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Abstract: This work is devoted to the study of conservative affine processes on the
canonical state space D = Rm+ × Rn, where m + n > 0. We show that each affine
process can be obtained as the pathwise unique strong solution to a stochastic equa-
tion driven by Brownian motions and Poisson random measures. Then we study the
long-time behavior of affine processes, i.e., we show that under first moment con-
dition on the state-dependent and log-moment conditions on the state-independent
jump measures, respectively, each subcritical affine process is exponentially ergodic
in a suitably chosen Wasserstein distance. Moments of affine processes are studied
as well.
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1 Introduction and statement of the result

1.1 General introduction

An affine process is a time-homogeneous Markov processes (Xt)t≥0 whose characteristic function
satisfies

Ex
(

ei〈u,Xt〉
)

= exp (φ(t, iu) + 〈x, ψ(t, iu)〉) ,

where t ≥ 0 is the time and X0 = x the starting point of the process. The general theory of
affine processes, including a full characterization on the canonical state space D = Rm+ × Rn
where m,n ∈ N0 and m + n > 0, was discussed in [16]. In particular, it is shown that the
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functions φ and ψ should satisfy certain generalized Riccati equations. Common applications
of affine processes in mathematical finance are interest rate models (e.g., the Cox-Ingersoll-Ross
[13], Vašiček [56] or general affine term structure short rate models), option pricing (e.g., the
Heston model [29]) and credit risk models, see also [1] and the references therein. After [16],
the mathematical theory of affine processes was developed in various directions. Regularity of
affine processes was studied in [40] and [41]. Based on a Hörmander-type condition, existence
and smoothness of transition densities were obtained in [20]. Exponential moments for affine
processes were studied in [31] and [38]. The theory of affine diffusions, i.e., processes without
jumps, was developed in [19], while its application to large deviations for affine diffusions was
studied in [36]. The possibility to obtain affine processes as multi-parameter time changes of
Lévy processes was recently discussed in [11]. It is worthwhile to mention that the above list
is, by far, not complete. For further references and additional details on the general theory of
affine processes we refer to the book [1].

Below we describe two important sub-classes of affine processes. Continuous-state branching
processes with immigration (shorted as CBI processes) are affine processes with state space
D = Rm+ . Such processes have been first introduced in 1958 by Jǐrina [35] and then studied
in [59, 37, 55], where it was also shown that these processes arise as scaling limits of Galton-
Watson processes. Various properties of one-dimensional CBI processes were studied in [27, 21,
10, 39, 22, 17] and [12]. For results applicable in arbitrary dimension we refer to [5], [7] and
[25]. Let us mention that CBI processes are also measure-valued Markov processes as studied
in [46]. Another important class of affine processes corresponds to the state space D = Rn and
is consisted of processes of Ornstein-Uhlenbeck (OU) type. These processes include also Lévy
processes as a particular case.

1.2 Affine processes

Let us describe affine processes in more detail. For m,n ∈ N0 let d = n+m, and suppose that
d > 0. In this work we study affine processes on the canonical state space D = Rm+ × Rn. Let

I = {1, . . . ,m}, J = {m+ 1, . . . , d}.

If x ∈ D, then let xI = (xi)i∈I and xJ = (xj)j∈J . Denote by Rd×d the space of d× d-matrices.
For A ∈ Rd×d we write

A =

(
AII AIJ
AJI AJJ

)
,

where AII = (aij)i,j∈I , AIJ = (aij)i∈I, j∈J , AJI = (aij)i∈J, j∈I , and AJJ = (aij)i,j∈J . Denote
by S+

d the space of symmetric and positive semidefinite d × d-matrices. Finally, let δkl, k, l ∈
{1, . . . , d}, stand for the Kronecker-Delta.

Definition 1.1. We call a tuple (a, α, b, β, ν, µ) admissible parameters, if they satisfy the fol-
lowing conditions:

(i) a ∈ S+
d with aII = 0, aIJ = 0 and aJI = 0.

(ii) α = (α1, . . . , αm) with αi = (αi,kl)1≤k,l≤d ∈ S+
d and αi,kl = 0 if k ∈ I\{i} or l ∈ I\{i}.
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(iii) b ∈ D.

(iv) β ∈ Rd×d is such that βki −
∫
D ξkµi(dξ) ≥ 0 for all i ∈ I and k ∈ I\{i}, and βIJ = 0.

(v) ν is a Borel measure on D such that ν({0}) = 0 and∫
D

(
1 ∧ |ξ|2 +

∑
i∈I

(1 ∧ ξi)

)
ν(dξ) <∞.

(vi) µ = (µ1, . . . , µm) where µ1, . . . , µm are Borel measures on D such that

µi({0}) = 0,

∫
D

|ξ| ∧ |ξ|2 +
∑

k∈I\{i}

ξk

µi(dξ) <∞, i ∈ I.

In contrast to [16], we do not consider killing for affine processes and, moreover, we suppose
that µ1, . . . , µm integrate 1{|ξ|>1}|ξ|, i.e., the first moment for big jumps is finite. It is well-
known that without killing and under first moment condition for the big jumps of µ1, . . . , µm, the
corresponding affine process (introduced below) is conservative (see [16, Lemma 9.2]). Moreover,
it was shown in [49, Example 3.6] that such a moment condition is sufficient but not necessary for
an affine process to be conservative. In this paper we work with Definition 1.1 and thus restrict
our study to conservative affine processes satisfying a mild moment condition on the measures
µ1, . . . , µm. In order to simplify the notation, we have also set ν({0}) = 0 and µi({0}) = 0,
for i ∈ I. Hence all integrals with respect to the measures µ1, . . . , µm, ν can be taken over D
instead of D\{0}.

Denote by Bb(D) the Banach space of bounded measurable functions over D. This space is
equipped with the supremum norm ‖f‖∞ = supx∈D |f(x)|. Similarly, let C0(D) be the Banach
space of continuous functions f : D −→ R vanishing at infinity. Define

U = Cm≤0 × iRn = {u = (uI , uJ) ∈ Cm × Cn | Re(uI) ≤ 0, Re(uJ) = 0}.

Note that D 3 x 7−→ e〈u,x〉 is bounded for any u ∈ U . Here 〈·, ·〉 denotes the Euclidean scalar
product on Rd. By abuse of notation, we later also use 〈·, ·〉 for the scalar product on Rm or Rn.
The following is due to [16].

Theorem 1.2. Let (a, α, b, β, ν, µ) be admissible parameters. Then there exists a unique conser-
vative transition semigroup (Pt)t≥0 on Bb(D) which is C0(D)-Feller and its generator (L,D(L))
satisfies C2

c (D) ⊂ D(L) and, for f ∈ C2
c (D) and x ∈ D,

(Lf)(x) = 〈b+ βx,∇f(x)〉+

d∑
k,l=1

(
akl +

m∑
i=1

αi,klxi

)
∂2f(x)

∂xk∂xl

+

∫
D

(
f(x+ ξ)− f(x)− 〈ξJ ,∇Jf(x)〉1{|ξ|≤1}

)
ν(dξ)

+
m∑
i=1

xi

∫
D

(f(x+ ξ)− f(x)− 〈ξ,∇f(x)〉)µi(dξ),
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where ∇J = ( ∂
∂xj

)j∈J . Moreover, C∞c (D) is a core for the generator. Let Pt(x, dx
′) be the

transition probabilities. Then∫
D

e〈u,x
′〉Pt(x, dx

′) = exp (φ(t, u) + 〈x, ψ(t, u)〉) , u ∈ U , (1.1)

where φ : R+ × U −→ C and ψ : R+ × U −→ Cd are uniquely determined by the generalized
Riccati differential equations: for u = (uI , uJ) ∈ Cm≤0 × iRn,

∂tφ(t, u) = F (ψ(t, u)), φ(0, u) = 0, (1.2)

∂tψI(t, u) = R(ψI(t, u), etβ
>
JJuJ), ψI(0, u) = uI ,

ψJ(t, u) = etβ
>
JJuJ ,

and F , R are of Lévy-Khintchine form

F (u) = 〈u, au〉+ 〈b, u〉+

∫
D

(
e〈u,ξ〉 − 1− 1{|ξ|≤1}〈ξJ , uJ〉

)
ν(dξ),

Ri(u) = 〈u, αiu〉+

d∑
k=1

βkiuk +

∫
D

(
e〈u,ξ〉 − 1− 〈u, ξ〉

)
µi(dξ), i ∈ I.

Consequently, there exists a unique Feller process X with generator L. This process is called
affine process with admissible parameters (a, α, b, β, ν, µ).

Remark 1.3. Let (a, α, b, β, ν, µ) be admissible parameters. According to [16, Lemma 10.1
and Lemma 10.2], the martingale problem with generator L and domain C∞c (D) is well-posed
in the Skorokhod space over D equipped with the usual Skorokhod topology. Hence, we can
characterise an affine process with admissible parameters (a, α, b, β, ν, µ) as the unique solution to
the martingale problem with generator L and domain C∞c (D). In any case, it can be constructed
as a Markov process on the Skorokhod space over D.

Affine processes are thus constructed on the canonical state space. In order to prove the
main result of this work, we provide in Section 4 a pathwise construction of affine processes.
The latter one extends previous cases from the literature such as [15, 19, 48] and [5].

1.3 Ergodicity in Wasserstein distance for affine processes

Let P(D) be the space of all Borel probability measures over D. By abuse of notation, we extend
the transition semigroup (Pt)t≥0 (given by Theorem 1.2) onto P(D) via

(Ptρ)(dx) =

∫
D
Pt(x̃, dx)ρ(dx̃), t ≥ 0, ρ ∈ P(D). (1.3)

Then Ptρ describes the distribution of the affine process at time t ≥ 0 such that it has at
initial time t = 0 law ρ. Note that Ptδx = Pt(x, ·), and (Pt)t≥0 is a semigroup on P(D) in
the sense that Pt+sρ = PtPsρ, for any t, s ≥ 0 and ρ ∈ P(D). Such semigroup property is
simply a compact notation for the Chapman-Kolmogorov equations satisfied by Pt(x, ·). Since
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the martingale problem with generator L and domain C∞c (D) is well-posed, and C∞c (D) ⊂ D(L)
is a core (see Theorem 1.2 and Remark 1.3), it follows from [18, Proposition 9.2] that, for some
given π ∈ P(D), the following properties are equivalent:

(i) Ptπ = π, for all t ≥ 0.

(ii)
∫
D(Lf)(x)π(dx) = 0, for all f ∈ C∞c (D).

(iii)
∫
D(Ptf)(x)π(dx) =

∫
D f(x)π(dx), for all t ≥ 0 and all f ∈ B(D).

A distribution π ∈ P(D) which satisfies one of these properties (i) – (iii) is called invariant
distribution for the semigroup (Pt)t≥0. In this work we will prove that, under some appropriate
assumptions, (Pt)t≥0 has a unique invariant distribution π, this distribution has some finite
log-moment and, moreover, Pt(x, ·) −→ π with exponential rate. For this purpose we use the
Wasserstein distance on P(D) introduced below. Given ρ, ρ̃ ∈ P(D), a coupling H of (ρ, ρ̃)
is a Borel probability measure on D × D which has marginals ρ and ρ̃, respectively, i.e., for
f, g ∈ B(D) it holds that∫

D×D
(f(x) + g(x̃))H(dx, dx̃) =

∫
D
f(x)ρ(dx) +

∫
D
g(x)ρ̃(dx).

Denote by H(ρ, ρ̃) the collection of all such couplings. Let us now introduce two different metrics
on D as follows:

(a) Define, for κ ∈ (0, 1], dκ(x, x̃) =
(
1{n>0}|y − ỹ|1/2 + |x− x̃|

)κ
, x = (y, z), x̃ = (ỹ, z̃) ∈

Rm+ × Rn, and let

Pκ(D) = Pdκ(D) =

{
ρ ∈ P(D) |

∫
D
|x|κρ(dx) <∞

}
.

(b) Introduce dlog(x, x̃) = log(1 +1{n>0}|y− ỹ|1/2 + |x− x̃|), x = (y, z), x̃ = (ỹ, z̃) ∈ Rm+ ×Rn,
and let

Plog(D) = Pdlog(D) =

{
ρ ∈ P(D) |

∫
D

log(1 + |x|)ρ(dx) <∞
}
.

Let d ∈ {dlog, dκ}. The Wasserstein distance on Pd(D) is defined by

Wd(ρ, ρ̃) = inf

{∫
D×D

d(x, x̃)H(dx, dx̃) | H ∈ H(ρ, ρ̃)

}
. (1.4)

The appearance of the additional factor 1{n>0}|y − ỹ|1/2 is purely technical, it is a consequence
of the estimates proved in Section 6. By general theory of Wasserstein distances we see that
(Pd(D),Wd) is a complete seperable metric space, see, e.g., [57, Theorem 6.18]. A characteriza-
tion of convergence with respect to Wdκ and Wdlog is given in the following remark, see also [57,
Theorem 6.9].

Remark 1.4. Let d ∈ {dlog, dκ}, (ρn)n∈N ⊂ Pd(D) and ρ ∈ Pd(D). The following are equivalent
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(i) Wd(ρn, ρ) −→ 0 as n→∞.

(ii) For each continuous function f : D −→ R with |f(x)| ≤ Cf (1 + d(x, 0)), it holds that∫
D
f(x)ρn(dx) −→

∫
D
f(x)ρ(dx), n→∞.

(iii) ρn −→ ρ weakly as n→∞, and∫
D
d(x, 0)ρn(dx) −→

∫
D
d(x, 0)ρ(dx), n→∞.

(iv) ρn −→ ρ weakly as n→∞, and

lim
R→∞

lim sup
n→∞

∫
D
d(x, 0)1{d(x,0)≥R}ρn(dx) = 0.

It is easy to see that Pκ(D) ⊂ Plog(D) and Wdlog ≤ CκWdκ , for some constant Cκ > 0, i.e.,
Wdκ is stronger then Wdlog . The following is our main result.

Theorem 1.5. Let (a, α, b, β, ν, µ) be admissible parameters. Suppose that β has only eigenval-
ues with strictily negative real parts, and∫

|ξ|>1
log(|ξ|)ν(dξ) <∞. (1.5)

Then (Pt)t≥0 has a unique invariant distribution π and the following assertions hold:

(a) π ∈ Plog(D) and there exist constants K, δ > 0 such that, for all ρ ∈ Plog(D),

Wdlog(Ptρ, π) ≤ K min
{

e−δt,Wdlog(ρ, π)
}

+Ke−δtWdlog(ρ, π), t ≥ 0. (1.6)

(b) If there exists κ ∈ (0, 1] satisfying ∫
|ξ|>1

|ξ|κν(dξ) <∞, (1.7)

then π ∈ Pκ(D) and there exists constants K ′, δ′ > 0 such that, for all ρ ∈ Pκ(D),

Wdκ(Ptρ, π) ≤ K ′Wdκ(ρ, π)e−δ
′t, t ≥ 0. (1.8)

It is worthwhile to mention that to our knowledge a convergence rate solely under a log-
moment condition on the state-independent jump measure was not even obtained for one-
dimensional CBI processes. In order that Wdlog(Ptρ, π) and Wdκ(Ptρ, π) are well-defined, we
need to show that Ptρ belongs to Plog(D) or Pκ(D), respectively. This will be shown in Sec-
tion 5, where general moment estimates for affine processes are studied. Using Ptδx = Pt(x, ·)
combined with Remark 1.4 we conclude the following.
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Remark 1.6. Under the conditions of Theorem 1.5, there exist constants δ,K > 0 such that

Wd(Pt(x, ·), π) ≤ Ke−δt (1 +Wd(δx, π)) , t ≥ 0, x ∈ D, (1.9)

where d ∈ {dκ, dlog}. Let Wd∧1 be the Wasserstein distance given by (1.4) with d replaced by
d ∧ 1. Then similarly to Remark 1.4, convergence with respect to Wd∧1 is equivalent to weak
convergence of probability measures on P(D). Since Wd∧1 ≤ Wd, we conclude from (1.9) that
Pt(x, ·) −→ π weakly as t→∞ with exponential rate.

Let X = (Xt)t≥0 be an affine process. For the parameter estimation of affine models, see,
e.g., [3], [47] and [2], it is often necessary to prove a Birkhoff ergodic theorem, i.e.,

1

t

∫ t

0
f(Xs)ds −→

∫
D
f(x)π(dx), t→∞ (1.10)

holds almost surely for sufficiently many test functions f . Using classical theory, see, e.g., [51,
Theorem 17.1.7] and [53], such convergence is implied by the ergodicity in the total variation
distance, i.e., by

lim
t→∞
‖Pt(x, ·)− π‖TV = 0, x ∈ D, (1.11)

where ‖ · ‖TV denotes the total variation distance. Unfortunately, it is typically a very difficult
mathematical task to prove (1.11) even for particular models. An extension of (1.10) applicable
in the case where Pt(x, ·) −→ π holds in the Wasserstein distance generated by the metric
d(x, x̃) = 1∧ |x− x̃| was recently studied in [53]. Applying the main result of [53] to the case of
affine processes and using the fact that each affine process can be obtained as a pathwise unique
strong solution to some stochastic equation with jumps (see Section 4), yields the following
corollary.

Corollary 1.7. Let (a, α, b, β, ν, µ) be admissible parameters. Suppose that β has only eigenval-
ues with negative real parts, and (1.5) is satisfied. Let (Xt)t≥0 be the corresponding affine process
constructed as the pathwise unique strong solution on a complete probability space (Ω,F ,P) in
Section 4. Let f ∈ Lp(D,π) for some p ∈ [1,∞), then (1.10) holds in Lp(Ω,P).

Although we have formulated (1.10) in continuous-time, the discrete-time analog can be
obtained in the same manner.

1.4 Comparison with related works

Consider an Ornstein-Uhlenbeck process on Rn, i.e., an affine process on state space D = Rn with
admissible parameters (a, α = 0, b, β, ν, µ = 0). If β has only eigenvalues with strictly negative
real parts and (1.5) is satisfied, then [54] is applicable and hence the corresponding Ornstein-
Uhlenbeck process satisfies, for all x ∈ Rn, Pt(x, ·) −→ π weakly as t → ∞. Under additional
technical conditions on the measure ν, it follows that the corresponding process also satisfies
(1.11) with exponential rate, see [58]. Since in view of Theorem 1.5 the convergence (in the
Wasserstein distance) has already exponential rate, we conclude that the additional restriction
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on ν imposed in [58] is only used to guarantee that convergence takes place in the stronger total
variation distance, i.e., it is not necessary for the speed of convergence.

Consider a subcritical multi-type CBI process on Rm+ , i.e., an affine process on state space
D = Rm+ for which the parameter β has only eigenvalues with strictly negative real parts. In
dimension m = 1, Pinsky [52] announced (without proof) the existence of a limiting distribution
under condition (1.5). A proof of this fact was then given in [42, Theorem 3.16], while in
[46, Theorem 3.20 and Corollary 3.21] it was shown that Pt(x, ·) −→ π is equivalent to (1.5).
Some properties of the invariant distribution π have been studied in [39]. In [47] exponential
ergodicity in total variation distance, see (1.11), was established for one-dimensional subcritical
CBI processes with ν = 0, while some other related results for stochastic equations on R+ have
been recently considered in [24]. An extension of the techniques from [47] to arbitrary dimension
m ≥ 2 is still an interesting open problem. Recently, in [50] another approach for the exponential
ergodicity in the total variation distance for affine processes on cones, which include multi-type
CBI processes as well as matrix-valued affine processes such as the important case of the Wishart
process, was provided. Their techniques were closely related to stochastic stability of Markov
processes in the sense of Meyn and Tweedie [51], see also the references therein. More precisely,
it was shown that each subcritical affine process X on a proper closed convex cone which is
ρ-irreducible, aperiodic and has finite second moments, where ρ is a reference measure with
its support having non-empty interior, is exponentially ergodic in the total variation distance.
As such a result is formulated in a very general way, it becomes a delicate mathematical task
to show that such conditions are satisfied for affine processes with jumps of infinite activity or
with degenerate diffusion components. Moreover, assuming that X has at least finite second
moments rules out some natural examples as studied in [47] for m = 1 and in Section 2 of this
work. In contrast, our results can be applied in arbitrary dimension without the need to prove
irreducibility or aperiodicity, paying the price that we use the Wasserstein distance instead.
Let us mention that recently also asymptotic results for supercritical CBI processes have been
obtained in [45, 9, 8].

Consider now the general case of an affine process on the canonical state space D = Rm+×Rn.
Based on the stability theory of Markov chains in the sense of Meyn and Tweedie the long-time
behavior of some particular two-dimensional models on state space D = R+ × R was studied
in [4, 34].These results have been further developed in [60] for arbitrary dimensions, where also
functional limit theorems were obtained. In order to prove irreducibility and aperiodicity, the
authors supposed that the diffusion component is non-degenerate and that ν and µ1, . . . , µm
are probability measures, i.e., the corresponding affine process has only finitely many jumps of
bounded time intervalls [0, T ], T > 0. Independently in [33] the following result was obtained.

Theorem 1.8. [33] Let (a, α, b, β, ν, µ) be admissible parameters. Suppose that β has only
eigenvalues with negative real parts and (1.5) is satisfied. Then there exists a unique invariant
distribution π for (Pt)t≥0. Moreover, π has Laplace transform∫

D
e〈u,x〉π(dx) = exp

(∫ ∞
0

F (ψ(t, u))dt

)
, u ∈ U , (1.12)

and one has, for all x ∈ D, Pt(x, ·) −→ π weakly as t→∞.
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The proof of Theorem 1.8 is based on a fine stability analysis of the Riccati equations
(1.2). Comparing with our main result Theorem 1.5, the authors have, in addition, established
a formula for the Laplace transform of π, but have not studied any convergence rate. We
emphasize that the main aim of our Theorem 1.5 is to establish the exponential convergence
speed (1.6) and (1.8) with respect to the corresponding Wasserstein metrics. However, in the
process of proving (1.6) we also obtain the existence and uniqueness of an invariant distribution
as a natural by-product. Moreover, in Theorem 1.5 and Theorem 1.8 existence and uniqueness
of an invariant distribution is shown by essentially different techniques.

1.5 Main idea of proof and structure of the work

The proof of Theorem 1.5 is divided in 4 steps as explained below.
Step 1. Provide a stochastic description of conservative affine processes. More precisely, in

Section 3 we recall a stochastic equation for multi-type CBI processes and a comparison principle
due to [5]. In Section 4 we prove that each affine process can be obtained as the pathwise unique
strong solution (Xt(x))t≥0 to a certain stochastic equation, where x = (y, z) ∈ Rm+ ×Rn denotes
the initial condition. The particular structure of this equation shows that the process takes the
form Xt(x) = (Yt(y), Zt(x)), where (Yt(y))t≥0 ⊂ Rm+ is a CBI process with initial condition y
and (Zt(x))t≥0 is an OU-type process with initial condition z whose coefficients depend on the
process (Yt(y))t≥0.

Step 2. Let (Xt)t≥0 be an affine process. Based on the stochastic equation from the first
step, we study in Section 5 finiteness of the moments E(|Xt|κ) and E(log(1 + |Xt|)). Since the
proofs in this section are rather standard, we only outline the main steps, while technical details
are postponed to the appendix.

Step 3. Let (Xt(x))t≥0 and (Xt(x̃))t≥0 be the affine processes with initial states x, x̃ ∈ Rm+×
Rn, respectively, obtained as the unique strong solutions to the stochastic equation discussed
in Section 4. Suppose that (1.7) is satisfied for κ = 1. The following key estimate is proved in
Section 6:

E(|Xt(x)−Xt(x̃)|) ≤ Ke−δt
(
1{n>0}|y − ỹ|1/2 + |x− x̃|

)
, t ≥ 0, (1.13)

whereK, δ > 0 are some constants. Indeed, writeXt(x) = (Yt(y), Zt(x)) andXt(x̃) = (Yt(ỹ), Zt(x̃)),
respectively. Using the comparison principle for the CBI component we prove that

E(|Yt(x)− Yt(x̃)|) ≤ d|y − ỹ|e−δ′t, (1.14)

where δ′ > 0 is some constant. From this and the particular structure of the stochastic equation
solved by (Xt(x))t≥0 and (Xt(x̃))t≥0 we then easily deduce (1.13). In the literature the proof
of similar inequalities to (1.13) and (1.14) is often based on the construction of a successfull
coupling being typically a difficult task. In the framework of affine processes a surprisingly
simple proof of such estimates is given in Section 6 by using monotone couplings as explained
above.

Step 4. The results obtained in Steps 1 – 3 provide us all necessary tools to give a full proof
of Theorem 1.5 in Section 7. For the sake of simplicity, we explain below how (1.8) is shown.
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Estimate (1.6) can be obtained in the same way. Using classical arguments, we may deduce
assertion (1.8) from the contraction estimate

Wdκ(Ptρ, Ptρ̃) ≤ Ke−δtWdκ(ρ, ρ̃), t ≥ 0. (1.15)

Next observe that, by the convexity of the Wasserstein distance (see Lemma 8.4) combined with
(1.3), property (1.15) is implied by

Wdκ(Ptδx, Ptδx̃) ≤ Ke−δt
(
1{n>0}|y − ỹ|1/2 + |x− x̃|

)κ
, t ≥ 0. (1.16)

Let (P 0
t )t≥0 be the transition semigroup for the affine process with admissible parameters (a =

0, α, b = 0, β,m = 0, µ). In view of (1.1) one has Pt(x, ·) = P 0
t (x, ·) ∗ Pt(0, ·), where ∗ denotes

the usual convolution of measures. A similar decomposition for affine processes was also used
in [33]. Applying now Lemma 8.3 and the Jensen inequality gives

Wdκ(Ptδx, Ptδx̃) ≤Wdκ(P 0
t δx, Ptδx̃)

≤ (Wd1(P 0
t δx, P

0
t δx̃))κ ≤ Kκe−δκt

(
1{n>0}|y − ỹ|1/2 + |x− x̃|

)κ
,

where the last inequality follows from Step 3 applied to (P 0
t )t≥0.

2 Examples

2.1 Anisotropic stable JCIR process

Let Z1, Z2 be independent one-dimensional Lévy processes with symbols

Ψj(ξ) =

∫ ∞
0

(
e−ξz − 1 + ξz

) dz

z1+γj
, ξ ≥ 0, j = 1, 2,

where γ1, γ2 ∈ (1, 2). Let S = (S1, S2) be another 2-dimensional Lévy process with symbol

Ψν(ξ) =

∫
R2
+

(
e−〈ξ,z〉 − 1

)
ν(dz), ξ ∈ R2

+,

where ν is a measure on R2
+ with ν ({0}) = 0 and∫

R2
+

(1 ∧ |z|) ν(dz) <∞.

Suppose that Z and S are independent. Applying the results of [5] to this particular case shows
that, for each x ∈ R2

+, there exists a pathwise unique strong solution to{
dX1(t) = (b1 + β11X1(t) + β12X2(t)) dt+X1(t−)1/γ1dZ1(t) + dS1(t),

dX2(t) = (b2 + β21X1(t) + β22X2(t)) dt+X2(t−)1/γ2dZ2(t) + dS2(t),
(2.1)
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This process is an affine process on D = R2
+ with admissible parameters

a = 0, α1 = α2 = 0, b =

(
b1
b2

)
, β =

(
β11 β12
β21 β22

)
and corresponding Lévy measures ν,

µ1(dξ) =
dξ1

ξ1+γ11

⊗ δ0(dξ2), µ2(dξ) = δ0(dξ1)⊗
dξ2

ξ1+γ22

.

Applying our main result to this particular case gives the following.

Corollary 2.1. If β has only eigenvalues with negative real parts and ν satisfies∫
|ξ|>1

log(|ξ|)ν(dξ) <∞,

then the assertions of Theorem 1.5 are true.

Convergence in total variation distance for a similar one-dimensional model was studied in
[47]. Similar two-dimensional processes were also studied in [4] and [32]. In view of our main
result Theorem 1.5, it is straightforward to extend this model to arbitrary dimension d ≥ 2,
with possibly non-vanishing diffusion part and more general driving noise of Lévy type. It is
also worth mentioning that the analogue of the model (2.1) for dimension d ≥ 2 was recently
studied in [23], where the strong Feller property and, combined with the results of this work,
exponential erogdicity in total variation were shown.

2.2 Stochastic volatility model

Let D = R+ × R, i.e., m = n = 1. Let (V, Y ) be the unique strong solution to

dV (t) = (b1 + β11V (t))dt+
√
V (t)dB1(t) + dJ1(t),

dY (t) = (b2 + β22Y (t))dt+
√
V (t)

(
ρdB1(t) +

√
1− ρ2dB2(t)

)
+ dJ2(t)

where b1 ≥ 0, b2 ∈ R, β11, β22 ∈ R, ρ ∈ (−1, 1) is the correlation coefficient, B = (B1, B2)
is a two-dimensional Brownian motion, J1 is a one-dimensional Lévy subordinator with Lévy
measure ν1, and J2 a one-dimensional Lévy process with Lévy measure ν2. Suppose that B, J1
and J2 are mutually independent. It is not difficult to see that (V, Y ) is an affine process with
admissible parameters

a = 0, α1 =

(
1 ρ
ρ 1

)
, b =

(
b1
b2

)
, β =

(
β11 0
0 β22

)
and measures

ν(dξ) = ν1(dξ1)⊗ δ0(dξ2) + δ0(dξ1)⊗ ν2(dξ2), µ1 = µ2 = 0.

Then we obtain the following.
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Corollary 2.2. If β11, β22 < 0 and∫
(1,∞)

log(ξ1)ν1(dξ1) +

∫
|ξ2|>1

log(|ξ2|)ν2(dξ2) <∞,

then the assertions of Theorem 1.5 are true.

It is straightforward to extend this model to higher dimensions and more general driving
noises.

3 Stochastic equation for multi-type CBI processes

In this section we recall some results for the particular case of multi-type CBI processes, i.e.
affine processes on state space D = Rm+ (that is, n = 0). For further references and additional
explanations we refer to [5] and [8]. Let (Ω,F ,P) be a complete probability space rich enough
to support the following objects:

(B1) A m-dimensional Brownian motion (Wt)t≥0 := (Wt,1, . . . ,Wt,m)t≥0.

(B2) A Poisson random measure MI(ds, dξ) on R+ × Rm+ with compensator M̂I(ds, dξ) =
dsνI(dξ), where νI is a Borel measure supported on Rm+ satisfying

νI({0}) = 0,

∫
Rm+

(1 ∧ |ξ|)νI(dξ) <∞.

(B3) Poisson random measuresN I
1 (ds, dξ, dr), . . . , N I

m(ds, dξ, dr) on R+×Rm+×R+ with compen-

sators N̂ I
i (ds, dξ, dr) = dsµIi (dξ)dr, i ∈ I, where µI1, . . . , µ

I
m are Borel measures supported

on Rm+ satisfying

µIi ({0}) = 0,

∫
Rm+

|ξ| ∧ |ξ|2 +
∑

j∈{1,...,m}\{i}

ξj

µIi (dξ) <∞, i ∈ I.

The objects W,MI , N
I
1 , . . . , N

I
m are supposed to be mutually independent. Let M̃I(ds, dξ) =

MI(ds, dξ)−M̂I(ds, dξ) and Ñ I
i (ds, dξ, dr) = N I

i (ds, dξ, dr)−N̂ I
i (ds, dξ, dr) be the corresponding

compensated Poisson random measures. Here and below we consider the natural augmented
filtration generated by W,MI , N

I
1 , . . . , N

I
m. Finally let

(a) b ∈ Rm+ .

(b) β = (βij)i,j∈I such that βji −
∫
Rm+

ξjµ
I
i (dξ) ≥ 0, for i ∈ I and j ∈ I\{i}.

(c) A matrix σ(y) = diag(
√

2c1y1, · · · ,
√

2cmym) ∈ Rm×m, where c1, . . . , cm ≥ 0.
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For y ∈ Rm+ , consider the stochastic equation

Yt = y +

∫ t

0

(
b+ β̃Ys

)
ds+

∫ t

0
σ(Ys)dWs +

∫ t

0

∫
Rm+

ξMI(ds, dξ) (3.1)

+
m∑
i=1

∫ t

0

∫
|ξ|≤1

∫
R+

ξ1{r≤Ys−,i}Ñ
I
i (ds, dξ, dr) +

m∑
i=1

∫ t

0

∫
|ξ|>1

∫
R+

ξ1{r≤Ys−,i}N
I
i (ds, dξ, dr),

where β̃ji = βji −
∫
|ξ|>1 ξjµ

I
i (dξ). Pathwise uniqueness for a slightly more complicated equation

was recently obtained in [5], while (3.1) in this form appeared first in [8]. The following is
essentially due to [5].

Proposition 3.1. Let (b, β, σ) be as in (a) – (c), and consider objects W,MI , N
I
1 , . . . , N

I
m that

are given in (B1) – (B3). Then the following assertions hold:

(a) For each y ∈ Rm+ , there exists a pathwise unique strong solution Y = (Yt)t≥0 to (3.1).

(b) Let Y be any solution to (3.1). Then Y is a multi-type CBI process starting from y, and
the generator LY of Y is, for f ∈ C2

c (Rm+ ), of the following form

(LY f)(y) = (b+ βy,∇f(y)) +
m∑
i=1

ciyi
∂2f(y)

∂y2i
+

∫
Rm+

(f(y + ξ)− f(y)) νI(dξ)

+
m∑
i=1

yi

∫
Rm+

(f(y + ξ)− f(y)− 〈ξ,∇f(y)〉)µIi (dξ).

Conversely, given any multi-type CBI process Ỹ with generator LY and starting point y,
we can find a solution Y to (3.1) such that Y and Ỹ have the same law.

The proof of the pathwise uniqueness is based on a comparison principle for multi-type CBI
processes, see [5, Lemma 4.2]. This comparison principle is stated below.

Lemma 3.2. [5, Lemma 4.2] Let (Yt)t≥0 be a weak solution to (3.1) with parameters (b, β, σ), let
(Y ′t )t≥0 be another weak solution to (3.1) with parameters (b′, β, σ), where (b, β, σ) and (b′, β, σ)
satisfy (a) – (c). Both solutions are supposed to be defined on the same probability space and
with respect to the same noises W,MI , N

I
1 , . . . , N

I
m that satisfy (B1) – (B3). Suppose that, for

all j ∈ {1, . . . ,m}, yj ≤ y′j and bj ≤ b′j. Then

P(Yj,t ≤ Y ′j,t, ∀j ∈ {1, . . . ,m}, ∀t ≥ 0) = 1.

4 Stochastic equation for affine processes

Below we show that any affine process can also be obtained as the pathwise unique strong
solution to a certain stochastic equation. In the two-dimensinoal case D = R+×R such a result
was first obtained in [15]. Indepedently, the case of affine diffusions on the canoncical state
space D = Rm+ × Rn (i.e., processes without jumps) was studied in [19]. The main obstacle
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there is related with the diffusion component which is degenerate at the boundary but also has
a nontrival structure in higher dimensions. In order to take this into account we use, compared
to [19], another representation of the diffusion matrix (see (A0) and (A1) below). Such a
representation is used to decompose the corresponding affine process into a CBI and an OU
component which are then treated separately. Consequently, based on the available results for
CBI processes, the proofs in this section become relatively simple.

Let (a, α, b, β, ν, µ) be admissible parameters. For the parameters a and α = (α1, . . . , αm)
consider the following objects:

(A0) An n× n-matrix σa such that σaσ
>
a = aJJ .

(A1) Matrices σ1, . . . , σm ∈ Rd×d such that, for all j ∈ I, σjσ
>
j = αj and

σj =

(
σj,II 0
σj,JI σj,JJ

)
, (σj,II)kl = δkjδljα

1/2
j,jj . (4.1)

The first condition is simple to check. Indeed, by definition, one has a =

(
0 0
0 aJJ

)
∈ S+

d , thus

aJJ is symmetric and positive semidefinite. Hence σa denotes the non-negative square root of
aJJ . Concerning the second condition we use the following Lemma.

Lemma 4.1. Let α1, . . . , αm ∈ S+
d be such that (αj)kl = αj,jjδkjδlj for 1 ≤ k, l ≤ m. Then

there exist matrices σ1, . . . , σm ∈ Rd×d such that condition (A1) is satisfied.

Proof. Fix j ∈ I. Since αj ∈ S+
d has the block structure αj =

(
αj,II αj,IJ
αj,JI αj,JJ

)
, the characteriza-

tion of positive semi-definite block matrices (see [26, Theorem 16.1]) yields

αj,II ∈ S+
m, αj,JJ − αj,JIα−1j,IIαj,IJ ∈ S

+
n , αj,IJ = αj,IIα

−1
j,IIαj,IJ , (4.2)

where α−1j,II denotes the pseudo-inverse of αj,II . Using the diagonal structure of αj,II we find
that

(α−1j,II)kl = δkjδlj

{
α−1j,jj , αj,jj > 0,

0, αj,jj = 0,
k, l ∈ I.

If αj,jj = 0, then αj,II = α−1j,II = 0 and hence, by (4.2), αj,IJ = 0 and αj,JI = 0. Letting

σj =

(
σj,II 0
σj,JI σj,JJ

)
be given such that σj,JJσ

>
j,JJ = αj,JJ , σj,II = 0 and σj,JI = 0, we find that

σjσ
>
j = αj has the desired form (4.1).
Suppose now that αj,jj > 0. Using the last equality in (4.2) we find that

(αj,IJ)kl = 0 = (αj,JI)lk, k ∈ I\{j}, l ∈ J. (4.3)

Put (σj,II)k,l = α
1/2
j,jjδkjδlj , σj,IJ = 0, (σj,JI)k,l = αkjα

−1/2
j,jj δjl, k ∈ J , l ∈ I and let σj,JJ be given

such that
σj,JJσ

>
j,JJ = αj,JJ − αj,JIα−1j,IIαj,IJ .
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Note that the existence of such σj,JJ follows from (4.2). By direct computation one finds that
αj,IJ = σj,IIσ

>
j,JI , αj,JI = σj,JIσ

>
j,II and αj,JIα

−1
j,IIαj,IJ = σj,JIσ

>
j,JI , from which we deduce

αj,JJ = σj,JIσ
>
j,JI + σj,JJσ

>
j,JJ . This shows that σjσ

>
j = αj and, moreover, it is clear that σj

has the desired form (4.1). Since j ∈ I was arbitrary, the assertion is proved.

Note that (4.3) is already assumed in the definition of admissible parameters. The proof
shows that it is a simple consequence of the particular structure of αj,II and (4.2).

Below we describe the noises appearing in the stochastic equation for affine processes. Let
(Ω,F ,P) be a complete probability space rich enough to support the following objects:

(A2) A n-dimensional Brownian motion B = (Bt)t≥0.

(A3) For each i ∈ I, a d-dimensional Brownian motion W i = (W i
t )t≥0.

(A4) A Poisson random measure M(ds, dξ) with compensator M̂(ds, dξ) = dsν(dξ) on R+×D.

(A5) For each i ∈ I, a Poisson random measure Ni(ds, dξ, dr) with compensator N̂i(ds, dξ, dr) =
dsµi(dξ)dr on R+ ×D × R+.

We suppose that all objects B,W 1, . . . ,Wm,M,N1, . . . , Nm are mutually independent. Denote
by M̃(ds, dξ) = M(ds, dξ)− M̂(ds, dξ) and Ñi(ds, dξ, dr) = Ni(ds, dξ, dr)− N̂i(ds, dξ, dr), i ∈ I,
the corresponding compensated Poisson random measures. Here and below we consider the
natural augmented filtration generated by these noise terms. For x ∈ D, consider the stochastic
equation

Xt = x+

∫ t

0

(
b̃+ β̃Xs

)
ds+

√
2

(
0

σaBt

)
+
∑
i∈I

∫ t

0

√
2Xs,iσidW

i
s (4.4)

+

∫ t

0

∫
|ξ|≤1

ξM̃(ds, dξ) +

∫ t

0

∫
|ξ|>1

ξM(ds, dξ)

+
∑
i∈I

∫ t

0

∫
|ξ|≤1

∫
R+

ξ1{r≤Xs−,i}Ñi(ds, dξ, dr) +
∑
i∈I

∫ t

0

∫
|ξ|>1

∫
R+

ξ1{r≤Xs−,i}Ni(ds, dξ, dr),

where b̃ and β̃ = (̃bki)k,i∈{1,...,d} are, for i, k ∈ {1, . . . , d}, given by

b̃i = bi + 1I(i)

∫
|ξ|≤1

ξiν(dξ), β̃ki = βki − 1I(i)
∫
|ξ|>1

ξkµi(dξ). (4.5)

Note that we have changed the drift coefficients to b̃ and β̃ in order to change the compensators in
the stochastic integrals. Such change is, under the given moment conditions on µ = (µ1, . . . , µm),
always possible and does not affect our results. Concerning existence and uniqueness for (4.4),
we obtain the following.

Theorem 4.2. Let (a, α, b, β, ν, µ) be admissible parameters. Then, for each x ∈ D, there exists
a pathwise unique D-valued strong solution X = (Xt)t≥0 to (4.4).

This result will be proved later in this Section. Let us first relate (4.4) to affine processes.
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Proposition 4.3. Let (a, α, b, β, ν, µ) be admissible parameters. Then each solution X to (4.4)
is an affine process with admissible parameters (a, α, b, β, ν, µ) and starting point x.

Proof. Let X be a solution to (4.4) and f ∈ C2
c (D). Applying the Itô formula shows that

Mf (t) := f(Xt)− f(x)−
∫ t

0
(Lf)(Xs)ds, t ≥ 0

is a local martingale. Note that Lf is bounded. Hence

E

(
sup
s∈[0,t]

|Mf (t)|

)
≤ 2‖f‖∞ +

∫ t

0
E(|Lf(Xs)|)ds ≤ 2‖f‖∞ + t‖Lf‖∞ <∞, t ≥ 0,

and we conclude that (Mf (t))t≥0 is a true martingale. It follows from Remark 1.3 that X is an
affine process with admissible parameters (a, α, b, β, ν, µ).

The rest of this section is devoted to the proof of Theorem 4.2. As often in the theory of
stochastic equations, existence of weak solutions is the easy part.

Lemma 4.4. Let (a, α, b, β, ν, µ) be admissible parameters. Then, for each x ∈ D, there exists
a weak solution X to (4.4).

Proof. Since existence of a solution to the martingale problem with sample paths in the Sko-
rokhod space over D is known, the assertion is a consequence of [44], namely, the equivalence
between weak solutions to stochastic equations and martingale problems. Alternatively, fol-
lowing [16, p.993] we can show that each solution to the martingale problem with generator L
and domain C2

c (D) is a semimartingale and compute its semimartingale characteristics (see [16,
Theorem 2.12]). The assertion is then a consequence of the equivalence between weak solutions
to stochastic equations and semimartingales (see [30, Chapter III, Theorem 2.26]).

In view of the Yamada-Watanabe Theorem (see [6] or [43] for a more general account on
this topic)), Theorem 4.2 is proved, provided we can show pathwise uniqueness for (4.4). For
this purpose we rewrite (4.4) into its components X = (Y,Z), where Y ∈ Rm+ and Z ∈ Rn.
Introduce the notation ξ = (ξI , ξJ) ∈ D, where ξI = (ξi)i∈I and ξJ = (ξj)j∈J . Moreover, let
W i
s = (W i

s,I ,W
i
s,J) and write for the initial condition x = (y, z) ∈ D. Finally, let e1, . . . , ed
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denote the canonical basis vectors in Rd. Then (4.4) is equivalent to the system of equations

Yt = y +

∫ t

0

(
bI + β̃IIYs

)
ds+

∑
i∈I

ei

∫ t

0

√
2αi,iiYs,idW

i
s,i +

∫ t

0

∫
D
ξIM(ds, dξ) (4.6)

+
∑
i∈I

∫ t

0

∫
|ξ|≤1

∫
R+

ξI1{r≤Ys−,i}Ñi(ds, dξ, dr) +
∑
i∈I

∫ t

0

∫
|ξ|>1

∫
R+

ξI1{r≤Ys−,i}Ni(ds, dξ, dr),

Zt = z +

∫ t

0

(
bJ + β̃JIYs + β̃JJZs

)
ds+

√
2σaBt +

∑
i∈I

∫ t

0

√
2Ys,i

(
σi,JIdW

i
s,I + σi,JJdW

i
s,J

)
(4.7)

+

∫ t

0

∫
|ξ|≤1

ξJM̃(ds, dξ) +

∫ t

0

∫
|ξ|>1

ξJM(ds, dξ)

+
∑
i∈I

∫ t

0

∫
|ξ|≤1

∫
R+

ξJ1{r≤Ys−,i}Ñi(ds, dξ, dr) +
∑
i∈I

∫ t

0

∫
|ξ|>1

∫
R+

ξJ1{r≤Ys−,i}Ni(ds, dξ, dr).

Observe that the first equation for Y does not involve Z. We will show that (4.6) is precisely
(3.1), i.e., Y is a multi-type CBI process and pathwise uniqueness holds for Y . The second
equation for Z describes an OU-type process with random coefficients depending on Y . If we
regard Y as conditionally fixed, then pathwise uniqueness for (4.7) is obvious. These ideas are
summarized in the next lemma.

Lemma 4.5. Let (a, α, b, β, ν, µ) be admissible parameters. Then pathwise uniqueness holds for
(4.6) and (4.7), and hence for (4.4).

Proof. Let X = (Y,Z) and X ′ = (Y ′, Z ′) be two solutions to (4.4) with the same initial condition
x = (y, z) ∈ D both defined on the same probability space. Then Y and Y ′ both satisfy (4.6).
Let us show that (4.6) is precisely (3.1). Set prI : D −→ Rm+ , prI(x) = (xi)i∈I , and define

• A m-dimensional Brownian motion Wt := (W 1
t,1, . . . ,W

m
t,m).

• A Poisson random measure MI(ds, dξ) on R+ × Rm+ by

MI([s, t]×A) = M([s, t]× pr−1I (A)),

where 0 ≤ s < t and A ⊂ Rm+ is a Borel set.

• Poisson random measures N I
1 , . . . , N

I
m on R+ × Rm+ × R+ by

N I
i ([s, t]×A× [c, d]) = Ni([s, t]× pr−1I (A)× [c, d]), i ∈ I,

where 0 ≤ s < t, 0 ≤ c < d and A ⊂ Rm+ is a Borel set.

Note that the random objects W,MI , N
I
1 , . . . , N

I
m are mutually independent. Moreover, it is not

difficult to see that MI and N I
1 , . . . , N

I
m have compensators

M̂I(ds, dξ) = dsνI(dξ), N̂ I
i (ds, dξ, dr) = dsµIi (dξ)dr, i ∈ I,
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where νI = ν ◦ pr−1I and µIi = µi ◦ pr−1I . Finally let cj = αj,jj , j ∈ {1, . . . ,m}, and

σ(y) = diag(
√

2c1y1, · · · ,
√

2cmym) ∈ Rm×m.

Then (4.6) is precisely (3.1), and it follows from Proposition 3.1.(a) that P(Yt = Y ′t , t ≥ 0) = 1.
It remains to prove pathwise uniqueness for (4.7). Define, for l ≥ 1, a stopping time inf{t >

0 | max{|Zt|, |Z ′t|} > l}. Since Z and Z ′ both satisfy (4.7) for the same Y , we obtain

Zt∧τl − Z
′
t∧τl =

∫ t∧τl

0
β̃JJ(Zs − Z ′s)ds

and hence, for some constant C > 0,

E(|Zt∧τl − Z
′
t∧τl |) ≤ C

∫ t

0
E(|Zs∧τl − Z

′
s∧τl |)ds.

The Grownwall lemma gives P(Zt∧τl = Z ′t∧τl) = 1, for all t ≥ 0 and l ≥ 1. Note that Z and Z ′

have no explosion. Taking l→∞ proves the assertion.

5 Moments for affine processes

The stochastic equation introduced in Section 4 can be used to provide a simple proof for the
finiteness of moments for affine processes. The following is our main result for this section.

Proposition 5.1. Let (a, α, b, β, ν, µ) be admissible parameters. For x ∈ D, let X be the unique
solution to (4.4).

(a) Suppose that there exists κ > 0 such that∫
|ξ|>1

|ξ|κµi(dξ) +

∫
|ξ|>1

|ξ|κν(dξ) <∞, i ∈ I.

Then there exists a constant Cκ > 0 (independent of x and X) such that

E(|Xt|κ) ≤ (1 + |x|κ)eCκt, t ≥ 0.

(b) Suppose that (1.5) is satisfied. Then there exists a constant C > 0 (independent of x and
X) such that

E(log(1 + |Xt|)) ≤ (1 + log(1 + |x|))eCt, t ≥ 0.

Proof. Define V1(h) = (1 + |h|2)κ/2 and V2(h) = log(1 + |h|2), where h ∈ D. Applying the Itô
formula for Vj , j ∈ {1, 2}, gives

Vj(Xt) = Vj(x) +

∫ t

0
Aj(Xs)ds+Mj(t), (5.1)
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where (Mj(t))t≥0 and Aj(·) are given by

Aj(h) = 〈̃b+ βh,∇Vj(h)〉+

d∑
k,l=1

(
akl +

m∑
i=1

αi,klxi

)
∂2Vj(h)

∂hk∂hl

+

∫
D

(
Vj(h+ ξ)− Vj(h)− 〈ξ,∇Vj(h)〉1{|ξ|≤1}

)
ν(dξ)

+
m∑
i=1

hi

∫
D

(Vj(h+ ξ)− Vj(h)− 〈ξ,∇Vj(h)〉)µi(dξ),

Mj(t) =
√

2

∫ t

0
〈∇JVj(Xs), σadBs,J〉+

m∑
i=1

∫ t

0

√
2Xs,i

〈
∇Vj(Xs), σidW

i
s

〉
+

∫ t

0

∫
D

(Vj(Xs− + ξ)− Vj(Xs−)) M̃(ds, dξ)

+

m∑
i=1

∫ t

0

∫
D

∫
R+

(
Vj(Xs− + ξ1{r≤Xs−,i})− Vj(Xs−)

)
Ñi(ds, dξ, dr),

where b̃ was defined in (4.5). Define, for l ≥ 1, a stopping time τl = inf{t ≥ 0 | |Xt| > l}. Then
it is not difficult to see that (Mj(t ∧ τl))t≥0 is a martingale, for any l ≥ 1. Moreover, we will
prove in the appendix that there exists a constant C > 0 such that

Aj(h) ≤ C(1 + Vj(h)), h ∈ D. (5.2)

Hence taking expectations in (5.1) gives

E(Vj(Xt∧τl)) ≤ Vj(x) + C

∫ t

0
(1 + E(Vj(Xs∧τl))) ds.

Applying the Gronwall lemma gives E(Vj(Xt∧τl)) ≤ (Vj(x) + Ct)eCt ≤ (1 + Vj(x))eC
′t, for all

t ≥ 0 and some constant C ′ > 0. Since (Xt)t≥0 has cádlág paths and C ′ is independent of l, we
may take the limit l→∞ and conclude the assertion by the lemma of Fatou.

We close this section with a formula for the first moment of general affine processes. The
particular case of multi-type CBI processes was treated in [5, Lemma 3.4], while recursion
formulas for higher-order moments of multi-type CBI processes were provided in [7]. At this point
it is worthwhile to mention [14] where polynomial processes (which include affine processes on
the canonical state space as a special case) are investigated. These processes are characterized by
the property that the moments up to a given order p ∈ N can be computed from an p-dimensional
system of ordinary differential equations. For affine processes on the canonical state space, such
equations can be derived from the particular form of the extended generator. Alternatively,
the same equations could also be obtained from the Itô formula using the stochastic equation
presented in Section 4. The next lemma is a particular case where p = 1.

Lemma 5.2. Let (a, α, b, β, ν, µ) be admissible parameters and suppose that∫
|ξ|>1

|ξ|ν(dξ) <∞. (5.3)
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Let (Xt)t≥0 be an affine process obtained from (4.4) with X0 = x ∈ D. Then

E(Xt) = etβx+

∫ t

0
esβbds,

where bi = bi +
∫
|ξ|>1 ξiν(dξ) + 1I(i)

∫
|ξ|≤1 ξiν(dξ) holds. Letting x = (y, z) ∈ Rm+ × Rn and

X = (Y, Z) ∈ Rm+ × Rn we find that

E(Yt) = etβIIy +

∫ t

0
esβII bIds,

E(Zt) = etβJJ z +

∫ t

0
esβJJ bJds+

∫ t

0
e(t−s)βJJβJIe

sβIIyds+

∫ t

0

∫ s

0
e(t−s)βJJβJIe

uβII bIduds.

Proof. First observe that, by definition of admissible parameters and (5.3), we may apply Propo-
sition 5.1 (a) and deduce that Xt has finite first moment. Taking expectations in (4.4) gives

E(Xt) = x+

∫ t

0

(
b+ βE(Xs)

)
ds.

Solving this equation gives the desired formula for E(Xt). Taking expectations in (3.1) (or (4.6))
gives

E(Yt) = y +

∫ t

0

(
bI + βIIE(Ys)

)
ds,

which implies the desired formula for E(Yt). Finally, taking expectations in (4.7) gives

E(Zt) = z +

∫ t

0

(
bJ + βJIE(Ys) + βJJE(Zs)

)
ds.

Solving this equation and using previous formula for E(Ys), we obtain the assertion.

6 Contraction estimate for trajectories of affine processes

The following is our main estimate for this section.

Proposition 6.1. Let (a, α, b, β, ν, µ) be admissible parameters, suppose that (5.3) is satisfied,
and assume that β has only eigenvalues with strictly negative real parts. Let x = (y, z), x̃ =
(ỹ, z̃) ∈ Rm+ × Rn, and let X(x) = (Y (y), Z(x)) and X(x̃) = (Y (ỹ), Z(x̃)) be the unique strong
solutions to (4.4) with initial condition x and x̃, respectively. Then there exist constants K, δ, δ′ >
0 independent of X(x) and X(x̃) such that, for all t ≥ 0,

E(|Yt(y)− Yt(ỹ)|) ≤ d|y − ỹ|e−δ′t, (6.1)

E(|Xt(x)−Xt(x̃)|) ≤ Ke−δt
(
1{n>0}|y − ỹ|1/2 + |x− x̃|

)
. (6.2)
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Proof. Let us first prove (6.1). Note that Y (y) and Y (ỹ) are multi-type CBI processes with the
same parameters. If ỹj ≤ yj for all j ∈ {1, . . . ,m}, then we obtain from Lemma 3.2 and Lemma
5.2

E(|Yt(y)− Yt(ỹ)|) ≤
m∑
j=1

E(|Yt,j(y)− Yt,j(ỹ)|)

=

m∑
j=1

E(Yt,j(y)− Yt,j(ỹ))

=

m∑
j=1

(
etβII (y − ỹ)

)
j
≤
√
d|etβII (y − ỹ)| ≤

√
de−δ

′t|y − ỹ|,

where we have used that βII has only eigenvalues with negative real parts (since β has this
property and βIJ = 0). For general y, ỹ, let y0, . . . , ym ∈ Rm+ be such that

y0 := y, ym = ỹ, yj =

j∑
k=1

ekỹk +

m∑
k=j+1

ekyk, j ∈ {1, . . . ,m− 1},

where e1, . . . , em denote the canonical basis vectors in Rm. Then, for each j ∈ {0, . . . ,m−1}, the
elements yj , yj+1 are comparable in the sense that yjk = yj+1

k if k 6= j+1, and either yjj+1 ≤ y
j+1
j+1

or yjj+1 ≥ y
j+1
j+1. In any case, we obtain from the previous consideration

E(|Yt(y)− Yt(ỹ)|) ≤
m−1∑
j=0

E(|Yt(yj)− Yt(yj+1)|)

≤
√
de−δ

′t
m−1∑
j=0

|yj − yj+1|

=
√
de−δ

′t
m−1∑
j=0

|yj+1 − ỹj+1| ≤ de−δ
′t|y − ỹ|,

where we have used |yj − yj+1| = |yj+1 − ỹj+1|. This completes the proof of (6.1).
If n = 0, then (6.2) is trivial. Suppose that n > 0. Applying the Itô formula to e−tβXt(x)

and e−tβXt(x̃), and then taking the difference, gives

Xt(x)−Xt(x̃) = etβ(x− x̃) +
∑
i∈I

∫ t

0
e(t−s)β

(√
2Ys,i(x)−

√
2Ys,i(x̃)

)
σidW

i
s

+
∑
i∈I

∫ t

0

∫
D

∫
R+

e(t−s)βξ
(
1{r≤Ys−,i(x)} − 1{r≤Ys−,i(x̃)}

)
Ñi(ds, dξ, dr).

Here and below we denote by K > 0 a generic constant which may vary from line to line.
Moreover, we find δ0 > 0 and δ ∈ (0, δ′) such that

|etβ|2 ≤ e−δ0t and

∫ t

0
e−(t−s)

δ0
2 e−δ

′sds ≤ Ke−2δt, t ≥ 0. (6.3)
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The stochastic integral against the Brownian motion is estimated by the Burkholder-Davies-
Gundy inequality (shortened to BDG-inequality) making also use of Jensen inequality, Fubini
Theorem and using the 1

2 -Hölder continuity of
√
·, which gives

E
(∣∣∣∣∫ t

0
e(t−s)β

(√
2Ys,i(x)−

√
2Ys,i(x̃)

)
σidW

i
s

∣∣∣∣)

≤ K

(∫ t

0
E

(∣∣∣∣e(t−s)β (√2Ys,i(x)−
√

2Ys,i(x̃)

)
σi

∣∣∣∣2
)
ds

)1/2

≤ K
(∫ t

0
e−δ0(t−s)E(|Ys,i(x)− Ys,i(x̃)|)ds

)1/2

≤ K
(∫ t

0
e−δ0(t−s)e−δ

′sds

)1/2

|y − ỹ|1/2 ≤ Ke−δt|y − ỹ|1/2,

where we have used (6.1) and (6.3). For the stochastic integral against Ñi we consider the cases
|ξ| ≤ 1 and |ξ| > 1 separately. For |ξ| ≤ 1 we apply first the BDG-inequality and then the
Jensen inequality combined with the Fubini Theorem to find, for each i ∈ I,

E

(∣∣∣∣∣
∫ t

0

∫
|ξ|≤1

∫
R+

e(t−s)βξ
(
1{r≤Ys−,i(x)} − 1{r≤Ys−,i(x̃)}

)
Ñi(ds, dξ, dr)

∣∣∣∣∣
)

≤ KE

∣∣∣∣∣
∫ t

0

∫
|ξ|≤1

∫
R+

|e(t−s)βξ|2|1{r≤Ys−,i(x)} − 1{r≤Ys−,i(x̃)}|
2Ni(dr, dξ, ds)

∣∣∣∣∣
1/2


≤ K

(∫ t

0

∫
|ξ|≤1

∫
R+

|e(t−s)βξ|2E(|1{r≤Ys−,i(x)} − 1{r≤Ys−,i(x̃)}|
2)drµi(dξ)ds

)1/2

≤ K
(∫ t

0
e−(t−s)δ0E(|Ys,i(x)− Ys,i(x̃)|)ds

)1/2

≤ K|y − ỹ|1/2
(∫ t

0
e−(t−s)δ0e−δ

′sds

)1/2

≤ Ke−δt|y − ỹ|1/2,

where we have used (6.1), (6.3) and the identity∫ ∞
0

∣∣1{r≤x} − 1{r≤y}∣∣2 dr =

∫ ∞
0

∣∣1{r≤x} − 1{r≤y}∣∣ dr = max(x, y)−min(x, y) = |x− y|.

For |ξ| > 1, we apply first the BDG-inequality and then use the sub-additivity of a 7−→ a1/2 to
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obtain

E

(∣∣∣∣∣
∫ t

0

∫
|ξ|>1

∫
R+

e(t−s)βξ
(
1{r≤Ys−,i(x)} − 1{r≤Ys−,i(x̃)}

)
Ñi(ds, dξ, dr)

∣∣∣∣∣
)

≤ KE

∣∣∣∣∣
∫ t

0

∫
|ξ|>1

∫
R+

|e(t−s)βξ|2|1{r≤Ys−,i(x)} − 1{r≤Ys−,i(x̃)}|
2Ni(dr, dξ, ds)

∣∣∣∣∣
1/2


≤ K
∫ t

0

∫
|ξ|>1

∫
R+

E
(
|e(t−s)βξ||1{r≤Ys−,i(x)} − 1{r≤Ys−,i(x̃)}|

)
drµi(dξ)ds

≤ K
∫ t

0
e−(t−s)

δ0
2 E(|Ys,i(x)− Ys,i(x̃)|)ds

≤ K|y − ỹ|
∫ t

0
e−(t−s)

δ0
2 e−δ

′sds ≤ Ke−2δt|x− x̃|,

where we have used |y − ỹ| ≤ |x− x̃|. Collecting all estimates proves the assertion.

7 Proof of Theorem 1.5

7.1 The Wdlog-Wasserstein estimate

Based on the results of Section 6, we first deduce the following estimate with respect to the
log-Wasserstein distance.

Proposition 7.1. Let (Pt)t≥0 be the transition semigroup with admissible parameters (a, α, b, β, ν, µ),
suppose that β has only eigenvalues with negative real parts, and (1.5) is satisfied. Then there
exist constants K, δ > 0 such that, for any ρ, ρ̃ ∈ Plog(D), one has

Wdlog(Ptρ, Ptρ̃) ≤ K min
{

e−δt,Wdlog(ρ, ρ̃)
}

+Ke−δtWdlog(ρ, ρ̃), t ≥ 0.

Proof. Let
(
P 0
t (x, ·)

)
t≥0 be the transition semigroup with admissible parameters (a, α, b =

0, β,m = 0, µ) given by Theorem 1.2. Take x = (y, z), x̃ = (ỹ, z̃) ∈ Rm+ × Rn and let
X0(x) = (Y 0(y), Z0(x)) and X0(x̃) = (Y 0(ỹ), Z0(x̃)), respectively, be the corresponding affine
processes obtained from (4.4) with admissible parameters (a = 0, α, b = 0, β,m = 0, µ). Since
X0
t (x) has law P 0

t (x, ·) and X0
t (x̃) has law P 0

t (x̃, ·), there exist by Proposition 6.1 constants
K, δ > 0 such that

Wd1(P 0
t (x, ·), P 0

t (x̃, ·)) ≤ E
(
1{n>0}|Y 0

t (y)− Y 0
t (ỹ)|1/2 + |X0

t (x)−X0
t (x̃)|

)
≤ 1{n>0}

(
E(|Y 0

t (y)− Y 0
t (ỹ)|)

)1/2
+ E(|X0

t (x)−X0
t (x̃)|)

≤ Ke−δt
(
1{n>0}|y − ỹ|1/2 + |x− x̃|

)
.

Next observe that, for u ∈ U , one has∫
D

e〈u,x
′〉P 0

t (x, dx′) = exp (〈x, ψ(t, u)〉) ,
∫
D

e〈u,x
′〉Pt(0, dx

′) = exp (φ(t, u)) .
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Combining this with (1.1) proves Pt(x, ·) = P 0
t (x, ·)∗Pt(0, ·), where ∗ denotes the convolution of

measures on D. Let us now prove the desired log-estimate. Using Lemma 8.3 from the appendix
and then the Jensen inequality for the concave function R+ 3 a 7−→ log(1 + a), gives for some
generic constant K > 0

Wdlog(Ptδx, Ptδx̃) ≤Wdlog(P 0
t δx, P

0
t δx̃)

≤ log(1 +Wd1(P 0
t δx, P

0
t δx̃))

≤ log
(

1 +Ke−δt
(
1{n>0}|y − ỹ|1/2 + |x− x̃|

))
(7.1)

≤ K min{e−δt, log(1 + 1{n>0}|y − ỹ|1/2 + |x− x̃|)}

+Ke−δt log
(

1 + 1{n>0}|y − ỹ|1/2 + |x− x̃|
)
,

where we have used, for a, b ≥ 0, the elementary inequality

log(1 + ab)≤K min{log(1 + a), log(1 + b)}+K log(1 + a) log(1 + b)

≤ K min{a, log(1 + b)}+Ka log(1 + b),

which is proved in the appendix. Applying now Lemma 8.4 from the appendix gives for any
H ∈ H(ρ, ρ̃)

Wdlog(Ptρ, Ptρ̃) ≤
∫
D×D

Wdlog(Ptδx, Ptδx̃)H(dx, dx̃)

≤ K
∫
D×D

min
{

e−δt, log(1 + 1{n>0}|y − ỹ|1/2 + |x− x̃|)
}
H(dx, dx̃)

+Ke−δt
∫
D×D

log(1 + 1{n>0}|y − ỹ|1/2 + |x− x̃|)H(dx, dx̃)

≤ K min

{
e−δt,

∫
D×D

log(1 + 1{n>0}|y − ỹ|1/2 + |x− x̃|)H(dx, dx̃)

}
+Ke−δt

∫
D×D

log(1 + 1{n>0}|y − ỹ|1/2 + |x− x̃|)H(dx, dx̃).

Choosing H as the optimal coupling of (ρ, ρ̃), i.e.,

Wdlog(ρ, ρ̃) =

∫
D×D

log(1 + 1{n>0}|y − ỹ|1/2 + |x− x̃|)H(dx, dx̃),

proves the assertion.

Based on previous proposition, the proof of Theorem 1.5 is easy. It is given below.

Lemma 7.2. Let (Pt)t≥0 be the transition semigroup with admissible parameters (a, α, b, β, ν, µ).
Suppose that β has only eigenvalues with negative real parts, and (1.5) is satisfied. Then (Pt)t≥0
has a unique invariant distribution π. Moreover, this distribution belongs to Plog(D) and, for
any ρ ∈ Plog(D), one has (1.6).
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Proof. Let us first prove existence of an invariant distribution π̃ ∈ Plog(D). Observe that, by
Proposition 5.1, we easily deduce that PtPlog(D) ⊂ Plog(D), for any t ≥ 0. Fix any ρ ∈ Plog(D)
and let k, l ∈ N with k > l. Then

Wdlog(Pkρ, Plρ) ≤
k−1∑
s=l

Wdlog(PsP1ρ, Psρ)

≤ K
k−1∑
s=l

min
{

e−δs,Wdlog(P1ρ, ρ)
}

+K

k−1∑
s=l

e−sδWdlog(P1ρ, ρ).

Since the right-hand side tends to zero as k, l→∞, we conclude that (Pkρ)k∈N is a Cauchy se-
quence in (Plog(D),Wdlog). In particular, there exists a limit π ∈ Plog(D), i.e., Wdlog(Pkρ, π) −→
0 as k →∞. Let us show that π is an invariant distribution for Pt. Indeed, take h ≥ 0, then

Wdlog(Phπ, π) ≤Wdlog(Phπ, PhPkρ) +Wdlog(PkPhρ, Pkρ) +Wdlog(Pkρ, π)

≤ K min
{

e−δh,Wdlog(π, Pkρ)
}

+Ke−δhWdlog(π, Pkρ)

+K min
{

e−δk,Wdlog(Phρ, ρ)
}

+Ke−δkWdlog(Phρ, ρ) +Wdlog(Pkρ, π).

SinceWdlog(Pkρ, π) −→ 0 as k →∞, we conclude that all terms tend to zero. HenceWdlog(Phπ, π) =
0, i.e., Phπ = π, for all h ≥ 0. Next we prove that π is the unique invariant distribution. Let
π0, π1 be any two invariant distributions and define W≤1dlog

as in (1.4) with dlog replaced by dlog∧1.

Then we obtain, for any t ≥ 0 and all x, x̃ ∈ D, by the proof of Proposition 7.1 (see (7.1))

W≤1dlog
(Pt(x, ·), Pt(x̃, ·)) ≤ 1 ∧Wdlog(Pt(x, ·), Pt(x̃, ·))

≤ 1 ∧ log
(

1 +Ke−δt
(
1{n>0}|y − ỹ|+ |x− x̃|

))
.

Fix any H ∈ H(π0, π1), then using the invariance of π0, π1 together with the convexity of the
Wasserstein distance gives

W≤1dlog
(π0, π1) = W≤1dlog

(Ptπ0, Ptπ1)

≤
∫
D×D

W≤1dlog
(Pt(x, ·), Pt(x̃, ·))H(dx, dx̃)

≤
∫
D×D

min{1, log(1 + 2Ke−δt|x− x̃|)H(dx, dx̃).

By dominated convergence we deduce that the right-hand side tends to zero as t→∞ and hence
π0 = π1. The last assertion can now be deduced from

Wdlog(Ptρ, π) = Wdlog(Ptρ, Ptπ) ≤ K min
{

e−δt,Wdlog(ρ, π)
}

+Ke−δtWdlog(ρ, π),

where we have first used the invariance of π and then Proposition 7.1.
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7.2 The Wdκ-Wasserstein estimate

As before, we start with an estimate with respect to the Wasserstein distance Wdκ .

Proposition 7.3. Let (Pt)t≥0 be the transition semigroup with admissible parameters (a, α, b, β, ν, µ).
Suppose that β has only eigenvalues with negative real parts, and (1.7) is satisfied for some
κ ∈ (0, 1]. Then there exist constants K, δ > 0 such that, for any ρ, ρ̃ ∈ Pκ(D), one has

Wdκ(Ptρ, Ptρ̃) ≤ Ke−δtWdκ(ρ, ρ̃), t ≥ 0.

Proof. Let
(
P 0
t (x, ·)

)
t≥0 be the transition semigroup with admissible parameters (a = 0, α, b =

0, β,m = 0, µ) given by Theorem 1.2. Arguing as in the proof of Proposition 7.1, we obtain

Wd1(P 0
t (x, ·), P 0

t (x̃, ·)) ≤ Ke−δt
(
1{n>0}|y − ỹ|1/2 + |x− x̃|

)
, (7.2)

and Pt(x, ·) = P 0
t (x, ·) ∗ Pt(0, ·). Then we obtain from Lemma 8.3 from the appendix

Wdκ(Ptδx, Ptδx̃) ≤Wdκ(P 0
t δx, P

0
t δx̃)

≤
(
Wd1(P 0

t δx, P
0
t δx̃)

)κ ≤ Kκe−δκt
(
1{n>0}|y − ỹ|1/2 + |x− x̃|

)κ
,

where the second inequality follows from the Jensen inequality and the third is a consequence
of (7.2). Using now Lemma 8.4 from the appendix, we conclude that

Wdκ(Ptρ, Ptρ̃) ≤ inf
H∈H(ρ,ρ̃)

∫
D×D

Wdκ(Ptδx, Ptδx̃)H(dx, dx̃)

≤ Kκe−δκt inf
H∈H(ρ,ρ̃)

∫
D×D

(
1{n>0}|y − ỹ|+ |x− x̃|

)κ
H(dx, dx̃)

= Kκe−δκtWdκ(ρ, ρ̃).

This proves the assertion.

Based on previous proposition, the proof of the Wdκ-estimate in Theorem 1.5 can be deduced
by exactly the same arguments as in Lemma 7.2. So Theorem 1.5 is proved.

8 Appendix

8.1 Moment estimates for V1 and V2

In this section we prove (5.2).

Lemma 8.1. Suppose that the same conditions as in Proposition 5.1 (a) are satisfied. Then
there exists a constant C = Cκ > 0 such that

A1(x) ≤ CV1(x), x = (y, z) ∈ Rm+ × Rn.
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Proof. Observe that ∇V1(x) = κx(1 + |x|2)
κ−2
2 . Using |x| ≤ (1 + |x|2)1/2 gives |∇V1(x)| ≤

κ(1 + |x|2)
κ−1
2 , and hence we obtain for some generic constant C = Cκ > 0

(̃b+ βx,∇V1(x)) ≤ C (1 + |x|) |∇V1(x)| ≤ CV1(x).

For the second order term we first observe that, for k, l ∈ {1, . . . , d},
∂2V1(x)

∂xk∂xl
= κ(κ− 2)xkxl(1 + |x|2)

κ−4
2 + δklκ(1 + |x|2)

κ−2
2 ,

where δkl denotes the Kronecker-Delta symbol. Using xkxl ≤
x2k+x

2
l

2 ≤ |x|2 ≤ (1 + |x|2) gives∣∣∣∂2V1(x)∂xk∂xl

∣∣∣ ≤ C(1 + |x|2)
κ−2
2 . This implies that

d∑
k,l=1

(
akl +

m∑
i=1

αi,klxi

)
∂2V1(x)

∂xk∂xl
≤ C(1 + |x|)(1 + |x|2)

κ−2
2 ≤ CV1(x).

Let us now estimate the integrals against m and µ1, . . . , µm. Consider first the case |ξ| > 1. The
mean value theorem gives

V1(x+ ξ)− V1(x) =

∫ 1

0
〈ξ,∇V1(x+ tξ)〉 dt

= κ

∫ 1

0
〈ξ, x+ tξ〉 (1 + |x+ tξ|2)

κ−2
2 dt ≤ κ|ξ|

∫ 1

0
(1 + |x+ tξ|2)

κ−1
2 dt,

where we have used 〈ξ, x+ tξ〉 ≤ |ξ||x+ tξ| ≤ |ξ|(1 + |x+ tξ|2)1/2 in the last inequality. If κ > 1,
then

|ξ|(1 + |x+ tξ|2)
κ−1
2 ≤ C|ξ|(1 + |x|2 + |ξ|2)

κ−1
2

≤ C|ξ|(1 + |ξ|2)
κ−1
2 (1 + |x|2)

κ−1
2 ≤ C(1 + |ξ|2)κ/2(1 + |x|2)

κ−1
2 .

If κ ∈ (0, 1], then |ξ|(1 + |x+ tξ|2)
κ−1
2 ≤ |ξ|. In any case, we obtain, for |ξ| > 1,

V1(x+ ξ)− V1(x) ≤ 1(0,1](κ)C|ξ|+ 1(1,∞)(κ)(1 + |ξ|2)κ/2(1 + |x|2)
κ−1
2

≤ C (1 + |ξ|+ |ξ|κ) (1 + |x|2)
κ−1
2 .

Using 〈ξ,∇V1(x)〉 ≤ |ξ||∇V1(x)| ≤ C|ξ|(1 + |x|2)
κ−1
2 and

V1(x+ ξ)− V1(x) ≤ V1(x+ ξ) ≤ C(1 + |x|2 + |ξ|2)κ/2 ≤ CV1(x)(1 + |ξ|2)κ/2,
for the integral against ν, gives∫

|ξ|>1
(V1(x+ ξ)− V1(x)) ν(dξ) +

m∑
i=1

xi

∫
|ξ|>1

(V1(x+ ξ)− V1(x)− 〈ξ,∇V1(x)〉)µi(dξ)

≤ CV1(x)

∫
|ξ|>1

(1 + |ξ|2)κ/2ν(dξ) + C(1 + |x|2)
κ−1
2

m∑
i=1

xi

∫
|ξ|>1

(1 + |ξ|+ |ξ|κ)µi(dξ)

≤ CV1(x)

(∫
|ξ|>1

(1 + |ξ|κ) ν(dξ) +
m∑
i=1

∫
|ξ|>1

(1 + |ξ|+ |ξ|κ)µi(dξ)

)
,
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where we have used xi ≤ |x| ≤ (1 + |x|2)1/2, i ∈ {1, . . . ,m}. It remains to estimate the
corresponding integrals for |ξ| ≤ 1. Applying twice the mean value theorem gives

V1(x+ ξ)− V1(x)− 〈ξ,∇V1(x)〉 =

∫ 1

0
{〈ξ,∇V1(x+ tξ)〉 − 〈ξ,∇V1(x)〉} dt

=

∫ 1

0

∫ t

0

d∑
k,l=1

∂2V1(x+ sξ)

∂xk∂xl
ξkξldsdt

≤ C|ξ|2
∫ 1

0

∫ t

0
(1 + |x+ sξ|2)

κ−2
2 dsdt, (8.1)

where we have used ξkξl ≤
ξ2k+ξ

2
l

2 ≤ |ξ|2. Using, for i ∈ I and |ξ| ≤ 1,

(1 + xi)(1 + |x+ sξ|2)
κ−2
2 ≤ (1 + |y + sξI |2)1/2(1 + |x+ sξ|2)

κ−2
2

≤ (1 + |x+ sξ|2)
κ−1
2

≤ (1 + |x+ sξ|2)κ/2 ≤ CV1(x),

we conclude that ∫
|ξ|≤1

(V1(x+ ξ)− V1(x)− 〈ξ,∇V1(x)〉) ν(dξ)

+
m∑
i=1

xi

∫
|ξ|≤1

(V1(x+ ξ)− V1(x)− 〈ξ,∇V1(x)〉)µi(dξ)

≤ CV1(x)

(∫
|ξ|≤1

|ξ|2ν(dξ) +

∫
|ξ|≤1

|ξ|2µi(dξ)

)
.

Collecting all estimates proves the desired estimate for A1.

Let us now prove the desired estimate for A2.

Lemma 8.2. Suppose that the same conditions as in Proposition 5.1 (b) are satisfied. Then
there exists a constant C > 0 such that

A2(x) ≤ C (1 + V2(x)) , x ∈ D.

Proof. Observe that ∇V2(x) = 2x
1+|x|2 . Hence we obtain for some generic constant C > 0

〈
b̃+ βx,∇V2(x)

〉
≤ C (1 + |x|) |∇V2(x)| ≤ C (1 + |x|)|x|

1 + |x|2
≤ C.

Observe that, for k, l ∈ {1, . . . , d},

∂2V2(x)

∂xk∂xl
=

2δkl
1 + |x|2

− 4xkxl
(1 + |x|2)2

.
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Using xkxl ≤ C(1 + |x|2) gives
∣∣∣∂2V2(x)∂xk∂xl

∣∣∣ ≤ C
1+|x|2 . This implies that

d∑
k,l=1

(
akl +

m∑
i=1

αi,klxi

)
∂2V2(x)

∂xk∂xl
≤ C 1 + |x|

1 + |x|2
≤ C.

Let us estimate the integrals against ν and µ1, . . . , µm. Consider first the case |ξ| > 1. Then

V2(x+ ξ)− V2(x) ≤ V2(x+ ξ) ≤ C log(1 + |x|2 + |ξ|2) ≤ C log(1 + |x|2) + C log(1 + |ξ|2),

and hence we obtain∫
|ξ|>1

(V2(x+ ξ)− V2(x)) ν(dξ) ≤ C
∫
|ξ|>1

(V2(x) + V2(ξ)) ν(dξ) ≤ C(1 + V2(x)).

From the mean value theorem we obtain

V2(x+ ξ)− V2(x) =

∫ 1

0
〈ξ,∇V2(x+ tξ)〉 dt = 2

∫ 1

0

〈ξ, x+ tξ〉
1 + |x+ tξ|2

dt ≤ 2|ξ|
∫ 1

0

|x+ tξ|
1 + |x+ tξ|2

dt.

In view of xi ≤ xi + tξi ≤ |xI + tξI | ≤ |x+ tξ| for i ∈ I, we obtain xi(V2(x+ ξ)− V2(x)) ≤ 2|ξ|.
Using 〈ξ,∇V2(x)〉 ≤ |ξ||∇V2(x)| ≤ C|ξ| gives

m∑
i=1

xi

∫
|ξ|>1

(V2(x+ ξ)− V2(x)− 〈ξ,∇V2(x)〉)µi(dξ) ≤ C
m∑
i=1

∫
|ξ|>1

|ξ|µi(dξ).

It remains to estimate the corresponding integrals for |ξ| ≤ 1. As in (8.1), we get

V2(x+ ξ)− V2(x)− 〈ξ,∇V2(x)〉 ≤ C|ξ|2
∫ 1

0

∫ t

0

1

1 + |x+ sξ|2
dsdt.

This implies ∫
|ξ|≤1

(V2(x+ ξ)− V2(x)− 〈ξ,∇V2(x)〉) ν(dξ) ≤ C
∫
|ξ|≤1

|ξ|2ν(dξ).

For i ∈ I, by xi ≤ |x+ sξ|, we get xi
1+|x+sξ|2 ≤ 1 and hence

m∑
i=1

xi

∫
|ξ|≤1

(V2(x+ ξ)− V2(x)− 〈ξ,∇V2(x)〉)µi(dξ) ≤ C
m∑
i=1

∫
|ξ|≤1

|ξ|2µi(dξ).

Collecting all estimates proves the desired estimate for A2.

8.2 Some estimate on the Wasserstein distance

Here and below we let d ∈ {dκ, dlog}. Below we provide two simple and known estimates for
Wasserstein distances.
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Lemma 8.3. Let f, f̃ , g ∈ Pd(D). Then

Wd(f ∗ g, f̃ ∗ g) ≤Wd(f, f̃).

Proof. Using the Kantorovich duality (see [57, Theorem 5.10, Case 5.16], we obtain

Wd(f ∗ g, f̃ ∗ g) = sup
‖h‖≤1

(∫
D
h(x)(f ∗ g)(dx)−

∫
D
h(x)(f̃ ∗ g)(dx)

)
,

where ‖h‖ = supx 6=x′
|h(x)−h(x′)|
d(x,x′) . Using now the definition of the convolution on the right-hand

side gives ∫
D
h(x)(f ∗ g)(dx)−

∫
D
h(x)(f̃ ∗ g)(dx)

=

∫
D

∫
D
h(x+ x′)f(dx)g(dx′)−

∫
D

∫
D
h(x+ x′)f̃(dx)g(dx′)

=

∫
D
h̃(x)f(dx)−

∫
D
h̃(x)f̃(dx),

where h̃(x) =
∫
D h(x+ x′)g(dx′). Since ‖h̃‖ ≤ 1, we conclude that

Wd(f ∗ g, f̃ ∗ g) = sup
‖h‖≤1

(∫
D
h̃(x)f(dx)−

∫
D
h̃(x)f̃(dx)

)
≤ sup
‖h‖≤1

(∫
D
h(x)f(dx)−

∫
D
h(x)f̃(dx)

)
= Wd(f, f̃),

where we have used again the Kantorovich duality. This completes the proof.

The next estimate shows that the Wasserstein distance is convex. For additional details we
refer to [57, Theorem 4.8].

Lemma 8.4. Let P (x, ·) be a Markov transition function on D × Pd(D). Then, for any f, g ∈
Pd(D) and any coupling H of (f, g), it holds that

Wd

(∫
D
P (x, ·)f(dx),

∫
D
P (x, ·)g(dx)

)
≤
∫
D×D

Wd(P (x, ·), P (x̃, ·))H(dx, dx̃).

8.3 Proof of the elementary inequality with respect to log

Below we prove the following inequality.

Lemma 8.5. For any a, b ≥ 0 one has

log(1 + ab) ≤ log(2e− 1) min{log(1 + a), log(1 + b)}+ log(2e− 1) log(1 + a) log(1 + b).
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Proof. Using the elementary inequality log(e + ab) ≤ log(e + a) log(e + b), see [28], we easily
obtain

log(1 + ab) = log(e−1) + log(e + eab)

≤ log(e + a)
(
log(e−1) + log(e + eb)

)
≤ log(e + a) log(1 + b)

from which we readily deduce

log(1 + ab) ≤ min{log(e + a) log(1 + b), log(e + b) log(1 + a)}.

Fix any ε > 0. If a ≥ ε, then we obtain

log(1 + ab) ≤ log(e + a) log(1 + b) ≤ log(e + ε)

log(1 + ε)
log(1 + a) log(1 + b).

The case b ≥ ε can be treated in the same way. Finally, if 0 ≤ a, b ≤ ε, then we obtain

log(1 + ab) ≤ min{log(e + a) log(1 + b), log(e + b) log(1 + a)}

≤ log(e + ε) min

{
log(e + ε),

log(e + ε)

log(1 + ε)

}
.

Collecting both estimates gives, for all a, b ≥ 0, the estimate

log(1 + ab) ≤ g(ε) min{log(1 + a), log(1 + b)}+ g(ε) log(1 + a) log(1 + b),

where g(ε) = min
{

log(e + ε), log(e+ε)log(1+ε)

}
. A simple extreme value analysis shows that g attains

its maximum at ε = e− 1 which gives inf
ε>0

g(ε) = g(e− 1) = log(2e− 1).
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[35] M. Jǐrina. Stochastic branching processes with continuous state space. Czechoslovak Math. J., 8 (83):292–313,
1958.

[36] W. Kang and C. Kang. Large deviations for affine diffusion processes on Rm+ ×Rn. Stochastic Process. Appl.,
124(6):2188–2227, 2014.

[37] K. Kawazu and S. Watanabe. Branching processes with immigration and related limit theorems. Teor.
Verojatnost. i Primenen., 16:34–51, 1971.

[38] M. Keller-Ressel and E. Mayerhofer. Exponential moments of affine processes. Ann. Appl. Probab., 25(2):714–
752, 2015.

[39] M. Keller-Ressel and A. Mijatović. On the limit distributions of continuous-state branching processes with
immigration. Stochastic Process. Appl., 122(6):2329–2345, 2012.

[40] M. Keller-Ressel, W. Schachermayer, and J. Teichmann. Affine processes are regular. Probab. Theory Related
Fields, 151(3-4):591–611, 2011.

[41] M. Keller-Ressel, W. Schachermayer, and J. Teichmann. Regularity of affine processes on general state
spaces. Electron. J. Probab., 18:no. 43, 17, 2013.

[42] M. Keller-Ressel and T. Steiner. Yield curve shapes and the asymptotic short rate distribution in affine
one-factor models. Finance Stoch., 12(2):149–172, 2008.

33



[43] T. G. Kurtz. The Yamada-Watanabe-Engelbert theorem for general stochastic equations and inequalities.
Electron. J. Probab., 12:951–965, 2007.

[44] T. G. Kurtz. Equivalence of stochastic equations and martingale problems. In Stochastic analysis 2010,
pages 113–130. Springer, Heidelberg, 2011.

[45] A. E. Kyprianou, S. Palau, and Y.-X. Ren. Almost sure growth of supercritical multi-type continuous-state
branching process. ALEA Lat. Am. J. Probab. Math. Stat., 15(1):409–428, 2018.

[46] Z. Li. Measure-valued branching Markov processes. Probability and its Applications (New York). Springer,
Heidelberg, 2011.

[47] Z. Li and C. Ma. Asymptotic properties of estimators in a stable Cox-Ingersoll-Ross model. Stochastic
Process. Appl., 125(8):3196–3233, 2015.

[48] R. G. Ma. Stochastic equations for two-type continuous-state branching processes with immigration. Acta
Math. Sin. (Engl. Ser.), 29(2):287–294, 2013.

[49] E. Mayerhofer, J. Muhle-Karbe, and A. G. Smirnov. A characterization of the martingale property of
exponentially affine processes. Stochastic Process. Appl., 121(3):568–582, 2011.

[50] E. Mayerhofer, R. Stelzer, and J. Vestweber. Geometric Ergodicity of Affine Processes on Cones.
arXiv:1811.10542 [math.PR], 2018.

[51] S. Meyn and R. L. Tweedie. Markov chains and stochastic stability. Cambridge University Press, Cambridge,
second edition, 2009. With a prologue by Peter W. Glynn.

[52] M. A. Pinsky. Limit theorems for continuous state branching processes with immigration. Bull. Amer. Math.
Soc., 78:242–244, 1972.
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