) and χ(t) ⩽ 1 we obtain for t ∈ ((2σq−1) ∧ TL, TL]

∥w̃(c)
q+1(t) + w̃

(t)
q+1(t)∥L2 ≲ (M

1/2
L δ

1/2
q+1 + γ

1/2
q+1)(λ

30α−8γ
q+1

∑
ξ∈Λ

|g(ξ)(t)|+ λ33α−7γ
q+1

∑
ξ∈Λ

|g(ξ)(t)|+ λ47α−2γ
q+1 )

≲ (M
1/2
L δ

1/2
q+1 + γ

1/2
q+1)(

∑
ξ∈Λ

|g(ξ)(t)|+ 1),
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where we used the conditions on the parameters to deduce ML + K ⩽ l−1 and 47α < 2γ. Then
integrating in time by Remark B.2 and (5.16) we obtain

∥w̃(c)
q+1 + w̃

(t)
q+1∥L2

((2σq−1)∧TL,TL]
L2 ⩽ 1

4
M0(M

1/2
L δ

1/2
q+1 + γ

1/2
q+1)(M

1/2
L − 2σq−1)

1/2.

Similarly by (5.18), (5.25)-(5.27) and Remark B.2 we obtain

∥w̃(c)
q+1 + w̃

(t)
q+1∥L2

(σq+1∧TL,(2σq−1)∧TL]
L2 ⩽ 1

4
M0((ML + qA)1/2 + γ

1/2
q+1)(2σq−1)

1/2.

Then by the above estimates and (5.15), (5.17) we obtain

∥wq+1∥L2
((2σq−1)∧TL,TL]

L2 ⩽ 3

4
M0(δ

1/2
q+1M

1/2
L + γ

1/2
q+1)(M

1/2
L − 2σq−1)

1/2,

∥wq+1∥L2
(σq+1∧TL,(2σq−1)∧TL]

L2 ⩽ 3

4
M0((ML + qA)1/2 + γ

1/2
q+1)(2σq−1)

1/2. (5.28)

With these bounds, we have all in hand to complete the estimate of v2q+1. We split the details into
several subsections.

5.4.1. Proof of (3.16). (5.28) together with (3.11) yields

∥v2q+1 − v2q∥L2
((2σq−1)∧TL,TL]

L2

⩽ ∥v2q+1 − vl∥L2
((2σq−1)∧TL,TL]

L2 + ∥vl − v2q∥L2
((2σq−1)∧TL,TL]

L2

⩽ ∥wq+1∥L2
((2σq−1)∧TL,TL]

L2 + l∥v2q∥C1
t,x

(TL − (2σq−1) ∧ TL)1/2

⩽ 3

4
M0(M

1/2
L δ

1/2
q+1 + γ

1/2
q+1)(M

1/2
L − 2σq−1)

1/2 + lλ4qM
1/2
L (M

1/2
L − 2σq−1)

1/2

⩽M0(M
1/2
L δ

1/2
q+1 + γ

1/2
q+1)(M

1/2
L − 2σq−1)

1/2,

where we used the conditions on the parameters to deduce − 3
2α+

4
b < −β. And similarly we obtain

∥v2q+1 − v2q∥L2
(σq+1∧TL,(2σq−1)∧TL]

L2 ⩽M0((ML + qA)1/2 + γ
1/2
q+1)(2σq−1)

1/2.

For t ∈ [tq+1, σq+1 ∧TL] we have χ(t) = 0 which implies wq+1 = 0. By (3.10) we obtain v2q (t) = 0

and hence vl(t) = 0, which implies v2q+1(t) = wq+1(t) + vl(t) = 0. Hence (3.16) follows.

5.4.2. Proof of (3.10) on the level q + 1. By (3.16) we have

∥v2q+1 − v2q∥L2
[0,TL]

L2 ⩽M0(M
1/2
L δ

1/2
q+1 + γ

1/2
q+1)(M

1/2
L − 2σq−1)

1/2 +M0((ML + qA)1/2 + γ
1/2
q+1)(2σq−1)

1/2

⩽M0M
3/4
L δ

1/2
q+1 +

√
2M0M

1/4
L γ

1/2
q+1 +M0(ML + qA)1/2(2σq−1)

1/2,

where we used
√
a+

√
b ⩽

√
2(a+ b) for a, b ⩾ 0. Thus together with (3.4) we obtain

∥v2q+1∥L2
[0,TL]

L2 ⩽M0(M
3/4
L

q+1∑
m=1

δ1/2m +
√
2M

1/4
L

q+1∑
m=1

γ1/2m ) +
√
2M0(ML +A)1/2

q∑
m=1

(mσm−1)
1/2

⩽M0M
3/4
L +

√
2M0M

1/4
L (K1/2 + 1) + 17M0(ML +A)1/2,

where we roughly bounded σq ⩽ 2−q by (3.3) and thus
∑q

m=1(mσm−1)
1/2 ⩽

∑q
m=1m2−

m−1
2 < 17.

And together with the last line in (3.16) we obtain (3.10) on the level q + 1.
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5.4.3. Proof of (3.14). By (5.24)-(5.27) we have for any m ∈ (1,∞)

∥wq+1 − w̃
(o)
q+1∥CTL

Lm ≲ λ
34α+(1/2−1/m)(2−8γ)+8γ
q+1 , (5.29)

where we used the condition ML + qA+K ⩽ l−1. Then by (3.11) we have

∥v2q+1 − v2q∥CTL
Lp ≲ ∥wq+1 − w̃

(o)
q+1∥CTL

Lp + ∥w̃(o)
q+1∥CTL

Lp + ∥vl − v2q∥CTL
Lp

≲ λ
34α+(1/2−1/p)(2−8γ)+8γ
q+1 + λ46α−2γ

q+1 + lλ4qM
1/2
L

≲ (λ−γ
q+1 + λ−α

q+1)M
1/2
L ⩽M

1/2
L δ

1/2
q+1, (5.30)

where we used the conditions on the parameters to deduce (1/2 − 1/p)(2 − 8γ) < −10γ, 46α < γ
and lλ4q ⩽ λ−α

q+1 in the last second step, and γ > α > β in the last step. Then (3.14) holds and
(3.12) at the level q + 1 follows.

5.4.4. Proof of (3.11) at the level q+1. Next we estimate C1
t,x-norm, by (5.6), (5.10) and (B.1) and

(B.7) for t ∈ [0, TL]

∥w(p)
q+1 + w

(c)
q+1∥C1

t,x
= ∥σ−1

∑
ξ∈Λ

∇⊥[a(ξ)g(ξ)Ψ(ξ)]∥C1
t,x

≲ σ−1
∑
ξ∈Λ

∥a(ξ)∥C2
t,x

∥∇⊥[g(ξ)Ψ(ξ)]∥C1
t,x

≲ ((ML + qA)1/2 + γ
1/2
q+1)l

−22(η3/2σ + σµη1/2 + θηµ)(νµ)1/2 ≲ λ45α+3+17γ
q+1 ,

(5.31)

where we used (B.7) and (B.11) to bound Ψ(ξ). For the last inequality we used the condition
ML + qA+K ⩽ l−1.

By (B.1) and (B.3) we have for t ∈ [0, TL]

∥w(o)
q+1∥C1

t,x
≲ σ−1

∑
ξ∈Λ

∥∂th(ξ)∥L∞

(
∥div(a2(ξ)ξ ⊗ ξ)∥CtW 1+α,∞ + ∥div(a2(ξ)ξ ⊗ ξ)∥C1

t W
α,∞

)
≲ ((ML + qA)1/2 + γ

1/2
q+1)

2l−31η ≲ λ64α+16γ
q+1 , (5.32)

where we used the condition ML + qA+K ⩽ l−1.
By (5.6), (B.1), (B.7) and (B.10) we have for t ∈ [0, TL]

∥w(a)
q+1∥C1

t,x
≲ σθ−1

∑
ξ∈Λ

∥g(ξ)∥W 1,∞∥a2(ξ)∥C1+α
t,x

(
∥ |W(ξ)|2ξ∥CtW 1+α,∞ + ∥∂t|W(ξ)|2ξ∥CtWα,∞

)
≲ ((ML + qA)1/2 + γ

1/2
q+1)

2l−24σ2θ−1η3/2(σνµ2 + νµ2θη1/2)(σµ)α ≲ λ52α+3+28γ
q+1 .

(5.33)

Here we used the condition ML + qA + K ⩽ l−1 and we have a extra α since PHP ̸=0 is not a
bounded operator on C0. In particular, we see that the fact that the time derivative of χ behaves
like σ−1

q+1 ≲ l−1 does not pose any problems as the C0
t,x-norms of w̃(p)

q+1, w̃
(c)
q+1, w̃

(t)
q+1 always contain

smaller powers of l−1. So we obtain (3.11) at the level q + 1 by (5.31)-(5.33): for t ∈ [0, TL]

∥v2q+1∥C1
t,x

⩽ ∥vl∥C1
t,x

+ ∥wq+1∥C1
t,x

⩽M
1/2
L λ4q + λ64α+3+28γ

q+1

⩽M
1/2
L λαq+1 + λ64α+3+28γ

q+1 ⩽M
1/2
L λ4q+1,

where we used the conditions α < 1
128 , γ <

1
56 .
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5.4.5. Proof of (3.15). We conclude this part with further W 1,m-norm for m ∈ (1,∞). By (5.6),
(5.10) and (B.7) we have for t ∈ [0, TL]

∥w̃(p)
q+1(t) + w̃

(c)
q+1(t)∥W 1,m ≲ σ−1

∑
ξ∈Λ

∥∇⊥[a(ξ)g(ξ)Ψ(ξ)](t)∥W 1,m

≲ σ−1
∑
ξ∈Λ

∥∇⊥a(ξ)∥C1
t,x

|g(ξ)(t)|∥∇⊥Ψ(ξ)∥CtW 1,m

≲ ((ML + qA)1/2 + γ
1/2
q+1)l

−22σµ(νµ)1/2−1/m
∑
ξ∈Λ

|g(ξ)(t)|,

≲ λ
45α+(1/2−1/m)(2−8γ)+1+2γ
q+1

∑
ξ∈Λ

|g(ξ)(t)|, (5.34)

where we used the condition ML + qA+K ⩽ l−1. By (5.6) and (B.2) we have

∥w̃(o)
q+1(t)∥W 1,m ≲ σ−1

∑
ξ∈Λ

∥h(ξ)∥L∞∥div(a2(ξ)ξ ⊗ ξ)∥CtW 1,m

≲ ((ML + qA)1/2 + γ
1/2
q+1)

2σ−1λ60αq+1 ≲ λ62α−2γ
q+1 , (5.35)

and

∥w̃(a)
q+1(t)∥W 1,m ≲ σθ−1

∑
ξ∈Λ

|g(ξ)|∥a(ξ)∥C0
t,x

∥a(ξ)∥C1
t,x

∥W(ξ)∥CtW 1,2m∥W(ξ)∥CtL2m

≲ ((ML + qA)1/2 + γ
1/2
q+1)

2λ46αq+1σθ
−1σµ(νµ)1−1/m

∑
ξ∈Λ

|g(ξ)(t)|

≲ λ
48α+(1−1/m)(2−8γ)−γ
q+1

∑
ξ∈Λ

|g(ξ)(t)|. (5.36)

Moreover together with (B.1) we have

∥wq+1 − w̃
(o)
q+1∥CTL

W 1,6/5 ≲ λ
48α+ 1

3+
38
3 γ

q+1 ≲ λ
1
3+13γ
q+1 ,

where we used the conditions to deduce 48α < 1
3γ.

By (5.29) we have

∥wq+1 − w̃
(o)
q+1∥CTL

L6/5 ≲ λ
34α− 2

3+
32
3 γ

q+1 ≲ λ
− 2

3+11γ
q+1 ,

where we used the conditions to deduce 34α < 1
3γ.

Then together the bounds above and (3.11), (5.26) and (5.35) we obtain by interpolation that

∥v2q+1 − v2q∥CTL
W 1/2,6/5

⩽ ∥v2l − v2q∥CTL
W 1/2,6/5 + ∥wq+1 − w̃

(o)
q+1∥CTL

W 1/2,6/5 + ∥w̃(o)
q+1∥CTL

W 1/2,6/5

≲ l1/2∥v2q∥C1
[0,TL],x

+ ∥wq+1 − w̃
(o)
q+1∥

1/2

CTL
L6/5∥wq+1 − w̃

(o)
q+1∥

1/2

CTL
W 1,6/5 + ∥w̃(o)

q+1∥CTL
W 1/2,6/5

≲ l1/2λ4qM
1/2
L + λ

− 1
6+12γ

q+1 + λ55α−2γ
q+1 ⩽M

1/2
L λ−α

q+1 ⩽M
1/2
L δ

1/2
q+1,

which implies (3.15). Here we used the condition on the parameters to deduce l1/2λ4q < λ−α
q+1,

− 1
6 + 12γ < −α < −β, 55α− 2γ < −α < −β.
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5.5. Proof of (3.17). For t ∈ (2 ∧ TL, TL] we have χ(t) = 1 by (5.14). Then we find

|∥v2q+1∥2L2
(2∧TL,TL]

L2 − ∥v2q∥2L2
(2∧TL,TL]

L2 − 2γq+1(TL − 2 ∧ TL)|

⩽ |∥w(p)
q+1∥2L2

(2∧TL,TL]
L2 − 2γq+1(TL − 2 ∧ TL)|+ ∥w(c)

q+1 + w
(t)
q+1∥2L2

(2∧TL,TL]
L2

+ 2∥vl(w(c)
q+1 + w

(t)
q+1)∥L1

(2∧TL,TL]
L1 + 2∥vlw(p)

q+1∥L1
(2∧TL,TL]

L1

+ 2∥w(p)
q+1(w

(c)
q+1 + w

(t)
q+1)∥L1

(2∧TL,TL]
L1 + |∥vl∥2L2

(2∧TL,TL]
L2 − ∥v2q∥2L2

(2∧TL,TL]
L2 |. (5.37)

We use (5.8) and the fact that R̊l is traceless to deduce

|w(p)
q+1|2 − 2γq+1 = 4

√
l2 + |R̊l|2 +

∑
ξ∈Λ

a2(ξ)g
2
(ξ)P ̸=0|W(ξ)|2 +

∑
ξ∈Λ

a2(ξ)(g
2
(ξ) − 1),

hence

|∥w(p)
q+1∥2L2

(2∧TL,TL]
L2 − 2γq+1(TL − 2 ∧ TL)| ⩽ 4lTL + 4∥R̊l∥L1

(2∧TL,TL]
L1

+
∑
ξ∈Λ

∥a2(ξ)g
2
(ξ)P ̸=0|W(ξ)|2∥L1

(2∧TL,TL]
L1 +

∑
ξ∈Λ

∣∣∣∣∣
∫ TL

2∧TL

(g2(ξ) − 1)∥a(ξ)∥2L2dt

∣∣∣∣∣ .
Now we estimate each term separately. Using (3.13) and suppφl ⊂ [0, l], (2 ∧ TL, TL] ⊂ ((2σq−1) ∧
TL, TL] we have

∥R̊l∥L1
(2∧TL,TL]

L1 ⩽MLδq+1.

Moreover,

4lTL ⩽ 4λ
− 3α

2
q+1 TL ⩽ 1

8
δq+1ML,

which requires 2β < 3α
2 and we choose a large enough to absorb the constant.

We obverse that W(ξ) is (T/σ)2-periodic so

P ̸=0(W(ξ) ⊗W(ξ)) = P⩾σ
2
(W(ξ) ⊗W(ξ)),

where P⩾r = Id − P<r, and P<r denotes the Fourier multiplier operator, which projects a function
onto its Fourier frequencies < r in absolute value. By [BDLPS15, Proposition C.1], (5.6) and (B.7)
we obtain for t ∈ (2 ∧ TL, TL]∑
ξ∈Λ

|
∫
T2

a2(ξ)P ̸=0|W(ξ)|2dx| =
∑
ξ∈Λ

|
∫
T2

a2(ξ)P⩾σ
2
|W(ξ)|2dx| =

∑
ξ∈Λ

|
∫
T2

|∇|γ
∗
a2(ξ)|∇|−γ∗

P⩾σ
2
|W(ξ)|2dx|

≲ ∥a2(ξ)∥Cγ∗σ−γ∗
∥|W(ξ)|2∥L2 ≲ (ML +K)λ

(14γ∗+32)α−2γγ∗+1−4γ
q+1

≲ λ
(14γ∗+34)α−1−4γ
q+1 ≲ λ−4γ

q+1 ,

where we recall γ∗ = 1
γ . Here we used the conditions on the the parameters to deduce ML+K ⩽ l−1

and (14γ∗ + 34)α = 14γ∗+34
145γ∗ < 1. Together with 2γ > β we imply that∑

ξ∈Λ

∥a2(ξ)g
2
(ξ)P ̸=0|W(ξ)|2∥L1

(2∧TL,TL]
L1 ⩽ 1

8
δq+1ML,

where we chose a large enough to absorb the universal constant.
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For the last term, to apply Theorem C.1 it is possible to find n1, n2 ∈ N0 such that n1

σ < 2∧TL ⩽
n1+1

σ , n2

σ ⩽ TL < n2+1
σ and define a(ξ)(t) = a(ξ)(TL) for t ∈ (TL,

n2+1
σ ]. Note that g2(ξ) − 1 is

mean-zero on [0, 1]. Together with (5.6), (B.1) we apply Theorem C.1 and Remark B.2 to obtain∑
ξ∈Λ

|
∫ TL

2∧TL

(g2(ξ) − 1)∥a(ξ)∥2L2dt|

⩽
∑
ξ∈Λ

(
|
∫ n2

σ

n1+1
σ

(g2(ξ) − 1)∥a(ξ)∥2L2dt|+
∫ n1+1

σ

2∧TL

(g2(ξ) + 1)∥a(ξ)∥2L2dt+

∫ TL

n2
σ

(g2(ξ) + 1)∥a(ξ)∥2L2dt

)

≲ n2 − n1 − 1

σ2
∥g2(ξ) + 1∥L1

[0,1]

∥∥∥a(ξ)∥2L2

∥∥
C0,1

[
n1+1

σ
,
n2
σ

]

+ ∥g2(ξ) + 1∥
L1([

n1
σ ,

n1+1
σ ]∪[

n2
σ ,

n2+1
σ ])

∥a(ξ)∥2C0
[0,TL],x

≲ σ−1TLl
−23((ML + qA)1/2 + γ

1/2
q+1)

2 + σ−1l−16((ML + qA)1/2 + γ
1/2
q+1)

2

≲ λ48α−2γ
q+1 M

1/2
L + λ34α−2γ

q+1 ⩽ 1

8
δq+1ML,

where we used the conditions on the parameters to deduce ML + qA+K ⩽ l−1, 48α− 2γ < −2β.
Go back to (5.37), we control the remaining terms as follows. Using (5.21)-(5.23) and Remark

B.2 we obtain

∥w(c)
q+1 + w

(t)
q+1∥2L2

(2∧TL,TL]
L2 ≲

∑
ξ∈Λ

∥g2(ξ) + 1∥L1
(2∧TL,TL]

(λ31α−8γ
q+1 + λ48α−2γ

q+1 + λ34α−7γ
q+1 )2

≲ (TL − 2 ∧ TL +
2

σ
)λ96α−4γ

q+1 ⩽ 1

8
δq+1ML,

where we used the conditions on the parameters to deduce ML+K ⩽ l−1, and in the last inequality
we used TL − 2∧TL + 2

σ ≲M
1/2
L , 48α− 2γ < −β, and chose a large enough to absorb the constant.

By (3.10), (5.15) and (5.25)-(5.27) we obtain

2∥vl(w(c)
q+1 + w

(t)
q+1)∥L1

(2∧TL,TL]
L1 + 2∥w(p)

q+1(w
(c)
q+1 + w

(t)
q+1)∥L1

(2∧TL,TL]
L1

≲ (∥vl∥L2
(2∧TL,TL]

L2 + ∥w(p)
q+1∥L2

(2∧TL,TL]
L2)∥w(c)

q+1 + w
(t)
q+1∥L2

(2∧TL,TL]
L2

≲M0(M
3/4
L +A1/2 +M

1/4
L K1/2)(λ31α−8γ

q+1 + λ48α−2γ
q+1 + λ34α−7γ

q+1 )M
1/4
L

≲ λ49α−2γ
q+1 M

1/2
L ⩽ 1

4
δq+1ML.

where we used ∥vl∥L2
(2∧TL,TL]

L2 ⩽ ∥v2q∥L2
[tq,TL]

L2 by l ⩽ 2, and we used the conditions on the pa-
rameters to deduce ML + A + K ⩽ l−1 and 49α − 2γ < −2β and we increase a to absorb the
constant.

By (3.11), (5.20) and (B.1) we obtain

2∥vlw(p)
q+1∥L1

(2∧TL,TL]
L1 ≲ ∥vl∥C0

[0,TL],x
∥w(p)

q+1∥L1
(2∧TL,TL]

L1

≲ λ4qM
1/2
L (M

1/2
L δ

1/2
q+1 +K1/2)λ16α−1−4γ

q+1 M
1/2
L ⩽ 1

8
δq+1ML,

where we used the conditions on the parameters to deduce ML +K ⩽ l−1, λ4q ⩽ λαq+1 and 18α −
1− 4γ < −2β.
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For the last term, by (3.10) and (3.11)
|∥vl∥2L2

(2∧TL,TL]
L2 − ∥v2q∥2L2

(2∧TL,TL]
L2 | ⩽ ∥vl − v2q∥L2

(2∧TL,TL]
L2(∥vl∥L2

(2∧TL,TL]
L2 + ∥v2q∥L2

(2∧TL,TL]
L2)

⩽ l∥v2q∥C1
[0,TL],x

M
1/4
L ∥v2q∥L2

[tq,TL]
L2 ≲ lλ4qM

1/4
L M0(M

3/4
L +A1/2 +M

1/4
L K1/2)

≲ λ−α
q+1M0M

1/2
L (ML +A+K)1/2 ⩽ 1

8
δq+1ML.

where we used ∥vl∥L2
(2∧TL,TL]

L2 ⩽ ∥v2q∥L2
[tq,TL]

L2 by l ⩽ 2, and used the conditions on the parameters
to deduce lλ4q ⩽ λ−α

q+1 and M0(ML + A+K)1/2 ≪ λα−2β
q+1 and then chose a large enough to absorb

the constant.
Combining the above estimate (3.17) follows.

5.6. Definition of the Reynolds stress. By combining (3.7) at the level q + 1, (5.2) and the
definition of wq+1 we get

divR̊q+1 −∇p2q+1 +∇pl
= −∆wq+1 + ∂t(w̃

(p)
q+1 + w̃

(c)
q+1) + div((vl + v1q+1)⊗ wq+1 + wq+1 ⊗ (vl + v1q+1))

(:= divRlin +∇plin)

+ div((w̃
(c)
q+1 + w̃

(t)
q+1)⊗ wq+1 + w̃

(p)
q+1 ⊗ (w̃

(c)
q+1 + w̃

(t)
q+1)) (:= divRcor +∇pcor)

+ ∂tw̃
(t)
q+1 + div(w̃

(p)
q+1 ⊗ w̃

(p)
q+1 + R̊l) (:= divRosc +∇posc)

+ div((vq+1 − vq)⊗∆⩽Rz +∆⩽Rz ⊗ (vq+1 − vq)

+ (vq+1 − vq) ≽⃝∆>Rz +∆>Rz ≼⃝(vq+1 − vq))(:= divRcom1 +∇pcom1)

+ div((vl + v1q+1)⊗ (vl + v1q+1)− (v1q + v2q )⊗ (v1q + v2q ))(:= divRcom2 +∇pcom2)

+ div((vq+1 − vq)⊗ zin + zin ⊗ (vq+1 − vq))(:= divRcom3 +∇pcom3)

+ divRcom,

where Rcom is introduced in Section 5.2.
Applying the inverse divergence operator R, by (2.2) we could define

Rlin : = −∇wq+1 −∇Twq+1 +R(∂t(w̃
(p)
q+1 + w̃

(c)
q+1)) + (vl + v1q+1)⊗̊wq+1 + wq+1⊗̊(vl + v1q+1),

Rcor : = (w̃
(c)
q+1 + w̃

(t)
q+1)⊗̊wq+1 + w̃

(p)
q+1⊗̊(w̃

(c)
q+1 + w̃

(t)
q+1),

Rcom2 : = (vl + v1q+1)⊗̊(vl + v1q+1)− (v1q + v2q )⊗̊(v1q + v2q ),

Rcom3 : = (vq+1 − vq)⊗̊zin + zin⊗̊(vq+1 − vq),

Rcom1 is the trace-free part of the matrix
(vq+1 − vq)⊗∆⩽Rz +∆⩽Rz⊗(vq+1 − vq) + (vq+1 − vq) ≽⃝∆>Rz +∆>Rz ≼⃝(vq+1 − vq).

In order to define the remaining oscillation error from the forth line, we apply (5.8), (5.11) and
direct calculation to obtain
∂tw̃

(t)
q+1 + div(w̃

(p)
q+1 ⊗ w̃

(p)
q+1 + R̊l)

=
∑
ξ∈Λ

χ2g2(ξ)P ̸=0

(
∇(a2(ξ))P ̸=0(W(ξ) ⊗W(ξ))

)
+ χ2(Id − PH)

∑
ξ∈Λ

P ̸=0

(
a2(ξ)g

2
(ξ)div(W(ξ) ⊗W(ξ))

)
(:= χ2Rosc,x + χ2∇posc,x)
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+ χ2∂tw
(a)
q+1 + χ2PH

∑
ξ∈Λ

P ̸=0

(
a2(ξ)g

2
(ξ)div(W(ξ) ⊗W(ξ))

)
(:= χ2Rosc,a + χ2∇posc,a)

+ χ2∂tw
(o)
q+1 +

∑
ξ∈Λ

χ2(g2(ξ) − 1)div(a2(ξ)ξ ⊗ ξ)(:= χ2Rosc,t + χ2∇posc,t)

+ (χ2)′w
(t)
q+1 + div((1− χ2)R̊l) +∇ρ.

Applying the inverse divergence operator B, we could define

Rosc,x : =
∑
ξ∈Λ

g2(ξ)B
(
∇a2(ξ),P ̸=0(W(ξ) ⊗W(ξ))

)
,

∇posc,x : = (Id − PH)
∑
ξ∈Λ

P ̸=0

(
a2(ξ)g

2
(ξ)div(W(ξ) ⊗W(ξ))

)
.

For Rosc,a by (5.13), (B.10) we obtain

∂tw
(a)
q+1 + PH

∑
ξ∈Λ

P ̸=0

(
a2(ξ)g

2
(ξ)div(W(ξ) ⊗W(ξ))

)
= −θ−1σPHP ̸=0

∑
ξ∈Λ

∂t(a
2
(ξ)g(ξ))|W(ξ)|2ξ.

Thus we define

Rosc,a : = −θ−1σ
∑
ξ∈Λ

B
(
∂t(a

2
(ξ)g(ξ)), |W(ξ)|2ξ

)
,

∇posc,a : = θ−1σ(Id − PH)P ̸=0

∑
ξ∈Λ

∂t(a
2
(ξ)g(ξ))|W(ξ)|2ξ.

For Rosc,t by (5.12) and (B.3) we obtain

∂tw
(o)
q+1 +

∑
ξ∈Λ

(g2(ξ) − 1)div(a2(ξ)ξ ⊗ ξ)

= −σ−1PHP ̸=0

∑
ξ∈Λ

h(ξ)div∂t(a
2
(ξ)ξ ⊗ ξ) + (Id − PH)P ̸=0

∑
ξ∈Λ

(g2(ξ) − 1)div(a2(ξ)ξ ⊗ ξ),

then we define

Rosc,t : = −σ−1
∑
ξ∈Λ

R
(
h(ξ)div∂t(a

2
(ξ)ξ ⊗ ξ)

)
,

∇posc,t : = σ−1(Id − PH)P ̸=0

∑
ξ∈Λ

h(ξ)div∂t(a
2
(ξ)ξ ⊗ ξ) + (Id − PH)P ̸=0

∑
ξ∈Λ

(g2(ξ) − 1)div(a2(ξ)ξ ⊗ ξ).

Together with the above we could define

Rosc := χ2(Rosc,x +Rosc,a +Rosc,t) + (χ2)′Rw(t)
q+1 + (1− χ2)R̊l.

Finally we define the Reynolds stress on the level q + 1 by

R̊q+1 = Rlin +Rcor +Rosc +Rcom1 +Rcom2 +Rcom3 +Rcom.

We observe that by construction, R̊q+1 is (Ft)t⩾0-adapted.

5.7. Verification of the inductive estimate for R̊q+1. To conclude the proof of Proposition 3.6
we shall verify (3.13) at the level q + 1. To establish the iterative estimate, we will make separate
estimates on three time intervals in accordance with the definition of R̊q+1 in the following.
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5.7.1. The case t ∈ (σq ∧ TL, TL]. First we note that if TL ⩽ σq then there is nothing to estimate,
hence we assume that σq < TL and t ∈ (σq, TL]. Using (3.3) and (3.3) we conclude that χ(t) = 1

on the interval (σq, TL]. We will estimate each term present in the definition of R̊q+1 in Section 5.6
separately.

I. Estimate of the linear error Rlin. We estimate each term separately. By (5.10) and (B.11)
we obtain

∂t(w
(p)
q+1 + w

(c)
q+1) = σ−1

∑
ξ∈Λ

∇⊥[∂t(a(ξ)g(ξ))Ψ(ξ)] + σ−2θ
∑
ξ∈Λ

∇⊥[a(ξ)g
2
(ξ)(ξ · ∇)Ψ(ξ)].

Now by the fact that R∇⊥ is Lp → Lp bounded for any p > 1, together with (5.6), (B.7) and (B.8)
we obtain for ε > 0 small enough

∥R(∂t(w
(p)
q+1 + w

(c)
q+1))(t)∥L1 ≲ ∥R(∂t(w

(p)
q+1 + w

(c)
q+1))(t)∥L1+ϵ

≲ σ−1
∑
ξ∈Λ

∥∂t(a(ξ)g(ξ))Ψ(ξ)(t)∥L1+ϵ + σ−2θ
∑
ξ∈Λ

∥a(ξ)g2(ξ)(ξ · ∇)Ψ(ξ)∥L1+ϵ

≲
∑
ξ∈Λ

∥a(ξ)∥C1
t,x

(
σ−1∥Ψ(ξ)∥CtL1+ϵ(|∂tg(ξ)(t)|+ |g(ξ)(t)|) + σ−2θ∥(ξ · ∇)Ψ(ξ)∥CtL1+ϵg2(ξ)(t)

)
≲ ((ML + qA)

1
2 +K

1
2 )l−15

∑
ξ∈Λ

(σ−1ν−
1
2µ− 3

2 (|∂tg(ξ)(t)|+ |g(ξ)(t)|) + σ−1θν
1
2µ− 3

2 g2(ξ)(t))(νµ)
ϵ

≲ λ31α−2+2γ+2ϵ
q+1

∑
ξ∈Λ

(|∂tg(ξ)(t)|+ |g(ξ)(t)|) + λ31α−γ+2ϵ
q+1

∑
ξ∈Λ

g2(ξ)(t)

≲ λ−1
q+1

∑
ξ∈Λ

(|∂tg(ξ)(t)|+ |g(ξ)(t)|) + λ
− 1

2γ
q+1

∑
ξ∈Λ

g2(ξ)(t),

where we chose 2ε < α and used the conditions on the parameters to deduce 32α < 1
2γ,

5
2γ < 1,

ML + qA+K ⩽ l−1.
By (5.34)-(5.36) we obtain for ε > 0 small enough

∥∇wq+1(t) +∇Twq+1(t)∥L1 ≲ ∥wq+1∥CtW 1,1+ϵ

≲ λ48α+6γ+2ϵ
q+1

∑
ξ∈Λ

|g(ξ)(t)|+ λ62α−2γ
q+1 ≲ λ7γq+1

∑
ξ∈Λ

|g(ξ)(t)|+ λ−γ
q+1.

where we chose 2ε < α and used the conditions on parameters to deduce 62α < γ.
By (3.11), (3.20) and (5.30) we obtain

∥(vl + v1q+1)⊗̊wq+1 + wq+1⊗̊(vl + v1q+1)∥L1 ≲ ∥vl + v1q+1∥CtL∞∥wq+1∥CtLp

≲ λ−γ
q+1M

1/2
L (λ4q + L2λαq+1) ≲ λ

− 1
2γ

q+1 M
1/2
L ,

where we used the conditions on parameters to deduce L2 ⩽ l−1 and λ4q < λαq+1 and 6α < γ.
Together with all the estimates above we obtain

∥Rlin(t)∥L1 ≲ λ−1
q+1

∑
ξ∈Λ

|∂tg(ξ)(t)|+ λ7γq+1

∑
ξ∈Λ

|g(ξ)(t)|+ λ
− 1

2γ
q+1

∑
ξ∈Λ

g2(ξ)(t) + λ
− 1

2γ
q+1 M

1/2
L . (5.38)

II. Estimate of the corrector error Rcor. Using (5.25)-(5.27) we obtain for t ∈ (σq, TL]

∥Rcor(t)∥L1 ⩽ ∥w(c)
q+1(t) + w

(t)
q+1(t)∥L2(∥wq+1(t)∥L2 + ∥w(p)

q+1(t)∥L2)



NONUNIQUENESS FOR 2D NSE WITH SPACE-TIME WHITE NOISE 33

≲ λ48α−2γ
q+1 (

∑
ξ∈Λ

|g(ξ)(t)|+ 1)(∥wq+1(t)∥L2 + ∥w(p)
q+1(t)∥L2)

≲ λ−γ
q+1(

∑
ξ∈Λ

|g(ξ)(t)|+ 1)(∥wq+1(t)∥L2 + ∥w(p)
q+1(t)∥L2), (5.39)

where we used the conditions on the parameters to deduce ML + qA+K ⩽ l−1, 48α < γ.
III. Estimate of the oscillation error Rosc. By (5.14) we have χ(t) = 1 on the interval

(σq, TL], which implies Rosc = Rosc,x + Rosc,a + Rosc,t. In order to bound the first term, we note
that W(ξ) is (T/σ)2-periodic. Then we apply (2.3), (2.4), (5.6) and (B.7) to obtain for all t ∈ [0, TL]

∥Rosc,x(t)∥L1 ≲
∑
ξ∈Λ

∥∇a2(ξ)∥CtC1∥R(W(ξ) ⊗W(ξ))∥CtL1g2(ξ)(t)

≲
∑
ξ∈Λ

l−30(ML + qA+ γq+1)σ
−1∥W(ξ) ⊗W(ξ)∥CtL1g2(ξ)(t)

≲ λ62α−2γ
q+1

∑
ξ∈Λ

g2(ξ)(t) ≲ λ−γ
q+1

∑
ξ∈Λ

g2(ξ)(t),

where we used the conditions on parameters to deduce ML + qA+K ⩽ l−1, 62α < γ.
We apply (2.3) (2.4), (5.6) and (B.7) to obtain for all t ∈ [0, TL]

∥Rosc,a(t)∥L1 ≲ θ−1σ
∑
ξ∈Λ

∥∂t(a2(ξ)g(ξ))∥C1∥R(|W(ξ)|2ξ)∥CtL1

≲ θ−1∥a2(ξ)∥C2
t,x

∑
ξ∈Λ

(|g(ξ)(t)|+ |∂tg(ξ)(t)|)∥W(ξ)∥2CtL2 ,

≲ θ−1l−30(ML + qA+ γq+1)
∑
ξ∈Λ

(|g(ξ)(t)|+ |∂tg(ξ)(t)|)

≲ λ62α−1−5γ
q+1

∑
ξ∈Λ

(|g(ξ)(t)|+ |∂tg(ξ)(t)|) ≲ λ−1
q+1

∑
ξ∈Λ

(|g(ξ)(t)|+ |∂tg(ξ)(t)|),

where we used the conditions on parameters to deduce ML + qA+K ⩽ l−1 and 62α < 5γ.
By (5.6) and (B.2) we have for all t ∈ [0, TL]

∥Rosc,t(t)∥L1 ≲ σ−1
∑
ξ∈Λ

∥a2(ξ)∥C1
t,x

∥h(ξ)∥L∞
t

≲ σ−1l−23(ML + qA+ γq+1) ≲ λ−γ
q+1,

where we used the conditions to deduce ML + qA+K ⩽ l−1, 48α < γ. Therefore we obtain

∥Rosc(t)∥L1 ≲ λ−γ
q+1(

∑
ξ∈Λ

g2(ξ)(t) + 1) + λ−1
q+1

∑
ξ∈Λ

(|g(ξ)(t)|+ |∂tg(ξ)(t)|). (5.40)

IV. Estimate of commutator errors Rcom1, Rcom2, Rcom3 and Rcom. For Rcom1, by Lemma
2.2 with 1− 2κ− κ0 > 0, (3.15), (3.18) and (3.21) we obtain for t ∈ [0, TL]

∥Rcom1(t)∥L1 ≲ (∥v2q+1 − v2q∥CtW 1/2,6/5 + ∥v1q+1 − v1q∥CtB
1−κ−κ0
p,∞

)(∥∆⩽Rz∥CtL∞ + ∥z∥CtC−κ)

≲ L5/2M
1/2
L (λ−α

q+1 + L5/4λ
−α

8 κ0
q ) ≲ML(λ

−α
q+1 + L5/4λ

−α
8 κ0

q ), (5.41)

where we used the condition on the parameters to deduce ML ⩾ L5.
For Rcom2, by (3.11), (3.18) and (3.19) we obtain for t ∈ [0, TL]

∥Rcom2(t)∥L1 ≲ (∥v1q+1(t)∥L2 + ∥v1q (t)∥L2 + ∥v2q (t)∥L2 + ∥vl(t)∥L2)(∥v1q+1 − v1q∥CtL2 + l∥v2q∥C1
t,x

)
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≲ (M
1/2
L + ∥v2q (t)∥L2 + ∥vl(t)∥L2)M

1/2
L (λ−α

q+1 + L5/4λ
−α

8 κ0
q + lλ4q)

≲ (M
1/2
L + ∥v2q (t)∥L2 + ∥vl(t)∥L2)M

1/2
L (λ−α

q+1 + L5/4λ
−α

8 κ0
q ), (5.42)

where we used the conditions on the parameters to deduce lλ4q ⩽ λ−α
q+1.

For t ∈ [0, TL], it holds that by Hölder’s inequality
∥Rcom3(t)∥L1 ≲ (∥v1q+1 − v1q∥CtLp + ∥v2q+1 − v2q∥CtLp)∥zin(t)∥

L
p

p−1
.

By [DV15, Lemma 9] and (3.9) we have

∥zin(t)∥
L

p
p−1

≲ (1 + t
p−2
p )∥u0∥Lp ≲ (1 + t

p−2
p )N,

which together with (3.14), (3.18) imply

∥Rcom3(t)∥L1 ≲ (λ−α
q+1 + L5/4λ

−α
8 κ0

q )M
1/2
L (1 + t

p−2
p )N. (5.43)

Finally let us now consider each term in Rcom separately, which is defined in Section 5.2. For
I1 = (v1q + v2q + zin)⊗∆⩽Rz +∆⩽Rz ⊗ (v1q + v2q + zin) and t ∈ (σq+1, TL] we have

∥(I1 − I1 ∗x φl ∗t ϕl)(t)∥L1 ≲ l
κ0
2 (∥vq∥Cκ0/2

[
σq+1

2
,t]

L2 + ∥zin∥
C

κ0/2

[
σq+1

2
,t]

L2)∥∆⩽Rz∥Cκ0/2
t L∞

+ l
κ0
2 (∥vq∥C

[
σq+1

2
,t]

H1/3 + ∥zin∥C
[
σq+1

2
,t]

H1)∥∆⩽Rz∥CtCκ0

≲ l
κ0
2 (λ4qM

1/2
L +M

1/2
L λαq + σ

−1/p
q+1 M

1/2
L )L

9
2 ≲ l

κ0
2 (λ4q + σ

−1/p
q+1 )ML,

where we used (2.1) and (3.8) to deduce

∥∆⩽Rz∥CtCκ0 ≲ 2(κ+κ0)R∥z∥CtC−κ ≲ 22κ0R∥z∥CtC−κ ≲ L
17
4 ,

∥∆⩽Rz∥Cκ0/2
t L∞ ≲ ∥∆⩽Rz∥Cκ0/2

t Cκ0/8 ≲ 2(
9
8κ0+κ)R∥z∥

C
κ0/2
t C−κ−κ0

≲ 2
17
8 κ0R∥z∥

C
κ0/2
t C−κ−κ0

≲ L
9
2 ,

and by [DV15, Lemma 9] and interpolation we have
∥zin∥

C
κ0/2

[
σq+1

2
,t]

L2 + ∥zin∥
C

1
4
(1−2κ−κ0)

[
σq+1

2
,t]

H1/2−κ0/2
≲ ∥zin∥C

[
σq+1

2
,t]

H1 + ∥zin∥
C

1/2

[
σq+1

2
,t]

L2

≲ σ
− 1

p

q+1∥u0∥Lp ≲ σ
− 1

p

q+1M
1/2
L . (5.44)

Here we bounded v1q using equation (3.20) and v2q using equation (3.11). Additionally, we used
ML ⩾ L9 in the last inequality.

For I2 = (v1q + v2q + zin)⊗ (v1q + v2q + zin) and t ∈ (σq+1, TL], by (3.11), (3.19), (3.20) and (5.44)
we have

∥(I2 − I2 ∗x φl ∗t ϕl)(t)∥L1

≲ l
κ0
2 (∥vq∥Cκ0/2

[
σq+1

2
,t]

L2 + ∥zin∥
C

κ0/2

[
σq+1

2
,t]

L2 + ∥vq∥C
[
σq+1

2
,t]

H1/3 + ∥zin∥C
[
σq+1

2
,t]

H1)

× (∥v1q∥CtL2 + ∥v2q∥C1
t,x

+ ∥zin∥C
[
σq+1

2
,t]

L2)

≲ l
κ0
2 (λ4qM

1/2
L +M

1/2
L λαq + σ

−1/p
q+1 M

1/2
L )(λ4qM

1/2
L + σ

−1/p
q+1 M

1/2
L ) ≲ l

κ0
2 (λ4q + σ

−1/p
q+1 )2ML.

For I3 = (v1q + v2q + zin) ≽⃝∆>Rz +∆>Rz ≼⃝(v1q + v2q + zin) and t ∈ (σq+1, TL], by (3.8), (3.11),
(3.19), (4.1) and (5.44) we obtain
∥(I3 − I3 ∗x φl ∗t ϕl)(t)∥L1
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≲ l
1
4 (1−2κ−κ0)

(
(∥v1q∥CtB

1−κ−κ0
p,∞

+ ∥v2q∥C
[
σq+1

2
,t]

H1−κ−κ0 + ∥zin∥C
[
σq+1

2
,t]

H1−κ−κ0 )∥z∥CtC−κ

+ (∥v1q∥
C

1
4
(1−2κ−κ0)

t B
1/2−κ0/2
p,∞

+ ∥v2q∥
C

1
4
(1−2κ−κ0)

[
σq+1

2
,t]

H1/2−κ0/2
+ ∥zin∥

C
1
4
(1−2κ−κ0)

[
σq+1

2
,t]

H1/2−κ0/2
)∥z∥CtC−κ

+ (∥v1q∥CtB
1−κ−κ0
p,∞

+ ∥v2q∥C
[
σq+1

2
,t]

H1−κ−κ0 + ∥zin∥C
[
σq+1

2
,t]

H1−κ−κ0 )∥z∥
C

1
4
(1−2κ−κ0)

t C− 1
2
+

κ0
2

)
≲ l

1
4 (1−3κ0)(λ4qM

1/2
L +M

1/2
L + σ

−1/p
q+1 M

1/2
L )L1/4 ≲ l

1
4 (1−3κ0)(λ4q + σ

−1/p
q+1 )ML.

Therefore, we have for t ∈ (σq+1, TL]

∥Rcom(t)∥L1 ≲ l
κ0
2 (λ4q + σ

−1/p
q+1 )2ML + l

1
4 (1−3κ0)(λ4q + σ

−1/p
q+1 )ML ≲ lκ1ML, (5.45)

where we recall κ1 = κ0

4 ∧( 16−
κ0

2 ) and in the first inequality we used the conditions on the parameters
to deduce lκ1/2λ4q ⩽ 1, lκ1/2 ⩽ σ

1/p
q+1 by choosing αb > 16

3κ1
and κ1α >

8
3β.

Summarizing (5.38)-(5.43) and (5.45) we obtain

∥R̊q+1(t)∥L1 ≲
∑
ξ∈Λ

(λ−1
q+1|∂tg(ξ)(t)|+ λ7γq+1|g(ξ)(t)|+ λ

− 1
2γ

q+1 g
2
(ξ)(t) + λ

− 1
2γ

q+1 M
1/2
L )

+ λ−γ
q+1(

∑
ξ∈Λ

|g(ξ)(t)|+ 1)(∥wq+1(t)∥L2 + ∥w(p)
q+1(t)∥L2),

+ (M
1/2
L + ∥v2q (t)∥L2 + ∥vl(t)∥L2 +Nt

p−2
p )M

1/2
L (λ−α

q+1 + L5/4λ
−α

8 κ0
q ) + lκ1ML.

Then we integrate over the interval (σq, TL] to obtain

∥R̊q+1∥L1
(σq,TL]

L1 ≲
∑
ξ∈Λ

(λ−1
q+1∥∂tg(ξ)∥L1

(σq,TL]
+ λ7γq+1∥g(ξ)∥L1

(σq,TL]
+ λ

− 1
2γ

q+1 ∥g(ξ)∥2L2
(σq,TL]

+ λ
− 1

2γ
q+1 M

1/2
L L)

+ λ−γ
q+1(

∑
ξ∈Λ

∥g(ξ)∥L2
(σq,TL]

+ L)(∥wq+1∥L2
(σq+1,TL]

L2 + ∥w̃(p)
q+1∥L2

(σq+1,TL]
L2)

+ (M
1/2
L L+ ∥v2q∥L2

[tq,TL]
L2 +NL2−2/p)M

1/2
L (λ−α

q+1 + L5/4λ
−α

8 κ0
q ) + lκ1MLL,

where we used ∥v2q∥L2
(σq,TL]

L2 + ∥vl∥L2
(σq,TL]

L2 ≲ ∥v2q∥L2
[tq,TL]

L2 by l ⩽ σq. Then we bound g(ξ) by
(B.1), Remark B.2 and that TL − σq +

2
σ ⩽ L+ 2 ⩽ 2L. Together with (3.10), (5.19) and (5.28) we

obtain

∥R̊q+1∥L1
(σq,TL]

L1 ≲ (λ−1+10γ
q+1 + λ−γ

q+1 + λ
− 1

2γ
q+1 )ML + λ−γ

q+1((ML + qA)1/2 +K1/2)M
1/2
L ,

+ (M
3/4
L +A1/2 +M

1/4
L K1/2)M

1/2
L (λ−α

q+1 + L5/4λ
−α

8 κ0
q ) + lκ1MLL

≲ λ
− 1

2γ
q+1 ML + (λ−α

q+1 + L5/4λ
−α

8 κ0
q )M

3/4
L (M

1/2
L + (qA)1/2 +K1/2) + lκ1MLL

⩽M
1/2
L (M

1/2
L − σ2−2/p

q )δq+2 ⩽MLδq+2.

where we used the conditions on the parameters to deduce 1
2γ > α > max{ 16βb2

κ0
, 4βb3κ1

}, (λ−α+2βb
q+1 +

L5/4λ
−α

8 κ0+2βb2

q )(ML + qA +K)1/2 + Lλ
− 3

2κ1α+2βb
q+1 ≪ 1, then we chose a large enough to absorb

the universal constant. Here the extra σ
2−2/p
q ⩽ 1 in the last second inequality is used to absorb

the bound appeared in the next section. Thus we obtained the first line of (3.13) at the level q+ 1.
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5.7.2. The case t ∈ (σq+1 ∧ TL, σq ∧ TL]. If TL ⩽ σq+1, there is nothing to estimate, hence we
may assume σq+1 < TL and t ∈ (σq+1, σq ∧ TL]. In this case, Rcor, Rcom1, Rcom3 and Rcom in the
definition of R̊q+1 are similar to those in previous section, with the added factor of χ(t) ⩽ 1, so we
can estimate them in the same way as before. For Rcom2 we have v2q (t) = vl(t) = 0 by (3.10) and
σq+1 ⩽ t ⩽ σq ∧ TL. Using a similar approach as (5.42), we obtain

∥Rcom2(t)∥L1 ≲ML(λ
−α
q+1 + L5/4λ

−α
8 κ0

q ).

For Rlin, there is an additional term χ′(t)(w
(p)
q+1(t) +w

(c)
q+1(t)). For Rosc, there are additional terms

(χ2)′Rw(t)
q+1 and (1− χ2)R̊l by definition in Section 5.6. The rest parts can be estimated similarly.

Thus we only have to consider (1− χ2)R̊l and

Rcut := χ′(t)(Rw(p)
q+1(t) +Rw(c)

q+1(t)) + (χ2)′(t)Rw(t)
q+1(t).

As for Rcut by (5.24)-(5.27) we have for ε > 0 small enough

∥Rcut(t)∥L1 ⩽ ∥χ′(t)(w
(p)
q+1 + w

(c)
q+1)∥L1+ϵ + ∥(χ2)′w

(t)
q+1∥L1+ϵ

≲ σ−1
q+1(∥w

(p)
q+1(t)∥L1+ϵ + ∥w(c)

q+1(t)∥L1+ϵ + ∥w(t)
q+1(t)∥L1+ϵ)

⩽ σ−1
q+1((ML + qA)1/2 + γ

1/2
q+1)

2λ46α−2γ+2ϵ
q+1 ≲ λ−γ

q+1,

where we choose 2ε < α and used the conditions on the parameters to deduce ∥χ(t)∥C1
t
≲ σ−1

q+1 ⩽ l−1,
ML + qA+K ⩽ l−1 and 51α < γ.

Therefore, using similar calculations as in Section 5.7.1 we obtain for σq+1 < t ⩽ σq ∧ TL ⩽ 1

∥R̊q+1(t)∥L1 ≲ λ−1
q+1

∑
ξ∈Λ

|∂tg(ξ)(t)|+ λ7γq+1

∑
ξ∈Λ

|g(ξ)(t)|+ λ
− 1

2γ
q+1 (

∑
ξ∈Λ

g2(ξ)(t) +M
1/2
L )

+ λ−γ
q+1(

∑
ξ∈Λ

|g(ξ)(t)|+ 1)(∥wq+1(t)∥L2 + ∥w̃(p)
q+1(t)∥L2),

+ t
p−2
p ML(λ

−α
q+1 + L5/4λ

−α
8 κ0

q ) + lκ1ML + (1− χ2)∥R̊l(t)∥L1 .

Here we used t1−2/p ⩾ 1 since 1− 2/p < 0. Then by the similar calculation as before, together with
(5.14) we obtain

∥R̊q+1∥L1
(σq+1,σq∧TL]

L1 ≲ λ
− 1

2γ
q+1 M

1/2
L σq + λ−γ

q+1σ
1/2
q (∥wq+1∥L2

(σq+1,TL]
L2 + ∥w̃(p)

q+1∥L2
(σq+1,TL]

L2)

+ σ2−2/p
q ML(λ

−α
q+1 + L5/4λ

−α
8 κ0

q ) + lκ1MLσq + ∥R̊l∥L1
(σq+1,(2σq+1)∧TL]

L1

≲ λ
− 1

2γ
q+1 M

1/2
L σq + λ

− 1
2γ

q+1 σq((ML + qA)1/2 +K1/2)M
1/4
L

+ σ2−2/p
q ML(λ

−α
q+1 + L5/4λ

−α
8 κ0

q ) + lκ1MLσq + ∥R̊l∥L1
(σq+1,(2σq+1)∧TL]

L1

⩽M
1/2
L σ2−2/p

q δq+2 + ∥R̊l∥L1
(σq+1,(2σq+1)∧TL]

L1 ,

where we bound g(ξ) by (B.1), Remark B.2 and note that σq∧TL−σq+1+
2
σ ≲ σq. In the last second

inequality we used (5.28) and the conditions on the parameters to deduce ML + qA + K ⩽ l−1,
λ
− 1

2γ
q+1 ⩽ σ

1
2
q by γ > 2β/b, and in the last inequality we used 2α > γ > 4βb, σq ⩽ σ

2−2/p
q by

0 ⩽ 2 − 2/p ⩽ 1, M1/2
L (λ−α+2βb

q+1 + L5/4λ
−α

8 κ0+2βb2

q ) + M
1/2
L λ

− 3
2κ1α+2βb

q+1 ≪ 1, and chose a large
enough to absorb the universal constant.
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5.7.3. The case t ∈ [tq+1, σq+1∧TL]. In this case, we further divide the interval into two subintervals,
[0, σq+1 ∧ TL] and [tq+1, 0], then we establish the estimates separately.

For t ∈ [0, σq+1 ∧ TL], by (3.10) we know vl(t) = v2q+1(t) = 0 and

R̊q+1 = R̊l +Rcom +Rcom1 +Rcom2 +Rcom3. (5.46)

By the estimates of Rcom1, Rcom2 and Rcom3 (5.41)-(5.43) we obtain for 0 ⩽ t ⩽ σq+1 ∧ TL ⩽ 1

∥Rcom1(t) +Rcom2(t)∥L1 ≲ML(λ
−α
q+1 + L5/4λ

−α
8 κ0

q ) ⩽ML,

∥Rcom3(t)∥L1 ≲ML(λ
−α
q+1 + L5/4λ

−α
8 κ0

q )(1 + t
p−2
p ) ⩽MLt

1− 2
p ,

where we used the conditions on the parameters to deduce t1−2/p ⩾ 1 as 1− 2/p < 0.
For Rcom, the trace-free part of Ncom−Ncom ∗x φl ∗t ϕl, we do not use the mollification estimate.

Instead, we bound Ncom directly and have

∥R̊q+1(t)∥L1 ⩽ ∥R̊l(t)∥L1 + 2MLt
1− 2

p + ∥Ncom(t)∥L1 + ∥Ncom ∗t ϕl(t)∥L1 .

For the last two terms, similar as (3.22) and (3.23), we obtain for 0 ⩽ t ⩽ σq+1 ∧ TL ⩽ 1

∥Ncom(t)∥L1 ≲ (∥v1q∥CtB
1−κ−κ0
p,∞

+ ∥zin(t)∥W 2/p−1,p)(∥∆⩽Rz∥CtL∞ + ∥z∥CtC−κ) + ∥v1q (t) + zin(t)∥2L2

≲ L5 + L−3/2ML +N2(1 + t1−
2
p ) ⩽MLt

1− 2
p ,

and for −1 ⩽ tq+1 ⩽ t < 0 and 1− 2
p < 0

∥Ncom(t)∥L1 ≲ ∥zin(|t|)∥2L2 ≲ N2(1 + |t|1−
2
p ) ⩽ML|t|1−

2
p ,

which implies that for any 0 ⩽ t1 < t2 ⩽ σq+1 ∧ TL

∥Ncom∗tϕl∥L1
[t1,t2]

L1 ⩽ sup
b∈[0,l]

∥Ncom∥L1
[t1−b,t2−b]

L1 ⩽ p

p− 1
ML(t2 − t1)

2− 2
p .

Then by the choice of A we obtain

∥R̊q+1∥L1
[0,σq+1∧TL]

L1 ⩽ ∥R̊l∥L1
[0,σq+1∧TL]

L1 +
3p

p− 1
ML(σq+1 ∧ TL)2−

2
p

⩽ ∥R̊l∥L1
[0,σq+1∧TL]

L1 +A(σq+1 ∧ TL)2−
2
p .

Then together with the bound in Section 5.7.1-5.7.3 we obtain

∥R̊q+1∥L1
[0,TL]

L1 ⩽MLδq+2 + ∥R̊l∥L1
[0,(2σq+1)∧TL]

L1 +Aσ
2− 2

p

q+1

⩽MLδq+2 + sup
b∈[−l,0]

∥R̊q∥L1
[b,b+2σq+1]

L1 +Aσ
2− 2

p

q+1 ⩽MLδq+2 + 2(q + 2)Aσ
2− 2

p

q+1 ,

where in the last inequality we used the last line of (3.13) and (3.3) to deduce 2σq+1 ⩽ σq. Thus we
proved the second line of (3.13) at the level q + 1.

By the similar argument above we have for any 0 ⩽ a ⩽ a+ h ⩽ σq+1 ∧ TL

∥R̊q+1∥L1
[a,a+h]

L1 ⩽ ∥R̊l∥L1
[a,a+h]

L1 +
p

p− 1
MLh

2− 2
p + ∥Ncom∥L1

[a,a+h]
L1 + ∥Ncom ∗t ϕl∥L1

[a,a+h]
L1

⩽ 2(q + 1)A(
h

2
)2−

2
p +Ah2−

2
p ⩽ 2(q + 2)A(

h

2
)2−

2
p . (5.47)
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On the other hand, for t ∈ [tq+1, 0), we have R̊q+1 = zin⊗̊zin. By the similar argument as in
(3.23) we obtain

∥R̊q+1(t)∥L1 ⩽ML|t|1−2/p.

By the choice of A we have for tq+1 ⩽ a− h ⩽ a < 0

∥R̊q+1∥L1
[a−h,a]

L1 ⩽ A((h− a)2−
2
p − (−a)2−

2
p ) ⩽ Ah2−

2
p . (5.48)

Thus we could obtain the third line of (3.13) at the level q+1. More specifically for any tq+1 ⩽ a <
a + h ⩽ σq+1 ∧ TL, the case a ⩾ 0 and the case a + h ⩽ 0 are directly from (5.47) and (5.48). For
a < 0 < a+ h also by (5.47) and (5.48) we obtain

∥R̊q+1∥L1
[a,a+h]

L1 = ∥R̊q+1∥L1
[a,0)

L1 + ∥R̊q+1∥L1
[0,a+h]

L1

⩽ 2(q + 1)A(
a+ h

2
)2−

2
p +A

(
(−a)2−

2
p + (a+ h)2−

2
p

)
⩽ 2(q + 1)A(

h

2
)2−

2
p + 2A(

h

2
)2−

2
p = 2(q + 2)A(

h

2
)2−

2
p .

We finish the proof of Proposition 3.6.

6. Proof of Theorem 1.5

This section is devoted to the proof of Theorem 1.5. In the following we consider the equation
on [0, T ] for simplicity.

Proof of Theorem 1.5. By Proposition 3.1 it follows z ∈ CTC
−κ for any κ > 0. Then for any given

ζ ∈ (0, 1) we could find κ > 0 such that ζ ∈ (κ, 1 − 2κ). We only need to prove uniqueness of
solutions to (1.3). We assume v1, v2 ∈ C([0, T ];L2) ∩ L2([0, T ];Hζ) be two solutions to (1.3) with
the same initial data. Now we define w := v1 − v2 which satisfies

w(t) = −
∫ t

0

PHe
(t−s)∆div((v1 + z)⊗ w + w ⊗ (v2 + z))ds, w(0) = 0, (6.1)

where we recall PH is the Helmholtz projection.
As v1, v2 ∈ CTL

2, for any ε > 0 there exist v∗1 , v∗2 ∈ CTC
2ζ such that the following holds

sup
t∈[0,T ]

∥v1 − v∗1∥L2 < ε, sup
t∈[0,T ]

∥v2 − v∗2∥L2 < ε

and
sup

t∈[0,T ]

∥v∗1∥C2ζ ≲ϵ sup
t∈[0,T ]

∥v1∥L2 , sup
t∈[0,T ]

∥v∗2∥C2ζ ≲ϵ sup
t∈[0,T ]

∥v2∥L2 .

We consider some 0 < T ∗ ⩽ T to be determined later, using Lemma 2.3 we bound w in
L2([0, T ∗];Hζ)

∥w∥L2
[0,T∗]

Hζ ≲ ∥
∫ t

0

e(t−s)∆(v1 ⊗ w)ds∥L2
[0,T∗]

Hζ+1 + ∥
∫ t

0

e(t−s)∆(w ⊗ v2)ds∥L2
[0,T∗]

Hζ+1

+ ∥
∫ t

0

e(t−s)∆(w ⊗ z + z ⊗ w)ds∥L2
[0,T∗]

Hζ+1 =: I1 + I2 + I3.

We bound each terms separately. For I1 by Lemma C.2 and Lemma C.4 we obtain

I1 ⩽ ∥(v1 − v∗1)⊗ w∥L2
[0,T∗]

Hζ−1 +

(∫ T∗

0

(

∫ t

0

(t− s)−
1
2 ∥v∗1 ⊗ w∥Hζds)2dt

) 1
2

.
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We bound the first term on the right hand side by Hölder’s inequality and the Sobolev embedding

∥(v1 − v∗1)⊗ w∥L2
[0,T∗]

Hζ−1 ≲ ∥(v1 − v∗1)⊗ w∥L2
[0,T∗]

Lp ≲ (

∫ T∗

0

∥w∥2
Lp′ ∥v1 − v∗1∥2L2dt)1/2

≲ sup
t∈[0,T ]

∥v1(t)− v∗1(t)∥L2∥w∥L2
[0,T∗]

Hζ ⩽ C1ε∥w∥L2
[0,T∗]

Hζ ,

where we used the embeddings Lp ↪→ Hζ−1 and Hζ ↪→ Lp′ with 1
p − 1

2 = 1−ζ
2 , 1

p = 1
2 + 1

p′ and C1

is used to denote the universal implicit constants. For the second term on the right hand side we
apply Hölder’s inequality and derive for some C2 > 0 depending on ε(∫ T∗

0

(

∫ t

0

(t− s)−
1
2 ∥v∗1∥C2ζ∥w∥Hζds)2dt

) 1
2

≲ sup
s∈[0,T ]

∥v∗1(s)∥C2ζ

(∫ T∗

0

∫ t

0

(t− s)−
1
2 ds

∫ t

0

(t− s)−
1
2 ∥w∥2Hζdsdt

) 1
2

≲ sup
s∈[0,T ]

∥v1(s)∥L2

(∫ T∗

0

∫ T∗

s

t
1
2 (t− s)−

1
2 dt∥w∥2Hζds

) 1
2

⩽ C2T
∗ 1

2 ∥v1∥CTL2∥w∥L2
[0,T∗]

Hζ ,

which yields that

I1 ⩽ (C1ε+ C2T
∗ 1

2 ∥v1∥CTL2)∥w∥L2
[0,T∗]

Hζ .

Similarly we bound I2 by

I2 ⩽ (C1ε+ C2T
∗ 1

2 ∥v2∥CTL2)∥w∥L2
[0,T∗]

Hζ .

For I3 we obtain by Lemma 2.2 with ζ > κ, Lemma C.2 and Hölder’s inequality

I3 ≲
(∫ T∗

0

(

∫ t

0

(t− s)−
2κ+1+ζ

2 ∥w ⊗ z + z ⊗ w∥H−2κds)2dt

) 1
2

≲
(∫ T∗

0

(

∫ t

0

(t− s)−
2κ+1+ζ

2 ∥w∥Hζ∥z∥C−κds)2dt

) 1
2

≲ ∥z∥CTC−κ

(∫ T∗

0

∫ t

0

(t− s)−
2κ+1+ζ

2 ds

∫ t

0

(t− s)−
2κ+1+ζ

2 ∥w∥2Hζdsdt

) 1
2

≲ ∥z∥CTC−κ

(∫ T∗

0

∫ T∗

s

t
1−2κ−ζ

2 (t− s)−
2κ+ζ+1

2 dt∥w∥2Hζds

) 1
2

⩽ C2T
∗ 1−2κ−ζ

2 ∥z∥CTC−κ∥w∥L2
[0,T∗]

Hζ ,

where we used 0 < 2κ+ ζ < 1. Together with the above bounds we obtain

∥w∥L2
[0,T∗]

Hζ ⩽
(
2C1ε+ C2T

∗ 1−2κ−ζ
2 (∥v1∥CTL2 + ∥v2∥CTL2 + ∥z∥CTC−κ)

)
∥w∥L2

[0,T∗]
Hζ .

Then if we choose ε = 1
4C1

and T ∗ ⩽ T small enough such that

T ∗ 1−2κ−ζ
2 <

1

2C2(∥v1∥CTL2 + ∥v2∥CTL2 + ∥z∥CTC−κ) + 1
,
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we can deduce ∥w∥L2
[0,T∗]

Hζ = 0. Additionally, since w ∈ C([0, T ];L2), the conclusion that w = 0

signifies that there is at most one possible solution to (1.3) on [0, T ∗]. By employing this method
iteratively, starting from T ∗, we can arrive at the desired result within finite steps, independent of the
initial values. This implies that there is at most one possible solution in C([0, T ];L2)∩L2([0, T ];Hζ)
P-a.s. for any T > 0, which implies our final result. □

Acknowledgement. We are very grateful to Martina Hofmanová for proposing this problem to us.

Appendix A. Estimates of ρ and a(ξ)

For completeness, we include here the detailed proof of the estimates (5.3), (5.6) employed in
Section 5.3. We first recall the definition of ρ:

ρ := 2

√
l2 + |R̊l|2 + γq+1.

Then it follows that
∥ρ∥Lp ⩽ 2l + 2∥R̊l∥Lp + γq+1.

Furthermore, by mollification estimates, the embedding W 4,1 ⊂ L∞ (in fact the time-space dimen-
sion is three), l ⩽ σq−1 and (3.13) we obtain for N ⩾ 0

∥R̊l∥CN
[(2σq−1)∧TL,TL],x

≲ l−4−N∥R̊q∥L1
(σq−1∧TL,TL]

L1 ≲ l−4−Nδq+1ML.

Thus by l < δq+1ML we have

∥ρ∥C0
[(2σq−1)∧TL,TL],x

≲ l + l−4∥R̊q∥L1
(σq−1∧TL,TL]

L1 + γq+1 ≲ l−4δq+1ML + γq+1.

Next we estimate the CN
t,x-norm for N ∈ N. We apply the chain rule in [BDLPS15, Proposition C.1]

to f(z) =
√
l2 + z2, |Dmf(z)| ≲ l−m+1 to obtain

∥
√
l2 + |R̊l|2∥CN

[(2σq−1)∧TL,TL],x
≲ ∥
√
l2 + |R̊l|2∥C0

[(2σq−1)∧TL,TL],x
+ ∥Df∥C0∥R̊l∥CN

[(2σq−1)∧TL,TL],x

+ ∥Df∥CN−1∥R̊l∥NC1
[(2σq−1)∧TL,TL],x

≲ l−N−4δq+1ML + l−N+1l−5NδNq+1M
N
L .

Then by ML ⩽ l−1 we deduce for N ⩾ 1

∥ρ∥CN
[(2σq−1)∧TL,TL],x

≲ ∥
√
l2 + |R̊l|2∥CN

[(2σq−1)∧TL,TL],x
+ γq+1

≲ (l−N−4 + l−2N+2l−5N )δq+1ML + γq+1

≲ l−7N+2δq+1ML + γq+1. (A.1)

Likewise, using the inequalities l ⩽ δ
1/2
q+1 ⩽ −tq and (3.13), we deduce

∥R̊l∥CN
[0,TL],x

≲ l−4−N∥R̊q∥L1
[tq,TL]

L1 ≲ l−4−N (ML + qA).

Then following the above calculation we obtain
∥ρ∥C0

[0,TL],x
≲ l−4(ML + qA) + γq+1, (A.2)

and for N ⩾ 1

∥ρ∥CN
[0,TL],x

≲ l−7N+2(ML + qA) + γq+1,



NONUNIQUENESS FOR 2D NSE WITH SPACE-TIME WHITE NOISE 41

which implies (5.3).
Next we estimate a(ξ) in CN

t,x-norm. By Leibniz rule we get

∥a(ξ)∥CN
[(2σq−1)∧TL,TL],x

≲
N∑

m=0

∥ρ1/2∥Cm
[(2σq−1)∧TL,TL],x

∥γξ(Id − R̊l

ρ
)∥CN−m

[(2σq−1)∧TL,TL],x
.

Apply [BDLPS15, Proposition C.1] to f(z) = z1/2, |Dmf(z)| ≲ |z|1/2−m, for m = 1, ..., N , and
using (A.1) we obtain for m ⩾ 1

∥ρ1/2∥Cm
[(2σq−1)∧TL,TL],x

≲ ∥ρ1/2∥C0
[(2σq−1)∧TL,TL],x

+ l−1/2∥ρ∥Cm
[(2σq−1)∧TL,TL],x

+ l1/2−m∥ρ∥mC1
[(2σq−1)∧TL,TL],x

≲ l−2δ
1/2
q+1M

1/2
L + γ

1/2
q+1 + l−1/2(l−7m+2δq+1ML + γq+1) + l1/2−m(l−5mδmq+1M

m
L + γmq+1)

≲ l−7m+1(δ
1/2
q+1M

1/2
L + γ

1/2
q+1),

where we used ML +K ⩽ l−1.
Next we estimate γξ(Id − R̊l

ρ ), by [BDLPS15, Proposition C.1] we need to estimate

∥ R̊l

ρ
∥CN−m

[(2σq−1)∧TL,TL],x
+ ∥∇t,xR̊l

ρ
∥N−m
C0

[(2σq−1)∧TL,TL],x

+ ∥ R̊l

ρ2
∥N−m
C0

[(2σq−1)∧TL,TL],x

∥ρ∥N−m
C1

[(2σq−1)∧TL,TL],x

.

We use ρ ⩾ l to have

∥∇t,xR̊l

ρ
∥N−m
C0

[(2σq−1)∧TL,TL],x

≲ l−N+ml−5(N−m)δN−m
q+1 MN−m

L ≲ l−7(N−m),

and in view of | R̊l

ρ | ⩽ 1

∥ R̊l

ρ2
∥N−m
C0

[(2σq−1)∧TL,TL],x

≲ ∥1
ρ
∥N−m
C0

[(2σq−1)∧TL,TL],x

≲ l−N+m,

and by (A.1) and ML +K ⩽ l−1

∥ρ∥N−m
C1

[(2σq−1)∧TL,TL],x

≲ l−5(N−m)δN−m
q+1 MN−m

L + γN−m
q+1 ≲ l−6(N−m).

Moreover, we write

∥ R̊l

ρ
∥CN−m

[(2σq−1)∧TL,TL],x
≲

N−m∑
k=0

∥R̊l∥Ck
[(2σq−1)∧TL,TL],x

∥1
ρ
∥CN−m−k

[(2σq−1)∧TL,TL],x
,

using (A.1) and ML +K ⩽ l−1

∥1
ρ
∥CN−m−k

[(2σq−1)∧TL,TL],x

≲ ∥1
ρ
∥C0

[(2σq−1)∧TL,TL],x
+ l−2∥ρ∥CN−m−k

[(2σq−1)∧TL,TL],x
+ l−(N−m−k)−1∥ρ∥N−m−k

C1
[(2σq−1)∧TL,TL],x

≲ l−2(l1−7(N−m−k) + γq+1) + l−(N−m−k)−1(l−5(N−m−k)MN−m−k
L + γN−m−k

q+1 )

≲ l−1−7(N−m−k).
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Thus we obtain

∥ R̊l

ρ
∥CN−m

[(2σq−1)∧TL,TL],x
≲

N−m−1∑
k=0

l−5−kl−1−7(N−m−k) + l−5−(N−m)l−1 ≲ l−6−7(N−m).

Finally the above bounds leads to

∥γξ(Id − R̊l

ρ
)∥CN−m

[(2σq−1)∧TL,TL],x
≲ l−6−7(N−m).

Combining this with the bounds for ρ1/2 above yields for N ∈ N

∥a(ξ)∥CN
[(2σq−1)∧TL,TL],x

≲ (l−2l−6−7N +

N−1∑
m=1

l1−7ml−6−7(N−m) + l1−7N )(δ
1/2
q+1M

1/2
L + γ

1/2
q+1)

≲ l−8−7N (δ
1/2
q+1M

1/2
L + γ

1/2
q+1),

where the final bound is also valid for N = 0. Similarly we obtain
∥a(ξ)∥CN

[0,TL],x
≲ l−8−7N ((ML + qA)1/2 + γ

1/2
q+1),

which implies (5.6).

Appendix B. Introduction to accelerating jet flows

In this part we recall the construction of accelerating jets from [CL23, Section 3.1-3.3]. We point
out that the construction is entirely deterministic, that is, none of the functions below depends on
ω. Let us begin with the following geometric lemma. Recall that S2×2 is the set of symmetric 2× 2
matrics.
Lemma B.1. ([CL23, Lemma 3.1]) Denote by B̄1/2(Id) the closed ball of radius 1/2 around the
identity matrix Id, in the space of S2×2. There exists Λ ∈ S1 ∩ Q2 such that for each ξ ∈ Λ there
exists a C∞-function γξ: B̄1/2(Id) → R such that

R =
∑
ξ∈Λ

γ2ξ (R)(ξ ⊗ ξ)

for every symmetric matrix satisfying |R− Id| ⩽ 1/2.

We choose a collection of distinct points p(ξ) ∈ T2 for ξ ∈ Λ and a number µ0 > 2 such that
∪ξ∈ΛB 2

µ0

(p(ξ)) ⊂ [0, 1]2,

and for ξ ̸= ξ′ ∈ Λ

d(p(ξ), p(ξ′)) >
2

µ0
,

the points p(ξ) will be the centers of W(ξ) and W
(c)
(ξ) .

For ξ ∈ Λ, let us introduce unit vectors ξ⊥ := (ξ2,−ξ1), and their associated coordinates
x(ξ) = (x− p(ξ)) · ξ, y(ξ) = (x− p(ξ)) · ξ⊥ for x ∈ T2.

We first construct a family of stationary jets. To this end, we introduce the parameters: ν, µ ∈ N
with µ0 < ν ⩽ µ. Now we choose compactly supported nontrivial ϕ,ψ ∈ C∞

c ((− 1
µ0
, 1
µ0
)) and define

non-periodic potentials Ψ̃(ξ) ∈ C∞
c (R2) and vector fields W̃(ξ), W̃

(c)
(ξ) ∈ C∞

c (R2)

Ψ̃(ξ)(x) = c(ξ)µ
−1(νµ)1/2ϕ(νx(ξ))ψ(µy(ξ)),
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W̃(ξ)(x) = −c(ξ)(νµ)1/2ϕ(νx(ξ))ψ′(µy(ξ))ξ,

W̃
(c)
(ξ) (x) = c(ξ)νµ

−1(νµ)1/2ϕ′(νx(ξ))ψ(µy(ξ))ξ
⊥,

where c(ξ) > 0 are normalizing constants such that∫
T2

− W̃(ξ) ⊗ W̃(ξ)dx = ξ ⊗ ξ.

We periodize so that Ψ̃(ξ), W̃(ξ) and W̃ (c)
(ξ) are viewed as periodic functions on T2. Finally note that

each W̃(ξ) has disjoint support

supp W̃(ξ) ∩ supp W̃(ξ′) = ∅ if ξ ̸= ξ′,

and for any ξ ∈ Λ, the following identities hold

div(W̃(ξ) ⊗ W̃(ξ)) = ξ · ∇|W̃(ξ)|2ξ,

∇⊥Ψ̃(ξ) = −∂y(ξ)
Ψ̃(ξ)ξ + ∂x(ξ)

Ψ̃(ξ)ξ
⊥ = W̃(ξ) + W̃

(c)
(ξ) .

Next, we introduce a simple method to avoid the collision of the support sets of different W̃(ξ). Let
us first choose temporal functions g(ξ) and h(ξ) to oscillate the building blocks W̃(ξ) intermittently
in time. Let G ∈ C∞

c (0, 1) be such that∫ 1

0

G2(t)dt = 1,

∫ 1

0

G(t)dt = 0.

For any η ⩾ 1, we define g̃(ξ) : T → R as the 1-periodic extension of η1/2G(η(t− tξ)), where tξ are
chosen so that g̃(ξ) have disjoint supports for different ξ. In other words,

g̃(ξ)(t) =
∑
n∈Z

η1/2G(η(n+ t− tξ)).

We will also oscillate the velocity perturbation at a large frequency σ ∈ N. So we define

g(ξ)(t) = g̃(ξ)(σt).

Then we have

∥g(ξ)∥Wn,p([0,1]) ≲ (ση)nη1/2−1/p. (B.1)

For the corrector term we define h(ξ) : T → R by

h(ξ)(t) =

∫ σt

0

(g̃2(ξ)(s)− 1)ds.

In view of the zero-mean condition for g̃2(ξ)(t)− 1, these h(ξ) are T/σ-periodic and we have

∥h(ξ)∥L∞ ⩽ 1. (B.2)

Moreover, we have the identity

∂t(σ
−1h(ξ)) = g2(ξ)(t)− 1. (B.3)
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Remark B.2. We emphasize that g(ξ) is T/σ-periodic and thus for any n, n1 < n2 ∈ N0, p ∈ [1,∞)
we have

∥g(ξ)∥pWn,p[n1/σ,n2/σ]
=
n2 − n1

σ
∥g(ξ)∥pWn,p[0,1].

When dealing with arbitrary values of 0 < a0 < b0, it is possible to find n1, n2 ∈ N0 satisfying
n1

σ < a0 ⩽ n1+1
σ , n2

σ ⩽ b0 <
n2+1

σ . Then we have

∥g(ξ)∥pWn,p[a0,b0]
⩽ ∥g(ξ)∥pWn,p[

n1
σ ,

n2+1
σ ]

=
n2 − n1 + 1

σ
∥g(ξ)∥pWn,p[0,1] ⩽ (b0 − a0 +

2

σ
)∥g(ξ)∥pWn,p[0,1].

Now we will let the stationary flows W̃(ξ) travel along T2 in time, relating the velocity of the
moving support sets to the intermittent oscillator g(ξ). More precisely, we define

W(ξ)(x, t) : = W̃(ξ)(σx+ φ(ξ)(t)ξ),

W
(c)
(ξ) (x, t) : = W̃

(c)
(ξ) (σx+ φ(ξ)(t)ξ), (B.4)

Ψ(ξ)(x, t) : = Ψ̃(ξ)(σx+ φ(ξ)(t)ξ),

where φ(ξ)(t) is defined by
φ′(ξ) = θg(ξ)(t)

for some θ ∈ N. Hence we have ∫
T2

−W(ξ) ⊗W(ξ)dx = ξ ⊗ ξ, (B.5)

and each g(ξ)W(ξ) has disjoint support

supp(g(ξ)W(ξ)) ∩ supp(g(ξ′)W(ξ′)) = ∅ if ξ ̸= ξ′. (B.6)

Then, we claim that for N ⩾ 0, p ∈ [1,∞] the following holds

∥∇NW(ξ)∥CtLp + ν−1µ∥∇NW
(c)
(ξ) ∥CtLp + µ∥∇NΨ(ξ)∥CtLp ≲ (σµ)N (νµ)1/2−1/p, (B.7)

∥(ξ · ∇)Ψ(ξ)∥CtLp ≲ µ−1σν(νµ)1/2−1/p, (B.8)
where the implicit constants may depend on N, p, but are independent of ν, σ, θ, η and µ. These
estimates can be easily deduced from the definitions.

Moreover we have
σ−1∇⊥Ψ(ξ) =W(ξ) +W

(c)
(ξ) , (B.9)

∂t|W(ξ)|2ξ = σ−1θg(ξ)div(W(ξ) ⊗W(ξ)), (B.10)
∂tΨ(ξ) = σ−1θg(ξ)(ξ · ∇)Ψ(ξ). (B.11)

Appendix C. Some technical tools

C.1. Improved Hölder’s inequality on Td. This theorem allows us to quantify the decorrelation
in the usual Hölder’s inequality when we increase the oscillation of one function. The proof follows
from similar argument as [MS18, Lemma 2.1].

Theorem C.1. Let p ∈ [1,∞],m < n ∈ N0 and a ∈ C1(Rd;R), f ∈ Lp(Td;R). Then for any σ ∈ N,

|∥af(σ·)∥Lp([mσ ,nσ ]d) − ∥a∥Lp([mσ ,nσ ]d)∥f∥Lp(Td)| ≲ σ−1/p(
n−m

σ
)d/p∥a∥C0,1([mσ ,nσ ]d)∥f∥Lp(Td).
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Here C0,1 is the Lipschitz norm. In particular, if d = 1 and f is mean-zero we have

|
∫ n

σ

m
σ

a(t)f(σt)dt| ≲ n−m

σ2
∥a∥C0,1([mσ ,nσ ])∥f∥L1(T).

Proof. To begin, we partition the domain [mσ ,
n
σ ]

d into (n −m)d smaller cubes, denoted by Qi, i =

1, ..., (n−m)d. Each of these cubes has an edge length of 1
σ .

∫
[mσ ,nσ ]d

|a(x)f(σx)|pdx =

(n−m)d∑
k=1

∫
Qk

(
|a(x)|p − σd

∫
Qk

|a(y)|pdy
)
|f(σx)|pdx

+

(n−m)d∑
k=1

σd

∫
Qk

|a(y)|pdy
∫
Qk

|f(σx)|pdx

=

(n−m)d∑
k=1

σd

∫
Qk

(∫
Qk

(|a(x)|p − |a(y)|p)dy
)
|f(σx)|pdx

+

(n−m)d∑
k=1

∫
Qk

|a(y)|pdy
∫
Td

|f(x)|pdx.

Thus we have

|∥af(σ·)∥p
Lp([mσ ,nσ ]d)

− ∥a∥p
Lp([mσ ,nσ ]d)

∥f∥p
Lp(Td)

|

⩽

∣∣∣∣∣∣
(n−m)d∑

k=1

σd

∫
Qk

(∫
Qk

(|a(x)|p − |a(y)|p)dy
)
|f(σx)|pdx

∣∣∣∣∣∣
≲

(n−m)d∑
k=1

∫
Qk

1

σ
∥a∥p

C0,1([mσ ,nσ ]d)
)|f(σx)|pdx

≲ 1

σ
∥a∥p

C0,1([mσ ,nσ ]d)
(
n−m

σ
)d∥f∥p

Lp(Td)
,

where in the second inequality we used the fact that for any x, y ∈ Qk

||a(x)|p − |a(y)|p| ≲ 1

σ
∥a∥p−1

C0([mσ ,nσ ]d)
∥a∥C0,1([mσ ,nσ ]d) ≲

1

σ
∥a∥p

C0,1([mσ ,nσ ]d)
.

Then using the fact that for A,B > 0 |A−B|p ⩽
∣∣|A|p − |B|p

∣∣ we obtain the first result.
For the second result, we have the same decomposition as above:∫ n

σ

m
σ

a(t)f(σt)dt = σ

n∑
k=m+1

∫ k
σ

k−1
σ

∫ k
σ

k−1
σ

[a(t)− a(s)]f(σt)dsdt+

n∑
k=m+1

σ

∫ k
σ

k−1
σ

a(s)ds

∫ k
σ

k−1
σ

f(σt)dt

= σ

n∑
k=m+1

∫ k
σ

k−1
σ

∫ k
σ

k−1
σ

[a(t)− a(s)]f(σt)dsdt

where we used the fact that f is mean-zero. The following estimate is same as above. □
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C.2. Estimates for the heat operator. In this section we give the basic estimates for the heat
semigroup Pt := et∆. Let T ⩾ 1.

Lemma C.2. ([ZZZ22, Lemma 2.8]) For any θ > 0, α ∈ R, p, q ∈ [1,∞] and all t ∈ (0, T ],
∥Ptf∥Bθ+α

p,q
≲ T θ/2t−θ/2∥f∥Bα

p,q
, ∥Ptf∥Lp ≲ T θ/2t−θ/2∥f∥B−θ

p,∞
.

Let If =
∫ ·
0
Pt−sfds. Then we have

Lemma C.3. ([ZZZ22, Lemma 2.9]) Let α ∈ (0, 2), p ∈ [1,∞]. Then
∥If∥CTBα

p,∞
+ ∥If∥

C
α
2
T Lp

≲ T∥f∥CTBα−2
p,∞

.

Lemma C.4. ([SZZ22, Lemma A.5]) Let β ∈ R we have
∥If∥L2

[0,T ]
Hβ ≲ ∥f∥L2

[0,T ]
Hβ−2 .
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